Toto je tzv. shluknutý kurz. Skládá se z několika samostatných předmětů, které sdílejí výukové materiály, úkoly, testy apod. Níže si můžete zobrazit informace o jednotlivých předmětech tvořících tento shluk.

Modelování a simulace dynamických systémů - A3B35MSD

Hlavní kurz
Kredity 6
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 2P+2L
Anotace
Cílem předmětu je naučit se vytvářet matematické modely složitých dynamických systémů, a to sice modely použitelné coby podklad pro návrh řídicích algoritmů. Budeme se soustředit na systémy obsahující podsystémy různé fyzikální povahy. Ukážeme si, že koncept energie (či výkonu), který je univerzálně platný napříč fyzikálními doménami, je tím správný nástrojem pro spojování subsystémů elektrických, mechanických, hydraulických, ale i termodynamických. Některé poznatky a dovednosti získané v tomto kurzu však budou alespoň částečně použitelné i v oblastech, kde koncept energie není tak užitečný (systémy sociologické, ekonomické). Představíme si tři skupiny metod, které konceptu energie využívají, a to sice analytické metody pro Lagrangeovské a Hamiltonovské modelování známé z teoretické mechaniky, objektově orientované modelování coby alternativu více rozšířeného modelování pomocí blokových diagramů, a především velmi intuitivní metodiku vazebních grafů. Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V kurzu si představíme aspoň základní metody pro numerické řešení obyčejných diferenciálních rovnic s motivací získat porozumění problematice aproximačních chyb, numerické stability i vhodnosti různých metod pro různé modely.
Cíle studia
Naučit studenty vytvářet modely realisticky složitých dynamických systémů nejrozmanitější fyzikální povahy, a tyto modely s využitím moderních softwarových nástrojů analyzovat pomocí numerické simulace.
Osnovy přednášek
1.) Přehled formátů matematických modelů pro dynamické systémy
2.) Základní koncepty a komponenty pro modelování dynamiky pomocí vazebních grafů. Ilustrace pro mechanické, elektrické a hydraulické systémy
3.) Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů z vazebních grafů
4.) Exktrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5.) Úvod do metod analytické mechaniky - Lagrangeova metoda
6.) Použití Lagrangeova přístupu pro odvozování modelů složitějších systémů
7.) Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací
8.) Software pro modelování a simulaci dynamických systémů
9.) Hybridní dynamické systémy
10.) Tepelné systémy pomocí vazebních grafů
11.) Numerická simulace dynamických systémů
12.) Numerická simulace dynamických systémů
13.) Modelování systémů s rozprostřenými parametry pomocí vazebních grafů
Osnovy cvičení
Náplní samotného cvičení je práce na zadaných projektech.
Literatura
Předmět je postaven na následující knize

[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.

Kniha je v počtu cca 30 kusů k dispozici ve fakultní knihovně v NTK k zapůjčení pro studenty předmětu na celý semestr. Předmět je do značné míry založen i na samostatné práci studentů s knihou.

Další doporučenou knihou, která je do značné míry záměnná s [1] je

[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.

Avšak nebudeme se na přístup studentů k této knize nikterak spoléhat.

Další doporučení na literaturu jsou na webu předmětu na http://dce.fel.cvut.cz/msd.
Požadavky
Solidní zvládnutí všech partií vysokoškolské fyziky, zejména mechaniky, elektromagnetismu a termodynamiky. Základy z diferenciálního počtu (diferenciální rovnice a jejich numerické řešení) a lineární algebry (soustava lineárních rovnic a její numerické řešení).

Stránky předmětu: http://moodle.fel.cvut.cz

Modelování a simulace dynamických systémů - AD3B35MSD

Kredity 6
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 14KP+6KC
Anotace
Cílem předmětu je naučit se vytvářet matematické modely složitých dynamických systémů, a to sice modely použitelné coby podklad pro návrh řídicích algoritmů. Budeme se soustředit na systémy obsahující podsystémy různé fyzikální povahy. Ukážeme si, že koncept energie (či výkonu), který je univerzálně platný napříč fyzikálními doménami, je tím správný nástrojem pro spojování subsystémů elektrických, mechanických, hydraulických, ale i termodynamických. Některé poznatky a dovednosti získané v tomto kurzu však budou alespoň částečně použitelné i v oblastech, kde koncept energie není tak užitečný (systémy sociologické, ekonomické). Představíme si tři skupiny metod, které konceptu energie využívají, a to sice analytické metody pro Lagrangeovské a Hamiltonovské modelování známé z teoretické mechaniky, objektově orientované modelování coby alternativu více rozšířeného modelování pomocí blokových diagramů, a především velmi intuitivní metodiku vazebních grafů. Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V kurzu si představíme aspoň základní metody pro numerické řešení obyčejných diferenciálních rovnic s motivací získat porozumění problematice aproximačních chyb, numerické stability i vhodnosti různých metod pro různé modely.
Cíle studia
Naučit studenty vytvářet modely realisticky složitých dynamických systémů nejrozmanitější fyzikální povahy, a tyto modely s využitím moderních softwarových nástrojů analyzovat pomocí numerické simulace.
Osnovy přednášek
1.) Přehled formátů matematických modelů pro dynamické systémy
2.) Základní koncepty a komponenty pro modelování dynamiky pomocí vazebních grafů. Ilustrace pro mechanické, elektrické a hydraulické systémy
3.) Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů z vazebních grafů
4.) Exktrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5.) Úvod do metod analytické mechaniky - Lagrangeova metoda
6.) Použití Lagrangeova přístupu pro odvozování modelů složitějších systémů
7.) Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací
8.) Software pro modelování a simulaci dynamických systémů
9.) Hybridní dynamické systémy
10.) Tepelné systémy pomocí vazebních grafů
11.) Numerická simulace dynamických systémů
12.) Numerická simulace dynamických systémů
13.) Modelování systémů s rozprostřenými parametry pomocí vazebních grafů
Osnovy cvičení
Náplní samotného cvičení je práce na zadaných projektech.
Literatura
Předmět je postaven na následující knize

[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.

Kniha je v počtu cca 30 kusů k dispozici ve fakultní knihovně v NTK k zapůjčení pro studenty předmětu na celý semestr. Předmět je do značné míry založen i na samostatné práci studentů s knihou.

Další doporučenou knihou, která je do značné míry záměnná s [1] je

[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.

Avšak nebudeme se na přístup studentů k této knize nikterak spoléhat.

Další doporučení na literaturu jsou na webu předmětu na http://dce.fel.cvut.cz/msd.
Požadavky
Solidní zvládnutí všech partií vysokoškolské fyziky, zejména mechaniky, elektromagnetismu a termodynamiky. Základy z diferenciálního počtu (diferenciální rovnice a jejich numerické řešení) a lineární algebry (soustava lineárních rovnic a její numerické řešení).

Stránky předmětu: http://moodle.fel.cvut.cz

Modeling and Simulation of Dynamic Systems - AE3B35MSD

Kredity 6
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky angličtina
Rozsah výuky 2P+2L
Anotace
Cílem předmětu je naučit se vytvářet matematické modely složitých dynamických systémů, a to sice modely použitelné coby podklad pro návrh řídicích algoritmů. Budeme se soustředit na systémy obsahující podsystémy různé fyzikální povahy. Ukážeme si, že koncept energie (či výkonu), který je univerzálně platný napříč fyzikálními doménami, je tím správný nástrojem pro spojování subsystémů elektrických, mechanických, hydraulických, ale i termodynamických. Některé poznatky a dovednosti získané v tomto kurzu však budou alespoň částečně použitelné i v oblastech, kde koncept energie není tak užitečný (systémy sociologické, ekonomické). Představíme si tři skupiny metod, které konceptu energie využívají, a to sice analytické metody pro Lagrangeovské a Hamiltonovské modelování známé z teoretické mechaniky, objektově orientované modelování coby alternativu více rozšířeného modelování pomocí blokových diagramů, a především velmi intuitivní metodiku vazebních grafů. Ať už se k matematickému modelu dostaneme jakoukoliv cestou, jedním ze způsobů jeho analýzy je simulace, tedy numerické řešení souvisejících diferenciálních či algebro-diferenciálních rovnic. V kurzu si představíme aspoň základní metody pro numerické řešení obyčejných diferenciálních rovnic s motivací získat porozumění problematice aproximačních chyb, numerické stability i vhodnosti různých metod pro různé modely.
Cíle studia
Teach student to create models of realistically complex dynamic systems found in diverse application areas and analyze these by means of numerical simulations.
Osnovy přednášek
1.) Přehled formátů matematických modelů pro dynamické systémy
2.) Základní koncepty a komponenty pro modelování dynamiky pomocí vazebních grafů. Ilustrace pro mechanické, elektrické a hydraulické systémy
3.) Modelování jednoduchých systémů pomocí vazebních grafů, doplnění kauzality a extrakce signálových modelů z vazebních grafů
4.) Exktrakce stavových rovnic z kauzálních vazebních grafů; další příklady modelování vazebními grafy; redukce modelů úpravami vazebních grafů
5.) Úvod do metod analytické mechaniky - Lagrangeova metoda
6.) Použití Lagrangeova přístupu pro odvozování modelů složitějších systémů
7.) Příklady průmyslových projektů, kde modelování a simulace výrazně přispěly k monitorování neměřených či neměřitelných veličin v reálném čase, podpoře dispečerského řízení, návrhu algoritmů automatického řízení či plánování operací
8.) Software pro modelování a simulaci dynamických systémů
9.) Hybridní dynamické systémy
10.) Tepelné systémy pomocí vazebních grafů
11.) Numerická simulace dynamických systémů
12.) Numerická simulace dynamických systémů
13.) Modelování systémů s rozprostřenými parametry pomocí vazebních grafů
Osnovy cvičení
The exercises will be dedicated to the work on assigned projects.
Literatura
The course is based on

[1.] F. T. Brown, Engineering System Dynamics. A Unified Graph-Centered Approach, Second Edition, 2nd ed. CRC Press, 2006.

The book is available in about 30 copies in the FEL library in NTK. In this course we will rely on students having access to the book.

Another nice book, which can to some extent replace [1] is

[2.] D.C. Karnopp et al. System Dynamics: Modeling and simulation of mechatronic systems. Wiley, 4. vyd., 2006.

But students will not be required to have an access to this book.

For more tips on literature, visit the course website http://dce.fel.cvut.cz/msd
Požadavky
Solid mastering all the parts of physics (at the undergraduate level), above all mechanics, electromagnetism and thermodynamics. Familiarity with basic results from differential calculus (differential equations and their numerical solution) and linear algebra (sets of linear equations and their numerical solution).
Stránky předmětu: https://moodle.dce.fel.cvut.cz/