Počet kreditů 6
Vyučováno v Summer
Rozsah výuky 2+2c
Garant předmětu
Přednášející
Cvičící

The goal is to show the algorithms for several combinatorial optimization problems. Following the subject on algorithms, we show optimisation techniques based on graphs, integer linear programming, heuristics, approximation algorithms and state space search methods. We focus on application of optimization in stores, ground transport, flight transport, logistics, planning of human resources, scheduling in production lines, message routing, scheduling in parallel computers.

Linear algebra

Agorithmisation

1. Example Applications and Formulation of Problems.

2. Basic Terms of Graph Theory.

3. Spanning Trees.

4. Network Flows.

5. Linear Programming.

6. Algorithms for Linear Programming. Test I.

7. Time Complexity of Algorithms.

8. Branch and Bound Technique and its Applications

9. Metaheuristics and Approximation Algorithms.

10. Scheduling on Monoprocessor

11. Scheduling on Parallel Processors

12. The Job Shop Problem

13. Reserve.

1. Introduction to the Scheduling Toolbox.

2. Properties of Graphs.

3. Spanning Tree and Clustering.

4. Individual Projects - Topics.

5. Applications of Network Flows

6. Linear Programming

7. Scheduling and Branch and Bound Technique

8. Approximation Algorithms and the SAT Problem

9. Individual Projects - Defense of the Programs

10. Test II.

11. Individual Projects - Defense.

12. Assessment.

13. Reserve.

Main textbook

[1] B. H. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms. Springer, third ed., 2006.



Some parts of:

[2] J. Demel, Grafy a jejich aplikace. Academia, second ed., 2002.

[3] J. Blazevicz, Scheduling Computer and Manufacturing Processes. Springer, second ed., 2001.

Rozvrh předmětu
Po
Út
St
Čt
PřednáškyCvičení