Moodle FEL ČVUT
Odhadování, filtrace a detekce
B232 - Letní 23/24
Odhadování, filtrace a detekce - RM35OFD
Kredity | 6 |
Semestry | zimní |
Zakončení | zápočet a zkouška |
Jazyk výuky | čeština |
Rozsah výuky | 2P+2C |
Anotace
Předmět seznamuje posluchače s popisem neurčitosti nepozorovatelných veličin (parametrů a stavu dynamického systému) jazykem teorie pravděpodobnosti a s metodami jejich odhadování. Na základě bayesovské formulace problému jsou odvozeny algoritmy odhadování (parametry ARX modelu, Gaussian Process Regression) a filtrace (Kalmanův filtr) a detekce (testování hypotéz na základě věrohodnostního poměru), diskutována jejich numericky robustní implementace a řešení reálných aplikačních problémů v oblasti průmyslových regulací, robotiky a avioniky.
Cíle studia
Schopnost řešit inženýrské problem v oblasti odhadování a filtrace s využitím rigorózních teoretických základů.
Osnovy přednášek
1. Opakování statistiky
2. MS, LMS a ML odhad
3. Bayesovský přistup, model dynamického systému
4. Identifikace parametrů ARX modelu
5. Sledování časově proměnných parametrů, metody zapomínání
6. Numercky robustní algoritmy odhadování
7. Regrese s využitím Gausovských procesů
8. Stochastický systém, pravděpodobnostní definice stavu, Kalmanův filtr
9. Kalmanův filtr pro barevné šumy, rozšířený Kalmanův filtr
10. Stochastick=é dynamické programování, LQ a LQG řízení, separační princip
11. Metody detekce a izolace poruch
12. Věrohodnostní poměr - teorie a aplikace
13. Nelineární odhadování - lokální a globální aproximace
14. Metody Monte Carlo
2. MS, LMS a ML odhad
3. Bayesovský přistup, model dynamického systému
4. Identifikace parametrů ARX modelu
5. Sledování časově proměnných parametrů, metody zapomínání
6. Numercky robustní algoritmy odhadování
7. Regrese s využitím Gausovských procesů
8. Stochastický systém, pravděpodobnostní definice stavu, Kalmanův filtr
9. Kalmanův filtr pro barevné šumy, rozšířený Kalmanův filtr
10. Stochastick=é dynamické programování, LQ a LQG řízení, separační princip
11. Metody detekce a izolace poruch
12. Věrohodnostní poměr - teorie a aplikace
13. Nelineární odhadování - lokální a globální aproximace
14. Metody Monte Carlo
Osnovy cvičení
Náplní seminářů je práce na zadaných projektech (implementace vybraných algoritmů v Matlabu, řešení konkrétních technických problémů), Předmětem kontroly jsou funkční algoritmy a závěrečná zpráva.
Náplní domácích úkolů je řešení vybraných teoretické problému, předmětem kontroly je písemná zpráva.
.
Náplní domácích úkolů je řešení vybraných teoretické problému, předmětem kontroly je písemná zpráva.
.
Literatura
Lewis, F. L., L. Xie, D. Popa: Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, CRC Press, 2005. ISBN 978-1-4200-0829-6
Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, 2006, ISBN: 978-0-471-70858-2
Slidy přednášek (WEB/Moodle)
Zadání samostatných prací a domácích úkolů (WEB/Moodle)
Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, 2006, ISBN: 978-0-471-70858-2
Slidy přednášek (WEB/Moodle)
Zadání samostatných prací a domácích úkolů (WEB/Moodle)
Požadavky
Základní znalosti teorie dynamických system, pravděpodobnosti a statistiky.