This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.

Aircraft Avionics - BE9M38PSL

Main course
Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching English
Extent of teaching 2P+2L
Annotation
The subject is focused into a field of aircraft avionics including principles, sensors, measurement and evaluation systems and signal/data processing methods. The subject goes into details of studied systems, i.e. engine and aircraft monitoring systems, power systems, pressure-based systems, low-frequency navigation means, and flight recorders. The subject introduces currently used technology and methodology on aircraft and thus serves to understand fundamentals of avionics. Inertial navigation systems are discussed in more details as well as their aiding systems and sensors. The course focuses on both small and large aircraft as well as on UAV suited avionics.
Course outlines
1. Aircraft avionics, cockpits - overview. Avionics immunity to impacts of ambient environment. EMC and its application into aircraft, examples.
2. Aircraft power systems and power distribution.
3. Parameters definition of aircraft propulsions, N1&N2, temperature, pressure, torque & vibration measurement systems. Fire and ice annunciators.
4. Complex engine monitoring systems. Fuel systems, level sensors. Fuel flow & fuel used measurement systems.
5. Barometrical measurements of altitude. Altimeters and their constructions. International standard atmosphere. Angle of attack measurements.
6. Air, vertical speed, and Mach-number measurements. Total/static air temperature measurements. Air data computer - pressure based systems & sensors.
7. Means of operational and emergency diagnostics. Flight data recorders.
8. Earth magnetic field and its usage. Magnetic sensors.
9. Introduction to aircraft navigation systems. Mechanical gyroscopes.
10. Inertial sensors - angular rate sensors/gyroscopes and accelerometers.
11. Navigation equations and navigation systems, INS/GNSS data fusion.
12. UAV electronics and payloads.
13. UAV power management.
Exercises outlines
Laboratory exercises are dedicated to get theoretical knowledge onto a practical level of understanding. There are 12 practical exercises dedicated to particular aircraft systems to pass and make the report from. Within the semester there will be organized two excursions to helicopter base of the Czech Police and to the B737 simulator.
Literature
[1] Pallet, E.H.J.: Aircraft instruments and integrated systems. Longman 1992
[2] Davies M.: The standard handbook for aeronautical and astronautical engineers. McGRAW-HILL 2002
[3] Fortescu P., Stark J., Swinerd G.: Spacecraft Systems Engineering. John Wiley&Sons, Ltd. 2003
[4] Helfrick A: Principles of Avionics. Avionics Communications Inc. 2004
[5] Moir I., Seabridge A.: Aircraft systems. John Wiley&Sons, Ltd. 2008
[6] Spitzer C. R.: Avionics development and implementation. CRC Press 2007

Requirements
No special prerequisites required; nevertheless, basic knowledge of measurement instruments, sensors/electronics and methods is recommended.

Aircraft Avionics - BE3M38PSL

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching English
Extent of teaching 2P+2L
Annotation
The subject is focused into a field of aircraft avionics including principles, sensors, measurement and evaluation systems and signal/data processing methods. The subject goes into details of studied systems, i.e. engine and aircraft monitoring systems, power systems, pressure-based systems, low-frequency navigation means, and flight recorders. The subject introduces currently used technology and methodology on aircraft and thus serves to understand fundamentals of avionics. Inertial navigation systems are discussed in more details as well as their aiding systems and sensors. The course focuses on both small and large aircraft as well as on UAV suited avionics.
Course outlines
1. Aircraft avionics, cockpits - overview. Avionics immunity to impacts of ambient environment. EMC and its application into aircraft, examples.
2. Aircraft power systems and power distribution.
3. Parameters definition of aircraft propulsions, N1&N2, temperature, pressure, torque & vibration measurement systems. Fire and ice annunciators.
4. Complex engine monitoring systems. Fuel systems, level sensors. Fuel flow & fuel used measurement systems.
5. Barometrical measurements of altitude. Altimeters and their constructions. International standard atmosphere. Angle of attack measurements.
6. Air, vertical speed, and Mach-number measurements. Total/static air temperature measurements. Air data computer - pressure based systems & sensors.
7. Means of operational and emergency diagnostics. Flight data recorders.
8. Earth magnetic field and its usage. Magnetic sensors.
9. Introduction to aircraft navigation systems. Mechanical gyroscopes.
10. Inertial sensors - angular rate sensors/gyroscopes and accelerometers.
11. Navigation equations and navigation systems, INS/GNSS data fusion.
12. UAV electronics and payloads.
13. UAV power management.
Exercises outlines
Laboratory exercises are dedicated to get theoretical knowledge onto a practical level of understanding. There are 12 practical exercises dedicated to particular aircraft systems to pass and make the report from. Within the semester there will be organized two excursions to helicopter base of the Czech Police and to the B737 simulator.
Literature
[1] Pallet, E.H.J.: Aircraft instruments and integrated systems. Longman 1992
[2] Davies M.: The standard handbook for aeronautical and astronautical engineers. McGRAW-HILL 2002
[3] Fortescu P., Stark J., Swinerd G.: Spacecraft Systems Engineering. John Wiley&Sons, Ltd. 2003
[4] Helfrick A: Principles of Avionics. Avionics Communications Inc. 2004
[5] Moir I., Seabridge A.: Aircraft systems. John Wiley&Sons, Ltd. 2008
[6] Spitzer C. R.: Avionics development and implementation. CRC Press 2007

Requirements
No special prerequisites required; nevertheless, basic knowledge of measurement instruments, sensors/electronics and methods is recommended.

Aircraft Avionics - B9M38PSL

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject is focused into a field of aircraft avionics including principles, sensors, measurement and evaluation systems and signal/data processing methods. The subject goes into details of studied systems, i.e. engine and aircraft monitoring systems, power systems, pressure-based systems, low-frequency navigation means, and flight recorders. The subject introduces currently used technology and methodology on aircraft and thus serves to understand fundamentals of avionics. Inertial navigation systems are discussed in more details as well as their aiding systems and sensors. The course focuses on both small and large aircraft as well as on UAV suited avionics.
Course outlines
1. Aircraft avionics, cockpits - overview. Avionics immunity to impacts of ambient environment. EMC and its application into aircraft, examples.
2. Aircraft power systems and power distribution.
3. Parameters definition of aircraft propulsions, N1&N2, temperature, pressure, torque & vibration measurement systems. Fire and ice annunciators.
4. Complex engine monitoring systems. Fuel systems, level sensors. Fuel flow & fuel used measurement systems.
5. Barometrical measurements of altitude. Altimeters and their constructions. International standard atmosphere. Angle of attack measurements.
6. Air, vertical speed, and Mach-number measurements. Total/static air temperature measurements. Air data computer - pressure based systems & sensors.
7. Means of operational and emergency diagnostics. Flight data recorders.
8. Earth magnetic field and its usage. Magnetic sensors.
9. Introduction to aircraft navigation systems. Mechanical gyroscopes.
10. Inertial sensors - angular rate sensors/gyroscopes and accelerometers.
11. Navigation equations and navigation systems, INS/GNSS data fusion.
12. UAV electronics and payloads.
13. UAV power management.
Exercises outlines
Laboratory exercises are dedicated to get theoretical knowledge onto a practical level of understanding. There are 12 practical exercises dedicated to particular aircraft systems to pass and make the report from. Within the semester there will be organized two excursions to helicopter base of the Czech Police and to the B737 simulator.
Literature
[1] Pallet, E.H.J.: Aircraft instruments and integrated systems. Longman 1992
[2] Davies M.: The standard handbook for aeronautical and astronautical engineers. McGRAW-HILL 2002
[3] Fortescu P., Stark J., Swinerd G.: Spacecraft Systems Engineering. John Wiley&Sons, Ltd. 2003
[4] Helfrick A: Principles of Avionics. Avionics Communications Inc. 2004
[5] Moir I., Seabridge A.: Aircraft systems. John Wiley&Sons, Ltd. 2008
[6] Spitzer C. R.: Avionics development and implementation. CRC Press 2007
Requirements
No special prerequisites required; nevertheless, basic knowledge of measurement instruments, sensors/electronics and methods is recommended.

Aircraft Avionics - B3M38PSL

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject is focused into a field of aircraft avionics including principles, sensors, measurement and evaluation systems and signal/data processing methods. The subject goes into details of studied systems, i.e. engine and aircraft monitoring systems, power systems, pressure-based systems, low-frequency navigation means, and flight recorders. The subject introduces currently used technology and methodology on aircraft and thus serves to understand fundamentals of avionics. Inertial navigation systems are discussed in more details as well as their aiding systems and sensors. The course focuses on both small and large aircraft as well as on UAV suited avionics.
Course outlines
1. Aircraft avionics, cockpits - overview. Avionics immunity to impacts of ambient environment. EMC and its application into aircraft, examples.
2. Aircraft power systems and power distribution.
3. Parameters definition of aircraft propulsions, N1&N2, temperature, pressure, torque & vibration measurement systems. Fire and ice annunciators.
4. Complex engine monitoring systems. Fuel systems, level sensors. Fuel flow & fuel used measurement systems.
5. Barometrical measurements of altitude. Altimeters and their constructions. International standard atmosphere. Angle of attack measurements.
6. Air, vertical speed, and Mach-number measurements. Total/static air temperature measurements. Air data computer - pressure based systems & sensors.
7. Means of operational and emergency diagnostics. Flight data recorders.
8. Earth magnetic field and its usage. Magnetic sensors.
9. Introduction to aircraft navigation systems. Mechanical gyroscopes.
10. Inertial sensors - angular rate sensors/gyroscopes and accelerometers.
11. Navigation equations and navigation systems, INS/GNSS data fusion.
12. UAV electronics and payloads.
13. UAV power management.
Exercises outlines
Laboratory exercises are dedicated to get theoretical knowledge onto a practical level of understanding. There are 12 practical exercises dedicated to particular aircraft systems to pass and make the report from. Within the semester there will be organized two excursions to helicopter base of the Czech Police and to the B737 simulator.
Literature
[1] Pallet, E.H.J.: Aircraft instruments and integrated systems. Longman 1992
[2] Davies M.: The standard handbook for aeronautical and astronautical engineers. McGRAW-HILL 2002
[3] Fortescu P., Stark J., Swinerd G.: Spacecraft Systems Engineering. John Wiley&Sons, Ltd. 2003
[4] Helfrick A: Principles of Avionics. Avionics Communications Inc. 2004
[5] Moir I., Seabridge A.: Aircraft systems. John Wiley&Sons, Ltd. 2008
[6] Spitzer C. R.: Avionics development and implementation. CRC Press 2007
Requirements
No special prerequisites required; nevertheless, basic knowledge of measurement instruments, sensors/electronics and methods is recommended.