This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.

Space Engineering - BE9M37KIN

Main course
Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching English
Extent of teaching 2P+2L
Annotation
The subject acquaints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecrafts and launchers and methods used for the design and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecrafts and its resistance to external influences of the space environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview of the trajectories of spacecrafts and their applications. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principles of underlying calculations, simulations and their processing.
Study targets
The students will obtain knowledge representing an introduction to and overview of space engineering and space physics.
Course outlines
1 Space Physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of micrometeroroids and space debris. Basics of astronomy and cosmology.

2. Origin and evolution of the U niverse, the theory of relativity. Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, the redshift, the age of the Universe. Cosmic background radiation. The solar system and the planetary and cometary missions.

3. Space technology and materials. Their behavior in space (vacuum), charging and outgasing and optimization. Radiation interaction with the material, radiation effects.

4 Satellites and space probes. Basic categories, applications, and design. Electric power sources. Thermal protection. Proposals for space missions. Landers and orbiters.

5. Payloads of satellites and spacecrafts and their design. Ground segment. Data handling and transmission, telemetry. Pico and nanosatelites.

6 Flight dynamics of satellites. Linearization, linear analysis, poles, modes.

7 Stabilization and orientation control using jets, reaction wheels, and spin.

8 Issue of desaturation of reaction wheels. Cooperative control based on a combination of nozzles and reaction wheels.

9 Stabilization orientation during translation maneuvers.

10 Space Electronics and its specifics. Software and programs for space travel and projects. Their specifics and applications. Tests of space systems and devices. Test conditions and criteria. TRL of onboard systems and devices.

11 Space transport vehicles, launchers, shuttles and alternative transport space systems. The principles of rockets with liquid and solid fuels, hybrid rockets. Suitable orbits and trajectories of spacecrafts with respect to specific applications, the Lagrangian points. Flyby.

12 Manned spaceflight and their specifics in particular with regard to the technical and security requirements for on-board systems. Spacecrafts and orbital stations. Long-term manned flights, manned lunar and planetary missions.

13 Space optics. Optoelectronic systems for space. Optical, x-ray, infrared, radio, and gamma telescopes, cameras and systems. Their protection from the effects of outer space, shielding.

14 Space navigation and telecommunications. Remote sensing, its types and usage. Multispectral images and their applications.
Exercises outlines
Laboratory exercises in the first half of the semester will focus on practical verification of basic principles of space instrumentation, systems and subsystems and methods of design of space missions. In the second half groups of 2-3 students will be created, which in turn will solve the problems from the fields of teaching materials. The students will work together with teachers, so that at the end of the semester they will be able to present solutions in the form of a short presentation (10 min.). There will also be organized excursions.
Literature
[1] Maimi A. K., Agrawal V.: Satellite technology-principles and applications, Wiley 2007, ISBN: 978-0-470-03335-7

[2] Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 3rd edition, Wiley 2003, ISBN: 978-0-470-85102-9

[3] Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-69-110299-3
Requirements
Physics at bachelor level, basics of Matlab and C/C++

Introduction to space science and technology - XP37ISS

Credits 4
Semesters Winter
Completion Exam
Language of teaching English
Extent of teaching 2P+2L
Annotation
Introduction to space sciences and technology on PhD level. Methods and resources of space research and their
applications. Satellites, space probes, space stations, space transportation systems, their development, proposals and
design. Optoelectronic systems for space, onboard systems and payload, space communication and navigation, space
materials and technology. Remote sensing and multispectral images, applications. Space physics, cosmic environment,
cosmic radiation and particles. Ground based segment, tests of space systems, space software, archiving and data reduction,
organization international co-operation.
Course outlines
1. . Rockets and launch vehicles, space transportation, principles of ballistics and spaceflight.. Satellite trajectories
and orbits.
2. Management of space projects. Space manned flights. Spaceships and space stations.
3. Space physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and
their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of
micrometeroroids and space debris
4. Astronomy and cosmology. Origin and development of the universe, theory of relativity and quantum physics.
Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, redshift, age of the universe. Cosmic
background radiation.
5. Space astronomy and astrophysics. Space observatories.
6. Solar system and planetary research. Solar system and planetary probes, landers and orbiters. Fly by.
7. Introduction to the modern history of astronautics, space research and spaceflight. International cosmic agencies
and international cooperation in space research and space technologies.
8. Space optics. Optoelectronic systems for space. Optical, radio, infra - red, radio, X-ray, and gamma ray telescopes
and systems.
9. Space electronics. Software and programs for spaceflight and space projects. Their specifics and applications
10. Satellite technologies and payloads. Space technology and materials. Their behavior in space (vacuum), charging
and outgasing and optimization. Radiation interaction with the material, radiation effects.
11.Satellites and space probes. Basic categories, applications. Proposals for cosmic missions. Design of satellites and space
probes. Payload of satellites and cosmic probes and their design
12. Tests of cosmic systems and apparatus. Testing conditions and criteria.
13. Space navigation and telecommunication. Remote sensing, types and application. Multispectral images and
media.
14. Ground-based systems for space research. Archiving, reduction, and data analysis from cosmic projects..
Literature
Povinná:
Maimi A. K., Agrawal V.: Satellite technology-principles and applications, 3rd edition, Wiley 2014, ISBN: 978-1-118-
63647-3
Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 4td edition, Wiley 2011, ISBN: 978-0-470-75012-4
Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-
69-110299-3
Pankaj J. Introduction to Astronomy and Astrophysics. ISBN: 9781439885901, CRC Press 2015
NASA Systems Engineering Handbook Spacecraft Systems Engineering 4th Edition by Peter Fortescue (Editor),
5
Graham Swinerd (Editor), John Stark (Editor), ISBN: 978-0470750124, Wiley 2005
Doporučená:
Rudolf X. Meyer, Elements of Space Technology for Aerospace Engineers ISBN: 978-0-12-492940-1, 2005 Elsevier
Guide to Mitigating Spacecraft Charging Effects. Henry B. Garrett and Albert C. Whittlesey. Jet Propulsion Laboratory
California Institute of Technology, 2011
Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Dan M. Goebel and Ira Katz Jet Propulsion Laboratory
California Institute of Technology JPL Space Science and Technology Series, 2010

Space Engineering - B3M37KIN

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject acquaints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecrafts and launchers and methods used for the design and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecrafts and its resistance to external influences of the space environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview of the trajectories of spacecrafts and their applications. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principles of underlying calculations, simulations and their processing.
Course outlines
1. Space Physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of micrometeroroids and space debris. Basics of astronomy and cosmology.

2. Origin and evolution of the U niverse, the theory of relativity. Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, the redshift, the age of the Universe. Cosmic background radiation. The solar system and the planetary and cometary missions.

3. Space technology and materials. Their behavior in space (vacuum), charging and outgasing and optimization. Radiation interaction with the material, radiation effects.

4 Satellites and space probes. Basic categories, applications, and design. Electric power sources. Thermal protection. Proposals for space missions. Landers and orbiters.

5. Payloads of satellites and spacecrafts and their design. Ground segment. Data handling and transmission, telemetry. Pico and nanosatelites.

6. Flight dynamics of satellites. Linearization, linear analysis, poles, modes.

7. Stabilization and orientation control using jets, reaction wheels, and spin.

8. Issue of desaturation of reaction wheels. Cooperative control based on a combination of nozzles and reaction wheels.

9. Stabilization orientation during translation maneuvers.

10. Space Electronics and its specifics. Software and programs for space travel and projects. Their specifics and applications. Tests of space systems and devices. Test conditions and criteria. TRL of onboard systems and devices.

11. Space transport vehicles, launchers, shuttles and alternative transport space systems. The principles of rockets with liquid and solid fuels, hybrid rockets. Suitable orbits and trajectories of spacecrafts with respect to specific applications, the Lagrangian points. Flyby.

12. Manned spaceflight and their specifics in particular with regard to the technical and security requirements for on-board systems. Spacecrafts and orbital stations. Long-term manned flights, manned lunar and planetary missions.

13. Space optics. Optoelectronic systems for space. Optical, x-ray, infrared, radio, and gamma telescopes, cameras and systems. Their protection from the effects of outer space, shielding.

14. Space navigation and telecommunications. Remote sensing, its types and usage. Multispectral images and their applications.
Exercises outlines
Laboratory exercises in the first half of the semester will focus on practical verification of basic principles of space instrumentation, systems and subsystems and methods of design of space missions. In the second half groups of 2-3 students will be created, which in turn will solve the problems from the fields of teaching materials. The students will work together with teachers, so that at the end of the semester they will be able to present solutions in the form of a short presentation (10 min.). There will also be organized excursions.
Literature
[1] Maimi A. K., Agrawal V.: Satellite technology-principles and applications, Wiley 2007, ISBN: 978-0-470-03335-7

[2] Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 3rd edition, Wiley 2003, ISBN: 978-0-470-85102-9

[3] Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-69-110299-3
Requirements
Physics at bachelor level, basics of Matlab, C/C++, adn Python

Space Engineering - BE3M37KIN

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching English
Extent of teaching 2P+2L
Annotation
The subject acquaints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecrafts and launchers and methods used for the design and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecrafts and its resistance to external influences of the space environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview of the trajectories of spacecrafts and their applications. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principles of underlying calculations, simulations and their processing.
Course outlines
1 Space Physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of micrometeroroids and space debris. Basics of astronomy and cosmology.

2. Origin and evolution of the U niverse, the theory of relativity. Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, the redshift, the age of the Universe. Cosmic background radiation. The solar system and the planetary and cometary missions.

3. Space technology and materials. Their behavior in space (vacuum), charging and outgasing and optimization. Radiation interaction with the material, radiation effects.

4 Satellites and space probes. Basic categories, applications, and design. Electric power sources. Thermal protection. Proposals for space missions. Landers and orbiters.

5. Payloads of satellites and spacecrafts and their design. Ground segment. Data handling and transmission, telemetry. Pico and nanosatelites.

6 Flight dynamics of satellites. Linearization, linear analysis, poles, modes.

7 Stabilization and orientation control using jets, reaction wheels, and spin.

8 Issue of desaturation of reaction wheels. Cooperative control based on a combination of nozzles and reaction wheels.

9 Stabilization orientation during translation maneuvers.

10 Space Electronics and its specifics. Software and programs for space travel and projects. Their specifics and applications. Tests of space systems and devices. Test conditions and criteria. TRL of onboard systems and devices.

11 Space transport vehicles, launchers, shuttles and alternative transport space systems. The principles of rockets with liquid and solid fuels, hybrid rockets. Suitable orbits and trajectories of spacecrafts with respect to specific applications, the Lagrangian points. Flyby.

12 Manned spaceflight and their specifics in particular with regard to the technical and security requirements for on-board systems. Spacecrafts and orbital stations. Long-term manned flights, manned lunar and planetary missions.

13 Space optics. Optoelectronic systems for space. Optical, x-ray, infrared, radio, and gamma telescopes, cameras and systems. Their protection from the effects of outer space, shielding.

14 Space navigation and telecommunications. Remote sensing, its types and usage. Multispectral images and their applications.
Exercises outlines
Laboratory exercises in the first half of the semester will focus on practical verification of basic principles of space instrumentation, systems and subsystems and methods of design of space missions. In the second half groups of 2-3 students will be created, which in turn will solve the problems from the fields of teaching materials. The students will work together with teachers, so that at the end of the semester they will be able to present solutions in the form of a short presentation (10 min.). There will also be organized excursions.
Literature
[1] Maimi A. K., Agrawal V.: Satellite technology-principles and applications, Wiley 2007, ISBN: 978-0-470-03335-7

[2] Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 3rd edition, Wiley 2003, ISBN: 978-0-470-85102-9

[3] Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-69-110299-3
Requirements
Physics at bachelor level, basics of Matlab, C/C++, and Python

Space Engineering - B9M37KIN

Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject acquaints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecrafts and launchers and methods used for the design and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecrafts and its resistance to external influences of the space environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview of the trajectories of spacecrafts and their applications. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principles of underlying calculations, simulations and their processing.
Study targets
The students will obtain knowledge representing an introduction to and overview of space engineering and space physics.
Course outlines
1 Space Physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of micrometeroroids and space debris. Basics of astronomy and cosmology.

2. Origin and evolution of the U niverse, the theory of relativity. Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, the redshift, the age of the Universe. Cosmic background radiation. The solar system and the planetary and cometary missions.

3. Space technology and materials. Their behavior in space (vacuum), charging and outgasing and optimization. Radiation interaction with the material, radiation effects.

4 Satellites and space probes. Basic categories, applications, and design. Electric power sources. Thermal protection. Proposals for space missions. Landers and orbiters.

5. Payloads of satellites and spacecrafts and their design. Ground segment. Data handling and transmission, telemetry. Pico and nanosatelites.

6 Flight dynamics of satellites. Linearization, linear analysis, poles, modes.

7 Stabilization and orientation control using jets, reaction wheels, and spin.

8 Issue of desaturation of reaction wheels. Cooperative control based on a combination of nozzles and reaction wheels.

9 Stabilization orientation during translation maneuvers.

10 Space Electronics and its specifics. Software and programs for space travel and projects. Their specifics and applications. Tests of space systems and devices. Test conditions and criteria. TRL of onboard systems and devices.

11 Space transport vehicles, launchers, shuttles and alternative transport space systems. The principles of rockets with liquid and solid fuels, hybrid rockets. Suitable orbits and trajectories of spacecrafts with respect to specific applications, the Lagrangian points. Flyby.

12 Manned spaceflight and their specifics in particular with regard to the technical and security requirements for on-board systems. Spacecrafts and orbital stations. Long-term manned flights, manned lunar and planetary missions.

13 Space optics. Optoelectronic systems for space. Optical, x-ray, infrared, radio, and gamma telescopes, cameras and systems. Their protection from the effects of outer space, shielding.

14 Space navigation and telecommunications. Remote sensing, its types and usage. Multispectral images and their applications.
Exercises outlines
Laboratory exercises in the first half of the semester will focus on practical verification of basic principles of space instrumentation, systems and subsystems and methods of design of space missions. In the second half groups of 2-3 students will be created, which in turn will solve the problems from the fields of teaching materials. The students will work together with teachers, so that at the end of the semester they will be able to present solutions in the form of a short presentation (10 min.). There will also be organized excursions.
Literature
[1] Maimi A. K., Agrawal V.: Satellite technology-principles and applications, Wiley 2007, ISBN: 978-0-470-03335-7

[2] Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 3rd edition, Wiley 2003, ISBN: 978-0-470-85102-9

[3] Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-69-110299-3
Requirements
Physics at bachelor level, basics of Matlab and C/C++