This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.

Image Photonics - B2M37OBFA

Main course
Credits 6
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject offers a detailed overview of applied imaging photonic elements and systems. The subject deals with fundamentals of optics, Fourier optics and optical computing. Fourier optics. Image sensors - tube, CCD, CMOS. Image displays. Image converters and amplifiers. Photography and holography - sensitometry and densitometry. Photonic (optical) computing. Electron optics. Image processing in biosystems. Image processing for photonics.
Study targets
Students learn principles and methods of image photonics, optics (geometrical, wave and Fourier) and advances in image recording and optical computing.
Course outlines
1. Introduction - basic principles of image photonics
2. Geometrical optics
3. Imaging systems - design, construction, types, applications, measurements
4. Photometry, radiometry, colorimetry - basic formulae, applications, illumination
5. Fourier optics - subsystems, matrix optics - description of optical systems
5. Image sensors I. - tubes, switched arrays of photoelements (CMOS etc.), termovision
6. Image sensors II. - CCD image sensors - properties and modifications
7. Image displays - picture tubes, LED and laser diode arrays, LCD, plasma, DMD
8. Image converters and amplifiers - special applications (night vision, X ray systems)
9. Photography, holography, polygraphy - physical principles, sensitometry, densitometry
10. Optical (photonic) processors - 2D FT, 2D correlation, filtration, algebraic processors
11. Electron optics for imaging - elst and mg lenses, types of electron guns
12. Image processing in biological systems - analogy with optical systems
13. Image processing in photonics - compensation of real properties of sensors and displays
14. Conclusion, summary and future trends overview
Exercises outlines
1. Introduction, organization and content of labs, working groups
2. Laboratory experiments - explanation (Camera MTF, Optical 2D FT, Image sensors)
3. MTF of TV camera - transmission function of optical system, impact of objective
4. Optical 2D Fourier transform - 2D spatial analysis and filtering
5. Image sensors - spectral and temporal characteristics, sensing aperture
6. Test
7. Laboratory experiments - explanation (Image displays, Electron optics, Illumination)
8. Image displays - spectral and temporal characteristics, color fidelity
9. Electron optics - electron motion in elst and mg fields, imaging systems
10. Illumination - design of illumination system, color temperature
11. Test
12. Computer simulation - aperture distortion, spectral and spatial representation
13. Colloquium - discussion of theoretical parts, examples
14. Conclusion, evaluation and assessment
Literature
[1] Saleh, B.E.A., Teich, M.C.: Základy fotoniky. (4 svazky), Matfyzpress, Praha 1994-1996
[2] B. Jahne, Image Processing for Scientific Applications, CRC, New York, 1997.
[3] J. W. Goodman, Introduction to Fourier Optics, 3rd edition, Roberts&Company Pub., 2005
Requirements
Knowledge of physics, mathematical analysis, and analysis of signals and systems.

Image Photonics - B2M37OBF

Credits 5
Semesters Winter
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 2P+2L
Annotation
The subject offers a detailed overview of applied imaging photonic elements and systems. The subject deals with fundamentals of optics, Fourier optics and optical computing. Fourier optics. Image sensors - tube, CCD, CMOS. Image displays. Image converters and amplifiers. Photography and holography - sensitometry and densitometry. Photonic (optical) computing. Electron optics. Image processing in biosystems. Image processing for photonics.
Study targets
Students learn principles and methods of image photonics, optics (geometrical, wave and Fourier) and advances in image recording and optical computing.
Course outlines
1. Introduction - basic principles of image photonics
2. Geometrical optics
3. Imaging systems - design, construction, types, applications, measurements
4. Photometry, radiometry, colorimetry - basic formulae, applications, illumination
5. Fourier optics - subsystems, matrix optics - description of optical systems
5. Image sensors I. - tubes, switched arrays of photoelements (CMOS etc.), termovision
6. Image sensors II. - CCD image sensors - properties and modifications
7. Image displays - picture tubes, LED and laser diode arrays, LCD, plasma, DMD
8. Image converters and amplifiers - special applications (night vision, X ray systems)
9. Photography, holography, polygraphy - physical principles, sensitometry, densitometry
10. Optical (photonic) processors - 2D FT, 2D correlation, filtration, algebraic processors
11. Electron optics for imaging - elst and mg lenses, types of electron guns
12. Image processing in biological systems - analogy with optical systems
13. Image processing in photonics - compensation of real properties of sensors and displays
14. Conclusion, summary and future trends overview
Exercises outlines
1. Introduction, organization and content of labs, working groups
2. Laboratory experiments - explanation (Camera MTF, Optical 2D FT, Image sensors)
3. MTF of TV camera - transmission function of optical system, impact of objective
4. Optical 2D Fourier transform - 2D spatial analysis and filtering
5. Image sensors - spectral and temporal characteristics, sensing aperture
6. Test
7. Laboratory experiments - explanation (Image displays, Electron optics, Illumination)
8. Image displays - spectral and temporal characteristics, color fidelity
9. Electron optics - electron motion in elst and mg fields, imaging systems
10. Illumination - design of illumination system, color temperature
11. Test
12. Computer simulation - aperture distortion, spectral and spatial representation
13. Colloquium - discussion of theoretical parts, examples
14. Conclusion, evaluation and assessment
Literature
[1] Saleh, B.E.A., Teich, M.C.: Základy fotoniky. (4 svazky), Matfyzpress, Praha 1994-1996
[2] B. Jahne, Image Processing for Scientific Applications, CRC, New York, 1997.
[3] J. W. Goodman, Introduction to Fourier Optics, 3rd edition, Roberts&Company Pub., 2005
Requirements
Knowledge of physics, mathematical analysis, and analysis of signals and systems.