
Optimization CHEATSHEET
Intro: formulation and basic analysis

1 Unconstrained optimization

1.1 Scalar (decision) variable

Minimize a scalar cost function over a real-valued variable. In
mathematical lingo

minimize
x∈R

f(x).

The optimal cost is then

fopt := min
x∈R

f(x)

and the actual minimizing variable is

xopt := argmin
x∈R

f(x)

Maximum trivially obtained as

max f(x) = −min(−f(x)).

1.1.1 First-order necessary

df(x)

dx
= 0.

1.1.2 Second order necessary

d2f(x)

dx2
≥ 0.

1.1.3 Second-order sufficient condition of optimality

d2f(x)

dx2
> 0.

1.2 Vector (decision) variable

Minimize a scalar cost function over an n-tuple of real-valued
variables. In mathematical lingo

minimize
x∈Rn

f(x),

where for computations x is viewed as a column vector

x =


x1
x2
...
xn

 .

1.2.1 First-order necessary condition of optimality

∇f(x) = 0,

where we view the gradient as a column vector

∇f(x) :=


∂f(x)
∂x1

∂f(x)
∂xn

...
∂f(x)
∂xn

 .

Example: for f(x) = 1
2x

TQx + rTx, the gradient is

∇f(x) = Qx + r

and the first-order condition of optimality is

Qx = −r.

1.2.2 Second-order necessary condition of optimality

∇2f(x) ≥ 0,

where ∇2f(x) is the Hessian (the symmetrix matrix of the
second-order mixed partial derivatives)

∇2f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂xn∂xn


and the interpretation of the inequality (≥) is not elememnt-
wise but in terms of eigenvalues (the matrix is positive semidef-
inite).

Example: for f(x) = 1
2x

TQx + rTx, the Hessian is

∇2f(x) = Q

and the first-order condition of optimality is

Q ≥ 0.

1.2.3 Second-order sufficient condition of optimality

∇2f(x) > 0,

that is, the Hessian is positive definite.

2 Constrained optimization

2.1 Equality constraints

minimize
x∈Rn

f(x)

subject to h(x) = 0,

where h(x) ∈ Rm defines a set of m equations

h1(x) = 0

h2(x) = 0

...

hm(x) = 0.

Lagrangian function (the original cost augmented with aux-
iliary Lagrange variable)

L(x,λ) := f(x) + λTh(x).

2.1.1 First-order necessary condition of optimality

∇L(x,λ) = 0,

which amounts to two (generally vector) equations

∇f(x) +

m∑
i=1

λi∇hi(x) = 0

h(x) = 0.

Defining ∇h(x) ∈ Rn×m as stacked gradients (a tranpose of
a Jacobian matrix)

∇h(x) :=
[
∇h1(x) ∇h2(x) . . . ∇hm(x)

]
,

the necessary condition can be written as

∇f(x) +∇h(x)λ = 0

h(x) = 0.

Beware of the nonregularity issue! The Jacobian (∇h(x))T

is regular at a given x (the x is a regular point) if it has a full
column rank. Rank-deficiency reveals a defect in formulation.

Example:

minimize
x∈Rn

1

2
xTQx + rTx

subject to Ax + b = 0.

The first-order necessary condition of optimality is[
Q AT

A 0

] [
x
λ

]
=

[
−r
b

]
.

2.1.2 Second-order sufficient conditions

Using the unconstrained Hessian ∇2
xxL(x,λ) is too conserva-

tive. Instead, use projected Hessian

ZT ∇2
xxL(x,λ) Z > 0,

where Z is an (orthonormal) basis of the nullspace of the Ja-
cobian (∇h(x))T.

2.2 Inequality constraints—KKT conditions

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0,

where g(x) ∈ Rp defines a set of p inequalities.

Karush-Kuhn-Tucker (KKT) conditions of optimality

∇f(x) +

p∑
i=1

µi∇gi(x) = 0

g(x) ≤ 0

µigi(x) = 0, i = 1, 2, . . . ,m

µi ≥ 0, i = 1, 2, . . . ,m.

2.2.1 Combination of equality and inequality constraints

minimize
x∈Rn

f(x)

subject to h(x) = 0,

g(x) ≤ 0.

The KKT conditions

∇f(x) +

m∑
i=1

λi∇hi(x) +

p∑
i=1

µi∇gi(x) = 0

h(x) = 0

g(x) ≤ 0

µigi(x) = 0, i = 1, . . . ,m

µi ≥ 0, i = 1, . . . ,m.
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