Optimization CHEATSHEET

Intro: formulation and basic analysis

1 Unconstrained optimization 1.2.1 First-order necessary condition of optimality 2 Constrained optimization 2.1.2 Second-order sufficient conditions
1.1 Scalar (decision) variable Vf(x)=0, 2.1 Equality constraints Using the unconstrained Hessian V2, £(x, ) is too conserva-
. ) . . . tive. Instead, use projected Hessian
Minimize a scalar cost function over a real-valued variable. In  where we view the gradient as a column vector minimize f (x)
mathematical lingo x€ER™
8g(x) subject to h(x) = 0, Z' ViL(x,A) Z >0,
z1
minimize f(x). af(x) m .
oeR Vf(x):= On | where h(x) € R™ defines a set of m equations where Z is an (orthonormal) basis of the nullspace of the Ja-
: _ ; T
The optimal cost is then 95() hi(x) =0 cobian (Vh(x))".
Oz, hQ (X) =0
JoP = min f ()
e Example: for f(x) = 1xTQx + r'x, the gradient is : 2.2 Inequality constraints—KKT conditions
and the actual minimizing variable is Bm (%) = 0.
Vi(x) = Qx+r
2°P' .= argmin f(x) Lagrangian function (the original cost augmented with aux- minimize f(x)
z€ER oy . . . .1 . xERN
and the first-order condition of optimality is iliary Lagrange variable) ;
. .. . subject to g(x) <0,
Maximum trivially obtained as T
Qx = —r. L(x,A) == f(x) + A h(x).
max f(x) = —min(—f(x)). where g(x) € R? defines a set of p inequalities.
1.2.2 Second-order necessary condition of optimality 2.1.1 First-order necessary condition of optimality Karush-Kuhn-Tucker (KKT) conditions of optimality
1.1.1 First-order necessary
df( ) va(X) Z O7 VE(X, )\) = 0, .
T . .
27— 0. which amounts to two (generally vector) equations \V4 Vi =0
dz where V2f(x) is the Hessian (the symmetrix matrix of the ( : S+ ;,u 9:(x)
second-order mixed partial derivatives) Ui a
. . — <0
1.1.2 Second order necessary VF(x) + Z AiVhi(x) =0 B(x) < )
9*f(x) ngSX) dé’Qf(gX) i=1 wigi(x) =0, i=1,2,....,m
5 55.5; T B
d2f(x) > 0 Bzf(lx) a’gf(i)z (I;Zf(i) h(x) =0. i Z 0, 1= 1, 27 e,
dx2 — V2 | 9z20x1 Bzg e x0Ty, . .
flx) = i Defining Vh(x) € R™*™ as stacked gradients (a tranpose of
. . . N : a Jacobian matrix)
1.1.3 Second-order sufficient condition of optimality 9% f(x) 22 f(x) 9% f(x) 2.2.1 Combination of equality and inequality constraints
Oz, 0z 0%, 0% s 0T 0Ty Vh(x) = [Vhl (X) Vho (X) Ce Vhm (X)] s
d*f(z) : : . : : L .
dz2 > 0. and the interpretation of the inequality (>) is not elememnt- the necessary condition can be written as minimize f (x)
wise but in terms of eigenvalues (the matrix is positive semidef- Vf(x) + Vh(x)A =0 'xe]R"
. . . inite). subject to h(x) = 0,
1.2 Vector (decision) variable Example: for f(x) = 1xTQx + rTx, the Hessian is h(x) = 0. £(x) < 0.
Minimize a scalar cost function over an n-tuple of real-valued 5 Beware of the nonregularity issue! The Jacobian (Vh(x))T
variables. In mathematical lingo Vi) =Q is fegular a’i{a E{ivelil()i(f(it}'le x is a re%ulardpfoint? iffit habi a.full The KKT conditions
— d the first-ord diti f ontimality i column rank. Rank-deficiency reveals a defect in formulation.
minimize F(x), and the first-order condition of optimality is Example: — .
Q > 0. e . 1 T T Vf(X) + )\ZVhZ(X) + ungZ-(x) =0
where for computations x is viewed as a column vector minimize-x Qx +r'x ; ;
o 1.2.3 Second-order sufficient condition of optimality subject to Ax +b = 0. h(x) =0
T2 V2f(x) > 0 The first-order necessary condition of optimality is g(x)<0
= . X ) —
' Q AT [x —r wigi(x) =0, i=1,....m
T that is, the Hessian is positive definite. {A 0 ] [}J - [ b } ’ w; >0, 1=1,...,m.
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