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Discrete-time optimal control—
indirect approach
General nonlinear problem and intro to LQ optimal control

Zdeněk Hurák

Discrete-time optimal control will not only serve us in our course as a natural
transition from the mathematical domain of finite-dimensional (nonlinear) op-

timization to the control-theoretic domain of optimal control but also will offer as a
very useful and practical control design tool. After all, most control systems imple-
mented today run on digital computers, that is, in discrete time. As a culmination of
our presentation, the celebrated LQ optimal control will be introduced in quite some
detail. First, we will present this classical result on a finite control horizon and then
will extend the analysis to an infinite horizon.

1 Optimal control for a general nonlinear time-varying
discrete-time dynamic system

We start by considering a general nonlinear and possibly time-varying discrete time
dynamic system characterized by the state vector xk whose evolution in discrete time
k is described by the state-space model

xk+1 = fk(xk,uk), (1)

for which the response is uniquely given by an initial value of the state xi and a
sequence of control inputs uk. For this system we want to find a control that extrem-
izes a suitable optimization criterion. In some instances, minimizing a single quantity
makes sense (such as minimizing the cost, rise time or steady-state error) while in
some other, maximizing may seem more appropriate (such as maximizing the yield,
bandwidth or robustness). In our course we will formulate the problem of optimal
control design as a minimization problem. Another restriction that we will however
relax shortly, will be that of control over a finite horizon k ∈ [i,N ]. That is, we will
look for a controller that minimizes a criterion of the following special structure

Ji(xk,uk) = φ(xN , N) +

N−1∑
k=i

Lk(xk,uk). (2)

The optimization criterion of this type turns out very flexible (and yet mathe-
matically tractable as we will see shortly). It can be used to formulate the following
control problems (we consider scalar control uk and a scalar state xk) here for nota-
tional simplicity)
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• Minimum time problem — for φ = 1 and Lk = 1, which gives J = N − i.
Unfortunately, in this course we do not study tools for optimization in presence
of integer variables. However, in principle some kind of binary search over
the length of control interval is a straightforward solution. Furthermore, as
we will see in one of the next lectures, once we switch from discrete-time to
continuous-time systems, this control design formulation will be tractable for us
even theoretically.

• Minimum fuel problem — for φ = 0 and Lk = |uk|, which gives J =
∑N−1

k=i |uk|.

• Minimum energy problem — for φ = 1
2sNx

2
N and Lk = 1

2 (x2k + u2k), which gives

J = 1
2sNx

2
N + 1

2

∑N−1
k=i (x2k + u2k). This type of an optimization cost is partic-

ularly popular. Both for the mathematical reasons (we all now appreciate the
nice properties of quadratic functions) and for practical engineering reasons as
it allows us to capture a trade-off between the control performance (penalty
on xk) and control effort (penalty on uk)1. Furthermore, the state at the ter-
minal time N is penalized separately just in order to allow another trade-off
between the transient and terminal behavior. Our plan is to focus on this type
of optimization criterion.

The two numbered expressions above specify an optimization fully. We are going
to find a finite set of numbers (or n-tuples of numbers aka vectors) xi+1,xi+2, . . . ,xN

and ui,ui+1, . . . ,uN−1 (note that we do not include uN as it has no influence over
the interval [i,N ]) that minimize the criterion (2) while satisfying the constraints
(1). This fits nicely into the nonlinear optimization framework introduced in previous
lectures. Before we start invoking a numerical solver for constrained optimization, let
us investigate the problem a bit.

1.1 First-order necessary condition

We have identified a finite-dimensional constrained nonlinear optimization problem.
We already know how to handle it. By introducing a set of auxiliary parameters λk

called Lagrange multiplier we turn the constrained problem into an unconstrained
one. The new (augmented) cost function is

J ′i(xk,uk,λk) = φ(xN , N) +

N−1∑
k=i

[
Lk(xk,uk) + λT

k [fk(xk,uk)− xk+1]
]
. (3)

From now on, you, the student, do not need any guide here. You are given an
unconstrained optimization problem and its solution is just a few steps away. In
particular, stationary points must be found. This calls for differentiating the above
expression with respect to all the variables and setting these derivatives equal to
zeros. The principles are clear. Nonetheless, some experience might be shared here if
compact formulas are to be found. First such advice is to rename the variable(s) λk

to λk+1

1Without any rigorous theoretical background this can be checked for instance in the graphical
design tool provided by Control System Toolbox for Matlab. Typing sisotool in Matlab prompt,
Control and Estimation Tools Manager GUI opens. Click on the Automated tuning tab and select
LQG synthesis in the Design method. Experiment with the slider specifying the controller response
— more aggressive or more robust
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J ′i(xk,uk,λk+1) = φ(N,xN ) +

N−1∑
k=i

[
Lk(xk,uk) + λT

k+1 [fk(xk,uk)− xk+1]
]
. (4)

This is really just a notational decision but thanks to it our resulting formulas
will enjoy some symmetry. Maybe it would be more didactic to leave you to go on
without this advice and only then to let you to figure out this remedy on your own.

Another notational advice is to make the above expression a bit shorter by intro-
ducing a new variable defined as

Hk(xk,uk,λk+1) = Lk(xk,uk) + λT
k+1 fk(xk,uk), (5)

which gives

J ′i(xk,uk,λk+1) = φ(N,xN ) +

N−1∑
k=i

[
Hk(xk,uk,λk+1)− λT

k+1 xk+1

]
, (6)

although this time the motivation for an introduction of a new symbol is not purely
notational. We will call this new object Hamiltonian for the reasons that are to
be discussed later in the course (when discussing continuous-time systems). Maybe
you have already encountered the concept of Hamiltonian in physics or theoretical
mechanics and now the structure of our expression must be familiar to you.

The final polishing of the expression (4) before starting calculation of the deriva-
tives consists in bringing the terms that contain the “logically” related variables: the
state xN at the final time, the state xi at the initial time, and the states, controls
and Lagrange multipliers in the transient period

J ′i(xk,uk,λk+1) = φ(N,xN )− λT
N xN︸ ︷︷ ︸

at terminal time

+Hi(xi,ui,λi+1)︸ ︷︷ ︸
at initial time

+

N−1∑
k=i+1

[
Hk(xk,uk,λk+1)− λT

k xk

]
.

(7)

This step was absolutely not important, it will only make it a bit more convenient
once we start looking for the derivatives. And the time has come. Recall now our
recommended procedure for finding derivatives of functions that feature matrices,
vectors, their products, transposes and other operations — find the differential instead
and identify the derivative in the result. The gradient is then (by convention) obtained
as a transpose of the derivative. An example for refreshing

Example 1.1 (Finding a derivative of a matrix-vector expression). Find a gradient
of a function f(x) = 1

2xTQx−bTx. The differential df is obtained using the identical
rules that we apply when obtaining derivatives.

df =
1

2
dxTQx +

1

2
xTQdx− bTdx = (xTQ− bT)︸ ︷︷ ︸

df
dx

dx.

The derivative identified in this way is the content of the brackets above. Now, al-
though a part of the mathematical and control-theoretic community follows a different
convention, we will the gradient ∇f(x) as a transpose of the derivative, that is,

∇f(x) = Qx− b.
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Following the “derivative-identification” procedure outlined in the example above,
we anticipate the differential of the augmented cost function in the following form

dJ ′i = ( )T dxN + ( )T dxi

+

N−1∑
k=i+1

( )T dxk +

N−1∑
k=i

( )T duk +

N∑
k=i+1

( )T dλk.
(8)

Filling in the empty brackets is the key task now. Its solution is documented below

dJ ′i = (∇xN
φ− λN )

T
dxN + (∇xiHi)

T
dxi

+

N−1∑
k=i+1

(∇xk
Hk − λk)

T
dxk +

N−1∑
k=i

(∇uk
Hk)

T
duk +

N∑
k=i+1

(∇λk
Hk−1 − xk)

T
dλk.

(9)

The ultimate goal of this derivation was to obtain stationary points for the aug-
mented cost function, that is, to find conditions under which dJ ′i = 0. In typical
optimization problems, the optimization is conducted with respect to all the partici-
pating variables, which means that the corresponding differentials may be arbitrary
and the only way to guarantee that the total differential of J ′i is zeros is to make the
derivatives (the contents of the brackets) equal to zero. There are two exceptions to
this rule in our case, though.

First, the state at the initial time is typically given, therefore it is not available for
optimization. Then dxi = 0 and the corresponding necessary condition is replaced
by the statement of the initial value of the state xi given.

Second, the state at the final time may also be given, in which case the corre-
sponding condition is replaced by xN given, but it makes a good sense to consider
the final state as free for optimization, in which case corresponding necessary condi-
tion of optimality is given by the requirement that the content of the brackets must
be equal to zero.

The ultimate set of first-order necessary conditions is given by the equations below,
which contain in a compact way the discussion of the initial and final states initiated
above

xk+1 = ∇λk+1
Hk = fk(xk,uk), k = i, . . . , N − 1, (10)

λk = ∇xk
Hk = ∇xk

fk λk+1 +∇xk
Lk, k = i+ 1, . . . , N − 1 (11)

0 = ∇uk
Hk = ∇uk

fk λk+1 +∇uk
Lk, k = i, . . . , N − 1 (12)

0 = (∇xN
φ− λN )

T
dxN , (13)

0 = (∇xi
Hi)

T
dxi. (14)

Here in ∇f we consider a vector function f , therefore the resulting object is not
just a gradient. Instead, it is a matrix whose columns are gradients of the individ-
ual components of the vector f . It is a transpose of Jacobian. Note that here the
notational conventions might differ in the literature.

The first three necessary conditions above can be made completely “symmetric”
by running the second one from k = i because the λi introduced this way does not
influence the rest of the problem.

We have just derived a very important result. The first equation can be recognized
as the original state equation. The second equation is called a co-state equation and
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the variable λk is called a co-state variable. The third equation is called an stationarity
equation.

Now, let us see what can be the use of this result in a familiar situation of a linear
system and a quadratic cost function.

2 LQ-optimal regulation over a finite horizon

We consider an LTI system described by the state-space model

xk+1 = Axk + Buk, x0 given, (15)

and our goal is to find a control sequence [u0, u1, . . . , uN−1] that minimizes

J0 =
1

2
xT
NSNxN +

1

2

N−1∑
k=0

[
xT
k Qxk + uT

k Ruk

]
, (16)

where the quadratic cost function is parameterized the matrices which must be sym-
metric and at least positive semidefinite, otherwise the corresponding quadratic terms
will not play a good role of a performance indicator, that is, a weighted distance from
0. For the reasons that will become clear soon, the matrix R must comply with an
even stricter condition — it must be positive definite. Hence

SN ≥ 0,Q ≥ 0,R > 0. (17)

Note also that in this task we decided to consider the initial time i = 0. This
brings no harm to generality since we assume time-invariant system, that is, we can
freely label the initial time as zero.

The Hamiltonian for our problem is

Hk =
1

2

(
xT
k Qxk + uT

k Ruk

)
+ λT

k+1 (Axk + Buk) . (18)

Substituting into the general necessary conditions (10) we obtain

xk+1 = ∇λk+1
Hk = Axk + Buk, (19)

λk = ∇xk
Hk = Qxk + ATλk+1, (20)

0 = ∇uk
Hk = Ruk + BTλk+1, (21)

0 = (SNxN − λN )T dxN , (22)

x0 = r0. (23)

The last two equations represent boundary conditions. Note that here we have
already fixed the initial state. If this is not appropriate in a particular scenario, go
back to (14) and adjust the boundary equation accordingly.

The third equation above — the stationarity equation — can be used to extract
the optimal control

uk = −R−1BTλk+1. (24)

The need for nonsingularity of R is now obvious. Upon substituting the recipe for
the optimal uk into the state and the co-state equations, two discrete-time equations
result [

xk+1

λk

]
=

[
A −BR−1BT

Q AT

] [
xk

λk+1

]
(25)
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This is a two-point boundary value problem. The problem is of order 2n; in order
to solve it we need 2n boundary values: n boundary values are provided by xi, which
we are typically given, and n boundary values are given by the equation (22), from
which λN must be extracted. Most of our subsequent discussion will revolve around
this task.

An idea might come into one’s mind that provided A is nonsingular, one can
left-multiply the above equation by the inverse of A to obtain[

xk

λk

]
=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

] [
xk+1

λk+1

]
(26)

This helped at least to have both variable evolving in the same “direction” in time
but we do not know λN anyway. . . Nonetheless, do not forget this “trick” as we are
going to invoke it later.

2.1 Zero-input cost

Before we delve into solution of the original problem, let us investigate a somewhat
artificial problem when no control input is applied. We only calculate the cost of not
controlling the system at all. This will give us some valuable insight.

We start by evaluating the cost at the terminal timeN and then proceed backwards
in time, that is, decrease time to N − 1 and so on

JN =
1

2
xT
NSNxN (27)

JN−1 =
1

2
xT
NSNxN +

1

2
xT
N−1QN−1xN−1 (28)

=
1

2
xT
N−1

(
ATSNA+ Q

)
xN−1 (29)

JN−2 = . . . (30)

Upon introducing a new name SN−1 for term ATSNA + Q and similarly for all
lower time instances, we arrive at a difference Lyapunov equation

Sk = ATSk+1A + Q. (31)

This is a very famous and well-investigated equation in systems and control theory.
Its solution is given by

Sk = (AT)N−kSNAN−k +

N−1∑
i=k

(
AT
)N−i−1

QAN−i−1. (32)

Having the sequence of Sk at hand, the cost function can be readily evaluated as

Jk =
1

2
xT
k Skxk. (33)

We will come back to this observation in a few moments. Before we do that, note
that if the plant is stable, the cost over [−∞, N ] or, equivalently (thanks to the fact
that the system is time invariant) [0,∞] is finite and given by

J∞ =
1

2
xT
0 S∞x0. (34)

Lecture 4 on Optimal and Robust Control at CTU in Prague 6



Discrete-time optimal control—indirect approach

where the symbol S∞ represents the limit

S∞ = lim
(N−k)→∞

Sk. (35)

When it comes to the computation of S∞, besides the implementation of the
limiting iterative process, we may exploit the fact that in the steady state

Sk = Sk+1, (36)

which turns the difference Lyapunov equation into the even more famous Algebraic
Lyapunov Equation (ALE)

S = ATSA + Q. (37)

Notoriously known facts about this equation (that is, studied by you in a previous
course on linear systems) are

• if A stable and Q ≥ 0 then there is a solution to ALE satisfying S ≥ 0.

• if A stable and (A,
√

Q) observable then there is a unique solution to ALE
satisfying S > 0.

Of course, if the system is unstable, the cost can be infinite, depending on Q. As
a trivial example, for Q = 0, the cost will stay finite — exactly zero — disregarding
the system blowing out.

Finally, concerning a numerical solution, Lyapunov equation is just a linear equa-
tion and as such can be reformulated into the standard Ax = b form (using a trick
based on Kronecker product, see kron()). Specialized algorithms exist and some of
them are implemented in dlyap() function in Matlab.

2.2 Fixed final state and finite control horizon

Back to the nonzero control case. First we are going to investigate the scenario when
the final requested state is given by the value rN . The optimal control problem turns
into

minimize
x1,...,xN ,u0,...,uN−1

1

2

N−1∑
k=0

[
xT
k Qxk + uT

k Ruk

]
s.t. xk+1 = Axk + Buk,

x0 = r0,

xN = rN ,

Q ≥ 0,R > 0.

Note also that the term penalizing the final state is removed from the cost because
it is always fixed and not subject to optimization.After eliminating the controls using

uk = −R−1BTλk+1.

the two point boundary value problem specializes into

xk+1 = Axk −BR−1BTλk+1, (38)

λk = Qxk + ATλk+1 (39)

x0 = r0, (40)

xN = rN . (41)
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after the boundary condition (22) is replaced by

xN = rN . (42)

Make sure that you understand how this comes to replace the original boundary
condition. It is just that by fixing xN , the corresponding differential is zero

dxN = 0. (43)

In other words, xN can no longer be used as an optimization parameter.

2.2.1 Two-point boundary value problem (assuming A nonsingular)

The problem at hand is called a two-point boundary value problem (BVP). The termi-
nology is better established in the contrinuous time setting (for differential equations)
but it makes perfect sense in the discrete-time setting too. It is called two-point be-
cause some of the variables are specified at one end of the time interval and some other
variables are specified at the other end of the time interval. Well, in this particular
case, it is only the xk that is specified at both ends while λk is left unspecified.

But this is actually not the only problem with these equations. This set of re-
currence equations is weird in the sense that from the perspective of xk it evolves
forward in time while from the perspective of λk it evolves backward in time.[

xk+1

λk

]
=

[
A −BR−1BT

Q AT

] [
xk

λk+1

]
(44)

There is not much we can do with these equations in this form. However, assuming
that A is nonsingular, we can invoke the discrete-time Hamiltonian system (26), in
which we reorganized the equations so that both state and co-state variables evolve
backwards. For convenience we give it here again[

xk

λk

]
=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

]
︸ ︷︷ ︸

H

[
xk+1

λk+1

]
(45)

Obviously, [
x0

λ0

]
=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

]N
︸ ︷︷ ︸

M:=HN

[
xN

λN

]
(46)

From the first equation we can get λN . First, let’s rewrite it here

M12λN = x0 −M11xN ,

from which (after substituting for the known initial and final states)

λN = M−1
12 (r0 −M11rN ).

Having the final state and the co-state [xN ,λN ]T, we could solve the Hamiltonian
system backward to get the states and co-states on the whole time interval [0, N − 1].
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2.2.2 Minimum energy control (assuming Q = 0)

We can get some more insight into the problem if we further restrict the class of
problems we can treat. Namely, we will assume

Q = 0. (47)

This is a significant restriction, nonetheless the resulting problem is still practically
reasonable. On the other hand, here we do not need to assume that A is nonsingular.
The cost function is then

J =

N∑
k=0

uT
k uk, (48)

which is why the problem is called the minimum-energy problem. Rewriting (25) with
the new restriction Q = 0 we get the state and co-state equation

xk+1 = Axk −BR−1BTλk+1 (49)

λk = ATλk+1. (50)

It is obvious why we wanted to enforce the Q = 0 restriction — the co-state
equation is now completely decoupled from the state equation and can be solved
independently

λk = (AT)N−kλN . (51)

Now substitute this solution of the co-state equation into the state equation

xk+1 = Axk −BR−1BT(AT)N−k−1λN (52)

Finding a solution to the state equation present no more difficult task then did the
co-state equation — the second summand on the right is considered as a an “input”.
The solution is then

xk = Akx0 −
k−1∑
i=0

Ak−1−iBR−1BT(AT)N−i−1λN . (53)

The last step reveals the motivation for all the previous steps — we are now
expressing the state at the final time. Clearly, in this way we introduce some known
quantity into the problem

xN = rN = ANx0 −
N−1∑
i=0

AN−1−iBR−1BT(AT)N−i−1︸ ︷︷ ︸
G0,N,R

λN . (54)

This enables us to calculate λN directly as a solution to a linear equation. To
make the notation simpler, denote the sum in the expression above by G0,N,R (we
will discuss this particular object in a while

λN = −G−10,N,R (rN −ANx0). (55)

The rest is quite straightforward as the optimal control (24) depends on the co-
state

uk = R−1BT(AT)N−k−1G−10,N,R (rN −ANx0). (56)

This is the desired formula for computation of the optimal control. A few obser-
vations can be made

Lecture 4 on Optimal and Robust Control at CTU in Prague 9
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• The control is proportional to the difference (rN −ANx0). The intuitive inter-
pretation is that the further the requested final state is from the state into which
the system would finally evolve without any control, the higher the control is
needed.

• The control is proportional to the inverse of a matrix G0,N,R which is called
weighted reachability Gramian. The standard result from the theory of linear
dynamic systems is that nonsingularity of a reachability Gramian is equivalent
to reachability of the system. More on this below.

2.2.3 Weighted reachability Gramian

Recall that there is a matrix called discrete-time reachability Gramian

G =

∞∑
k=0

AkBBT(AT)k (57)

and the nonsingularity of this matrix serves as a test of reachability for stable discrete-
time systems.

How does this classical object relate to the object G0,N,R introduced in the pre-
vious paragraph? First consider the restriction of the summation from the infinite
interval [0,∞] to [0, N − 1]. In other words, we analyze the matrix

G0,N =

N−1∑
k=0

AN−1−kBBT(AT)N−1−k (58)

Recall that Caley-Hamilton theorem tells us that every higher power of an N ×N
matrix can be expressed as a linear combination of powers of 0 through N − 1. In
other words, using higher order powers of A than N − 1 cannot increase the rank of
the matrix.

Finally, provided R is nonsingular (hence R−1 is nonsingular as well), the rank of
the Gramian is not changed after introducing the weight

G0,N,R =

N−1∑
k=0

AN−1−kBR−1BT(AT)N−1−k. (59)

To conclude, the weighted Gramian defined on a finite discrete-time horizon is
invertible if and only if the (stable) system is reachable. This conclusion is quite
natural: if an optimal control is to be found, first it must be guaranteed that any
control can be found which brings the system from an arbitrary initial state into an
arbitrary final state on a finite time interval — the very definition of reachability.

Frankly speaking, the advantage of the just introduced optimal control design
strategy seems to lie mainly in the new insight we gained. The outcome of the
procedure is a pre-computed control sequence, which leads to an open-loop (pre-
programmed) control strategy. This is hardly acceptable in practical applications
because the presence of disturbances and modeling errors call for introduction of a
feedback.

Furthermore, although the numerical computation is very simple, it appears that
the approach does not offer too many opportunities for extensions. Mainly that we
will not be able to include additional constraints such as bounds on the control signal
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umin ≤ uk ≤ umax, (60)

where the bounds are interpreted component-wise. Having been exposed to the basics
of nonlinear optimization, it is a straightforward task to reformulate the optimal
control problem as an instance of nonlinear programming. In particular, sticking to
the quadratic cost function, a numerical solver for quadratic programming such as
quadprog() in Optimization Toolbox for Matlab may be used to solve the problem
with the bounds on the controls added.

2.3 Free final state and finite control horizon

The previous discussion revolved around the task of bringing the system to a given
final state exactly. What if we relax this strict requirement and instead just request
that the system be eventually brought to the close vicinity of the requested state?
How close — this could be affected by the term corresponding to the terminal state
in the general LQ optimization criterion.

The only change with respect to the previous development is just in the boundary
condition. We have to go back to (22). Now the final state xN can also be used as
a parameter for our optimization. Hence dxN 6= 0. We write down again the full
necessary conditions including the new boundary conditions

xk+1 = Axk −BR−1BTλk+1, (61)

λk = Qxk + ATλk+1, (62)

uk = −R−1BTλk+1, (63)

SNxN = λN , (64)

x0 = given. (65)

We find ourselves in a pretty much similar trouble as before. The boundary
condition (64) refers to the variables whose values we do not know. The solution
is provided by the insightful guess called sweep method. The idea is to extend the
validity of the linear relationship between the state and the co-state at the final time
to all other discrete times

Skxk = λk. (66)

Let us try this an see if it gives a working solution. Substitute (66) into the
state and co-state equations, (61) and (62), respectively. Let us start with the state
equation

xk+1 = Axk −BR−1BTSk+1xk+1. (67)

Solving for xk+1 yields

xk+1 = (I + BR−1BTSk+1)−1Axk. (68)

Now perform the same sweep substitution into the co-state equation

Skxk = Qxk + ATSk+1xk+1 (69)

and substitute from (68) into the last equation to get

Skxk = Qxk + ATSk+1(I + BR−1BTSk+1)−1Axk. (70)
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Since this equation must hold for an arbitrary xk, we get an equation in the
matrices Sk

Sk = Q + ATSk+1(I + BR−1BTSk+1)−1A. (71)

This is a famous equation called Difference Riccati Equation. When initialized
with SN , it generates the sequence of matrices SN−1,SN−2,SN−3, . . . A noteworthy
feature of this sequence is that the discrete-time now evolves backwards.

Once we have generated a sufficiently long sequence (down to S1), the optimal
control is then computed using the stationary equation (63)

uk = −R−1BTλk+1 = −R−1BTSk+1xk+1. (72)

This suggests that the optimal control is generated using the state but the current
scheme is noncausal. Turning this into a causal one is easy. Just substitute the state
equation and we get

uk = −R−1BTSk+1(Axk + Buk). (73)

Solving this equation for uk gives

uk = (I + R−1BTSk+1B)−1R−1BTSk+1A︸ ︷︷ ︸
Kk

xk. (74)

Mission accomplished. This is our desired control. A striking observation is that
although we made no specifications as for the controller structure, the state feedback
popped out as the optimal control strategy! The feedback gain is time-varying and
deserves a name after its inventor — Kalman gain. Incorporating the knowledge that
R is nonsingular, a minor simplification of the lengthy expression can be made

Kk = (R + BTSk+1B)−1BTSk+1A. (75)

Before we move on, let us elaborate a bit more on the difference Riccati equation.
Invoking a popular (but hard to reliably memorize) rule for inversion of a sum of two
matrices called matrix inversion formula, which reads

(A−111 + A12A22A21)−1 = A11 −A11A12(A21A11A12 + A−122 )−1A21A11, (76)

the equation (71) can be rewritten (after multiplying the brackets out) into

Sk = Q + ATSk+1A−ATSk+1B(BTSk+1B + R)−1BTSk+1A, (77)

which we will regard as an alternative form of difference Riccati equation.
Observing that the steps of the computation of the Kalman gain Kk reappear

in the computation of the solution of the Riccati equation (77), a more efficient
arrangement of the computation in every iteration step is

Kk =
(
BTSk+1B + R

)−1
BTSk+1A (78)

Sk = ATSk+1(A−BKk) + Q. (79)

Finally, yet another equivalent version of Riccati equation is known as Joseph’s
stabilized Riccati equation

Sk = (A−BKk)TSk+1(A−BKk) + KT
k RKk + Q. (80)

Showing the equivalence is an exercise.
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2.3.1 Second order sufficient conditions

So far we only found a solution that satisfies the first-order necessary equation but
we have been warned at the introductory lessons to optimization that such solution
need not necessarily constitute an optimum (minimum in our case). In order to check
this, the second derivative (Hessian, curvature matrix) must be found and checked
for positive definiteness. Our strategy will be to find the value of the optimal cost
first and then we will identify its second derivative with respect to uk.

The trick to find the value of the optimal cost is from [1] and it is fairly technical.
By this we want to express that it may be hard to learn a general lesson from these
actual steps. Nonetheless we will need the result. The procedure is based on the
observation that

1

2

N−1∑
k=0

(xT
k+1Sk+1xk+1 − xT

k Skxk) =
1

2
xT
NSNxN −

1

2
xT
0 S0x0. (81)

Now consider our optimization criterion and add zero to it. The value of the cost
function does not change. Weird procedure, right? Observing that zero can also be
expressed as the right hand side minus the left hand side in the above equation, we
get

J0 =
1

2
xT
0 S0x0 +

1

2

N−1∑
k=0

[
xT
k+1Sk+1xk+1 + xT

k (Q− Sk)xk + uT
k Ruk

]
. (82)

Substituting the state equation, the cost function transforms to

J0 =
1

2
xT
0 S0x0 +

1

2

N−1∑
k=0

[xT
k (ATSk+1A + Q− Sk)xk + xT

k ATSk+1Buk

+ uT
k BTSk+1Axk + uT

k (BTSk+1B + R)uk]. (83)

Substituting the Riccati equation (77) into the first term above

J0 =
1

2
xT
0 S0x0+

1

2

N−1∑
k=0

[xT
k (ATSk+1B(BTSk+1B+R)−1BTSk+1A)xk+xT

k ATSk+1Buk

+ uT
k BTSk+1Axk + uT

k (BTSk+1B + R)uk]. (84)

The time-varying Hessian (second derivative of the optimization criterion) with
respect to the control is

Juu,k = BTSk+1B + R. (85)

Provided that R > 0, it can be seen that it is always guaranteed that Juu > 0. To
prove this it must be shown that BTSk+1B ≥ 0. As usual, let us make things more
intuitive by switching to the scalar case. The previous expression simplifies to b2sk+1.
No matter what the value of b is, the square is always nonnegative. It remains to
show that sk+1 ≥ 0 (and in general Sk+1 ≥ 0). This can be seen from the prescription
for Sk given by the Riccati equation (71) using similar arguments for proving positive
semidefiniteness of compound expressions.

To conclude, the solution provided by first-order conditions represented by the
Riccati equation is always a minimizing solution.
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We can work a bit more with the value of the optimal cost. Substituting the
optimal control (74) we can see (after some careful two-line work) that

J0 =
1

2
xT
0 S0x0. (86)

The same conclusion can be obtained for any time instant k inside the interval
[0, N ]

Jk =
1

2
xT
k Skxk. (87)

This is a result that we have already seen in the no-control case: the optimal cost
can be obtained as a quadratic function of the initial state using a matrix obtained
as a solution to some iteration. We will use this result in the future derivations.

2.3.2 Numerical example with a scalar and first-order system

Example 2.1. As usual, some practical insight can be developed by analyzing the
things when restricted to the scalar case. For this, consider a first order system
described by the first-order state equation

xk+1 = axk + buk (88)

and the optimization criterion in the form

J0 =
1

2
sNx

2
N +

1

2

N−1∑
k=0

[
qx2k + ru2k

]
. (89)

The scalar Riccati equation simplifies to

sk = a2sk+1 −
a2b2s2k+1

b2sk+1 + r
+ q (90)

or

sk =
a2rsk+1

b2sk+1 + r
+ q. (91)

Obviously the final state is not particularly close to zero, which is the desired final
value. However, increasing the sN term we can bring the system arbitrarily close, as
the next simulation in Fig. 2 confirms.

The last outputs suggests that both sN and Kk stay constant for most of the control
interval and only change dramatically towards the end of the control interval. This is
indeed the case as highlighted in the next simulation output in Fig. 3 when the control
interval was stretched a bit.

The observation in the example poses a question of how much is lost after replacing
the optimal control represented by the sequence Kk by a constant value K. A natural
candidate is the steady-state value that Kk has as the beginning of the control interval,
that is at k = 0 in our case.

Obviously, on a finite-horizon there is not much to be investigated, the constant
feedback gain is just suboptimal, but things are somewhat more involved as the control
horizon stretches to infinity, that is, N →∞. Note that allowing this is just a formal
mathematical relaxation—now the optimization is done over the set of infinite control
sequences but how fast or slow the response of our controlled system is depends on
the choice of the weighting matrices. We will investigate this next.
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Figure 1: The optimal values for the solution sequence sk or Riccati equation, the
state feedback gain Kk and the states xk.

3 LQ-optimal control over an infinite horizon—algebraic
Riccati equation (ARE)

The design decision we make now is to replace the time-varying LQ-optimal state
feedback gain Kk by a constant gain K. This was motivated by the observation that
on a sufficiently long control interval, it can be observed that Kk appears constant for
most of the interval and it starts evolving dramatically only towards the end of the
control interval (see the example at the end of the previous lecture). The irresistible
idea is that the time-varying sequence of state-feedback gains Kk could be replaced
by the steady state value of Kk. If we now extend the control horizon to infinity, that
is, if N →∞, the steady state value of the state-feedback gain matrix can be denoted
as K∞.

Some comment may be needed here to explain the notation. Remeber that we
decided to consider the time k = 0 as the beginning of our control interval and the
time N as the end of the control interval. Stretching the interval, that is, making N
to approach∞, the steady-state value of Kk is achieved toward the beginnning of the
control interval, that is, at k = 0. It could be perhaps more appropriate to denote the
steady-state value of Kk as K0. But thanks to time invariance, we can also fix the
final time to k = N and strech the interval by moving its beginning toward −∞. The
steady state of the sequence Kk can be then considered at k = −∞. Would not it be
then more appropriate to call the steady-state value K−∞? Could be. Nonetheless,
the commonly accepted notation for the steady state value found in the literature is
K∞, that is

K∞ , lim
k→−∞

Kk. (92)

Identical notational convention holds for the steady-state value of Sk, which also
evolves backwards in time and from which the above state-feedback gain matrix is
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Figure 2: The optimal values for the solution sequence sk or Riccati equation, the
state feedback gain Kk and the states xk.

actually derived
S∞ , lim

k→−∞
Sk. (93)

Leaving aside for the moment the important question whether and under which
conditions such a limit exists, the immediate question is how to compute such limit.
One straightforward strategy is to run the recurrent scheme (Riccati equation) gen-
erating the sequence SN ,SN−1,SN−2, . . . so long as there is a nonnegligible improve-
ment, that is, once Sk ≈ Sk+1, stop iterating.

Another idea is to apply the steady-state condition

S∞ = Sk = Sk+1 (94)

to the Riccati equation. The resulting equation

S∞ = AT
[
S∞ − S∞B(BTS∞B + R)−1BTS∞

]
A + Q (95)

is called discrete-time Algebraic Riccati Equation (DARE) and it is one of the most
important equations in the field of computational control design. The equation may
look quite “messy” and offers hardly any insight. Remember the good advice to
switch to the scalar case while studying similar matrix-vector expressions. Our ARE
simplifies to

s∞ = a2s∞ −
a2b2s2∞
b2s∞ + r

+ q (96)

This equation can be solved by solving the corresponding quadratic (in s∞) equa-
tion

b2s2∞ + (r − a2b2 − b2q)s∞ − qr = 0. (97)

Voilà! A quadratic equation for which the solution(s) can be found readily. There
is a caveat here, though. Quadratic equation can have two (or none) real solutions.
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Figure 3: The optimal values for the solution sequence sk or Riccati equation, the
state feedback gain Kk and the states xk.

But the sequence produced by recurrent Riccati equation is determined uniquely!
What’s up? How are the solutions to ARE related to the limiting solution of recurrent
RE?

Answering this question will keep us busy for most of this lecture. We will structure
this broad question into several sub-questions

1. under which conditions it is guaranteed that there exists a (bounded) limiting
solution S∞ to the recurrent Riccati equation for all initial (actually final) values
SN?

2. under which conditions is the limit solution unique for arbitrary SN?

3. under which conditions is it guaranteed that the time-invariant feedback gain
K∞ computed from S∞ stabilizes the system (on the infinite control interval)?

3.1 Suboptimal solutions

Before we start answering the three important question posed above, let us investigate
the cost of any (!) suboptimal control Kk (including the constant gain). In order to
to this, we will invoke the same trick as we used for finding the const of the optimal
control in the previous question. Namely, the observation that

1

2

N−1∑
k=i

(xT
k+1Sk+1xk+1 − xT

k Skxk) =
1

2
xT
NSNxN −

1

2
xT
i Sixi. (98)

Adding the left hand side to and subtracting the right hand side to from the cost
function (in other words, adding zero to the cost function) we get

Ji =
1

2
xT
i Sixi +

1

2

N−1∑
k=i

[
xT
k+1Sk+1xk+1 + xT

k (Q− Sk)xk + uT
k Ruk

]
. (99)
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Substituting the state equation and the state feedback control uk = −Kkxk into
the above, we get

Ji =
1

2
xT
i Sixi +

1

2

N−1∑
k=0

xT
k

[
(A−BKk)TSk+1(A−BKk) + Q− Sk + KT

k RKk

]
xk.

(100)
However, at this point the sequence Sk is undefined. At this moment these are

just some symbols for us. Maybe we should have used a symbol different from the
solution to Riccati equation for it. Now, let us define this sequence as

Sk = (A−BKk)TSk+1(A−BKk) + Q + KT
k RKk (101)

With this choice the cost function (the optimization criterion) simplifies to

Ji =
1

2
xT
i Sixi. (102)

For the third time in this course we observe that the cost of the control when
starting at a given discrete time i can be calculated as a quadratic matrix form with
the coefficient matrix obtained from some matrix recurrent scheme. Make sure you
understand now that (101) is not Riccati equation. Instead, it is just Lyapunov
equation since Kk is fixed. It can be even constant.

Example 3.1. In this example we analyze numerically what an impact on the cost
function the shift from the time-varying to the time-invariant state feedback is. We
stick to the scalar first-order assignment used previously. See the Fig. 4 and 5. The
parameters of the first-order LTI system and the LQ optimal control are

a=1.05; b =0.01;
q=5; r=5; sN=5;
x0=10;
N=100;

For these parameters, the recurrent scheme(s) given in the previuos lecture give the
sequences sk as in the left column of Fig. 5. Corresponding to the optimal solution is
the blue sequence while the green one is suboptimal on the finite interval (and optimal
in steady state). The red sequence sk on the left is is generated for“some” constant
stabilizing feedback gain, the trick that we used to find an upper bound on the optimal
sk.

The state trajectories in the right column confirm the already discussed well-known
fact that the optimization only does what it was asked for. In this case, it simply
minimizes the chosen quadratic criterion. The suboptimal solution which was obtained
by solving ARE can then easily turn out more appropriate although it is only optimal
for an infinite time horizon.

Looking at the evolution of costs in Fig. 5, one notices immediately that the differ-
ences between the cost function of the optimal control and the suboptimal one (obtained
by solving ARE) are very small. This suggests that our losses in optimality introduced
by using a steady-state solution to Riccati equaton are tolerable.

3.2 Boundedness of the solution to recurrent Riccati equation

Let us state the answer first: the system xk+1 = Axk + Buk must be stabilizable in
order to guarantee existence of a bounded limiting solution S∞ to Riccati solution.
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Figure 4: Comparison of cost functions for the optimal (blue) and suboptimal (green)
feedback gains (optimal in steady state). The red sequence sk on the left is is generated
for“some” constant feedback gain.

To see this, note that for a stabilizable system, we can find some time-invariant
feedback gain, which guarantes that xk → 0 as k → ∞ (note, once again, that for
LTI systems the situation with fixed and finite N and k going toward −∞ can be
view equivalenty as if k goes from 0 to ∞.) Knowing this and recalling also that our
cost is

Ji =
1

2
xT
NSNxN +

1

2

N−1∑
k=i

xT
k Qxk + uT

k Ruk, (103)

we can argue that limi→−∞ Ji is finite. At the same moment, the cost function Ji
for this any suboptimal feedback gain must be at any i higher or equal to the cost
function for the optimal state feedback gain; this is the very definition of an optimal
solution. Let us use temporarily the symbol ∗ to denote the objects related to the
optimal control. Hence

Ji ≥ J∗i . (104)

Therefore
xT
i Sixi ≥ xT

i S∗i xi, (105)

which can also be written as
Si ≥ S∗i . (106)

In other words, we have just shown that for a stabilizable system the optimal
sequence Sk is bounded at every k.

Two more properties of the optimal Sk can be identified upon consulting one of
the version of Riccati equation or the other.
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Figure 5: Comparison of cost functions for the optimal (blue) and suboptimal (green)
feedback gains (optimal in steady state).

1. Sk is symmetric. This is obvious once we observe that by transposing the Riccati
equation derived in (77)

Sk = Q + ATSk+1A−ATSk+1B(BTSk+1B + R)−1BTSk+1A, (107)

we obtain the same expression.

2. Sk is positive semidefinite provided SN ≥ 0. This is obvious from the other
form of Riccati equation that we have derived in 71 and we display here for
convenience

Sk = Q + ATSk+1(I + BR−1BTSk+1)−1A. (108)

Just use the couple of rules such as that a squared matrix is always positive
semidefinite, or that a sum of two semidefinite matrices is a semidefinite matrix.
As usual, resorting to scalars will lend some insight.

3. S∞ solves the ARE. This is obvious.

3.3 Stabilizing solution of ARE

Now let’s skip the second of our three original questions (the one about uniqueness)
temporarily and focus on the third question. In order to answer it, let us extend our
state-space model with the “artificial” output equation

yk =

[
C
0

]
xk +

[
0
D

]
uk, k = 0, 1, . . . , N − 1, yN =

[
C
0

]
xN , (109)

where Q = CTC, R = DTD and SN = CT
NCN . With this new somewhat artificial

system, our original optimization criterion can be rewritten

Ji =
1

2
yT
NyN +

1

2

N−1∑
k=i

yT
k yk =

1

2

N∑
k=i

yT
k yk. (110)
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From the previous analysis we know that thanks to stabilizability the optimal cost
function is always bounded (by a finite cost for some suboptimal stabilizing controller)

J∗∞ =
1

2

∞∑
k=i

yT
k yk <∞. (111)

Having a bounded sum of an infinite number of squared terms, it follows that
yk → 0 as k →∞ by which we mean a rigorous statement ‖yk‖ → 0 as k →∞. The
crucial question now is: does the fact that Cxk → 0 and Duk → 0 for k → ∞ also
imply that xk → 0 and uk → 0?

Since |R| 6= 0, uk → 0. But we made no such restrictive assumption about Q.
In the very extreme case assume that Q = 0. What will happen with an unstable
system is that our optimization criterion only contains the control sequence uk and
it naturally minimizes the total cost by setting uk = 0. The result is catastrophic
— the system goes unstable untill it blows out. The fact that the states xk of the
system diverge goes unnoticed by the optimization criterion. The easiest fix of this
situation is to require Q nonsigular as we did for R (for other reasons), but this is
a way too restrictive. We will shortly see an example where nonsingular weighting
matrix Q might be useful.

The ultimate answer is that the condition under which the blowing out of the
system states is always reflected in the optimization cost is detectability of the artificial
system given by the matrix pair (A,C). In practice we may check for observability
(similarly as we do for controllability instead of detectability) but doing so we request
more then is needed. Note that unlike in the fixed final state here we need neither
controllability nor observability to have a stabilizing controller.

3.4 Uniqueness of the stabilizing solution

The last issue that we have to solve is uniqueness. Why do we need to care? We have
already discussed that the ARE, being a quadratic equation, can have more than just
one solution. In the scalar case it can have two real solutions (or no real because both
complex). In general there are then several posibilities

1. None of them is nonnegative. Bad luck, no stabilizing solution can be found.
This can be, however, excluded if the system (A,B) is stabilizable as discussed
before.

2. Only one of them is nonnegative. We are lucky because this is our stabilizing
solution.

3. Both solutions are nonnegative. Which one we shall pick? Both seem to be
acceptable candidates but only one of them truly corresponds to the optimal
solution. Is it possible to exclude this scenario?

Our goal is to study if we can exclude the last scenario — multiple positive semidef-
inite solutions of ARE. Provided the system is stabilizable, we know that one of them
is our optimal solution but we will have troubles to identify the correct solution. In
other words, we are asking if there is a unique stabilizing solution to ARE. We will
use ARE in the Joseph stabilized form

S = (A−BK)TS(A−BK) + KTRK + Q. (112)
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Using our factorization of Q and R we can write the Riccati equation as

S = (A−BK)TS(A−BK) +
[
CT KDT

] [ C
DK

]
. (113)

Observe that for a fixed (optimal) K (we stop using∞ in the lower index for nota-
tional brevity) the above equation is actually a Lyapunov equation for an equivalent

system with the state matrices (A − BK,

[
C

DK

]
). We have already refreshed the

well-known facts about Lypunov equation that provided the system is stable (and in
our case it is since (A − BK) matrix is) and observable, the equation has a unique
positive definite solution. If observability is not guranteeed, there is a positive definite
solution.

Clearly, what remains to be shown is that the system (A−BK,

[
C

DK

]
) is observ-

able. Let us invoke one of the tests of observability — the popular PBH test. For a

system (A,C) it consists in creating a matrix

[
zI−A

C

]
and checking if it is full rank

for every complex z. In our case this test specializes to checking the rank ofzI− (A−BK)
C

DK

 , (114)

which can be shown to be equal to the rank ofzI−A
C

DK

 . (115)

This expresses the well-known fact from linear systems that state feedback pre-
serves observability. If K can be arbitrary, the only way to keep this rank full is to
guarantee that [

zI−A
C

]
(116)

is full rank. In other words, the system (A,C), where C =
√

Q, must be observable.
Let us summarize the findings: although detectability of (A,C) is enough to

guarantee the existence of a positive semidefinite S which stabilizes the system, if the
detectability condition is made stronger by requiring observability, it is guaranteed
that there will be a unique positive definite solution to ARE.

Why do we need to care about positive definiteness of S? Let us consider a scalar
case for illustration.

Example 3.2 (Solution to scalar ARE). For a first-order system xk+1 = axk + buk
and the standard cost J = 1

2

∑∞
k=0[qx2k + ru2k] the corresponding ARE is

s = q + a2s− a2b2s

b2s+ r
, (117)

which can be turned into

s(b2s+ r) = q(b2s+ r) + a2s(b2s+ r)− a2b2s. (118)
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Grouping together the coefficients with equal powers of s yields the quadratic equa-
tion in the standard form

(b2a2 − b2)s2 + (b2q − r + ra2 − a2b2)s+ rq = 0. (119)

Trivial analysis shows for q = 0, one of the roots is s1 = 0 and the other is always
s2 < 0. Hence the solution of ARE that represents the steady-state solution of the
recurrent Riccati equation is s = 0. As a consequence, the optimal state-feedback
gain is k = 0. For an unstable system this would be unacceptable but for a stable
system this makes sense: the system is stable even withouth the control, therefore,
when the state is not penalized in the criterion at all (q = 0), the optimal strategy
is not regulating at all. Mathematically correct. Nonethelesss, from an engineering
viewpoint we may be quite unhappy because the role of the feedback regulator is also to
attenuate the influence of external disturbances. Our optimal state-feedback regulator
does not help at all in these situation. That is why we may want to require positive
definite solution of ARE.

4 Computational example using Matlab

Our task is to design an LQ-optimal state feedback regulator for an F16 aircraft. This
assignment is based on Example 5.3-1 from Stevens & Lewis 2003, page 413. Linear
model of lateral-directional dynamics of F16 trimmed at: VT=502ft/s, 302psf dy-
namic pressure, cg @ 0.35cbar. The model includes dynamics of ailerons and rudders
and a washout filter. The model can be created in Matlab by running the following
code.

% beta . . . s i d e s l i p angle
% phi . . . bank angle
% p . . . r o l l ra te
% r . . . yaw rate
%
% de l t a a . . . a i l e ron de f l e c t i on
% de l t a r . . . rudder d e f l e c t i on
%
% r w . . . f i l t e r e d yaw rate

A = [ −0.3220 , 0 .0640 , 0 .0364 , −0.9917 , 0 .0003 , 0 .0008 0 ;
0 , 0 , 1 , 0 .0037 , 0 , 0 , 0 ;
−30.6492 , 0 , −3.6784 , 0 .6646 , −0.7333 , 0 .1315 , 0 ;
8 .5396 , 0 , −0.0254 , −0.4764 , −0.0319 , −0.062 , 0 ;
0 , 0 , 0 , 0 , −20.2 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , −20.2 , 0 ;
0 , 0 , 0 , 57 .2958 , 0 , 0 , −1];

B = [ 0 , 0 ;
0 , 0 ;
0 , 0 ;
0 , 0 ;
20 . 2 , 0 ;
0 , 2 0 . 2 ;
0 , 0 ] ;

C = [ 0 , 0 , 0 , 57 .2958 , 0 , 0 , −1;
0 , 0 , 57 .2958 , 0 , 0 , 0 , 0 ;
57 .2958 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 57 .2958 , 0 , 0 , 0 , 0 , 0 ] ;

G = ss (A,B,C, z e ro s ( 4 , 2 ) ) ;

s e t (G, ’ StateName ’ ,{ ’ beta ’ , ’ phi ’ , ’ p ’ , ’ r ’ , ’ d e l t a a ’ , ’ d e l t a r ’ , ’ r w ’ } ) ;
s e t (G, ’OutputName ’ ,{ ’ r w ’ , ’p ’ , ’ beta ’ , ’ phi ’ } ) ;
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s e t (G, ’ InputName ’ ,{ ’ u a ’ , ’ u r ’ } ) ;

Ts = 0 . 1 ; % sampling period
Gd = c2d (G, Ts ) ; % di s c r e t i z e d system
[A,B,C,D] = ssdata (Gd) ;

The key characteristic of this model is that it includes the dynamics of the servos
that deflect the control surfaces (ailerons and ruders). These are represented by the
state variables δa and δr. The measured yaw rate is filtered using a washout filter.
The structure of the model is shown in Fig.6.

Washout filter

Aileron servo

Rudder servo

ua

ur

δa

δr

Aircraft lateral-directional dynamics

β

φ

p

rwr

Figure 6: Structure of a model of directional-lateral dynamics of F16.

The task is to bring the system states to zero from a nonzero initial states. This
assignment also covers the situation in which the system is exposed to external distur-
bances. Their impact on the system can be modeled as if they were setting a system
into some nonzero initial state.

We formulate this and an LQ-optimal control design with the criterion

J =

∞∑
k=0

[xT
k Qxk + uT

k Ruk], (120)

where our initial structure of the weighting matrices Q and R might be

Q = qI =



q 0 0 0 0 0 0
0 q 0 0 0 0 0
0 0 q 0 0 0 0
0 0 0 q 0 0 0
0 0 0 0 q 0 0
0 0 0 0 0 q 0
0 0 0 0 0 0 q


(121)

and

R = I =

[
1 0
0 1

]
, (122)

which would leave us with just a single design parameter q. That is, all the states are
penalized equally. Remember also that the tradoff between supressing the regulation
error and the keeping the control error small is expressed by the ratio between the
entries of Q and R, that is why R is set to an identity matrix here. This one-
parameter setting, however, does not leave enough freedom for the control design.
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Therefore the next natural choice might be

Q =



q1 0 0 0 0 0 0
0 q2 0 0 0 0 0
0 0 q3 0 0 0 0
0 0 0 q4 0 0 0
0 0 0 0 q5 0 0
0 0 0 0 0 q6 0
0 0 0 0 0 0 q7


(123)

and

R =

[
r1 0
0 r2.

]
(124)

Here we are in the opposite situation — each state variable and the control signal
have their own weights. We may find the number of degrees of freedom too high. There
are too many parameters to tune, although their interprettation is very intuitive. For
example, the large the q1, the faster the corresponding state variable — the sideslip
angle — goes to zero.

There is one general rule of thumb, sometimes called Bryson’s rule, which sais that
qi should be set to 1

(maximum acceptable xi)2
. In other words, the state variables that are

and similarly ri should be set to 1
(maximum acceptable ui)2

. This generally represents a

good initial setting of the weighing matrices.
There is one special feature of our model, that will nicely illustrate the full power

of the analysis presented in this lecture. Namely, note that although δa and δr are
included in the system state vector, they also directly correspond to the control inputs
ua and ur. As the Fig.6 explains, they are just smoothed control inputs. And the
inputs are penalized using the R matrix. Why then penalized these states using the
corresponding entries of the Q matrix? Therefore it seems to a good idea to set the
corresponding matrices to zero. That is

Q =



q1 0 0 0 0 0 0
0 q2 0 0 0 0 0
0 0 q3 0 0 0 0
0 0 0 q4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 q7


(125)

Unless we have enough physical insight into the problem which guides us, for
instance through the Bryson’s rule mentioned above, we start by set all the values to
some arbitrary value, say 1

q beta = 1 ;
q phi = 1 ;
q p = 1 ;
q r = 1 ;
q rw = 1 ;

r a = 1 ;
r r = 1 ;

Q = diag ( [ q beta q phi q p q r 0 0 q rw ] ) ;
R = diag ( [ r a r r ] ) ;
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We were warned in the previous sections that we must now check if the impor-
tant condition (A,

√
Q) stabilizable is still satisfied. We will do it by testing for

observability, which is a stronger property but easier to test.

rank ( obsv (A, sq r t (Q) ) ) % check the o b s e r v a b i l i t y condi t ion
ans =

7

The actual optimal control design is now a simple job. Using a dedicated solver
dare() in Control System Toolbox for Matlab2

[ S ,E,K] = dare (A,B,Q,R) ;

Finally we build the closed-loop system and simulate a response to nonzero initial
conditions. In particular, nonzero initial sideslip

G closed = ss (A−B∗K,B, eye (7 ) , z e ro s ( 7 , 2 ) ) ;
s e t ( G closed , ’OutputName ’ ,{ ’ beta ’ , ’ phi ’ , ’ p ’ , ’ r ’ , ’ d e l t a a ’ , ’ d e l t a r ’ , ’ r w ’ } ) ;
i n i t i a l ( G closed , [ 1 0 0 0 0 0 0 ] , 1 0 )

The responses are in Fig.7.
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Figure 7: Response to initial conditions (nonzero sideslip β) with an LQ regulator.

Note that although our initial setting of the weighting matrices was somewhat
arbitrary, we already received a reasonable-looking response. This should not be
taken for granted! A few more iterations of finetuning the diagonal entries of the

2Solvers for discrete-time ARE can be found in every other software package for engineering
computations: Mathematica, Maple, Scilab, Octave. Choose you own tool.
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weighting matrices might be needed. As we will see later, this nice behaviour is
guaranteed for arbitrary selections of Q and R. Just compare it with the process of
finding the coefficients for a PID controller — for some choices the response of the
systems can be easily unacceptable, even unstable.

5 Summary

In this lecture we have considered the general discrete-time optimal control problem.
Nonlinear and time-varying systems were allowed. Necessary first-order conditions
optimality were derived which determined an optimal discrete-time control signal.
The conditions came in the form of a boundary value problem. Although such problem
is difficult to solve ingeneral, we considered a specialization of the result to the case of
a linear time-invariant (LTI) system and a popular quadratic cost function (penalizing
both the states and the controls). We analyzed two different situations—first, when
the final state was required to attain some prespecified value, and then, with the state
at the final state unspecified. Although even with the relaxed final state we can force
the system to come arbitrarily close to the desired final value, the solutions to the two
problems are strikingly different. For the fixed final state, the optimization computes
offline the optimal control sequence, that is, we get an open-loop (or preprogrammed)
control strategy. If instead we force the state at the final time to the desired value only
indirectly—through a penalization in the criterion, the solution to the optimal control
problem yields a time-varying state feedback! The feedback gains were obtained by
solving a difference Riccati equation.

We then continued by observing that the solution to the difference Riccati equa-
tion (henc the state feedback gains too) remain constant for most of time and they
only change dramatically toward the very end of the control interval. We therefore
investigated the possibility to replace the optimal time-varying state feedback gains
with some suboptimal but constant gains. Computationally this was handled using
difference algebraic Riccati equation (DARE).

What we did not cover:

• we only considered the so-called regulation task, that is, the optimization cri-
terion penalized deviation of the state from zero. An example of such task
might be inertial stabilization of cameras where the task is to keep the inertial
angular rate close to zero. There are, however, other control scenarios where
the task is to make the states follow certain nonzero values. The optimization
criterion must be changed accordingly. More on this in the fourth chapter of [1]
or elsewhere under the name LQ optimal reference tracking.

• so-far we have only been investigating systems for which all the state variables
were available for control. When this is not the case, we either need to refor-
mulate the problem so that the outputs enter the optimization cost instead of
the states (the task becomes tremendously difficult, see chapter eight of [1]), or
we need to combine the optimal state feedback with an (optimal) observer. The
latter will be investigate in one of the future lectures under the name of LQG
optimal control.
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6 Tracking

7 Further reading

This lecture was prepared to a major extent with the help of the second chapter
of [1]. There are dozens of texts on LQ optimal control, but they mainly treat the
continuous-time case.
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