
5

Dynamic Programming
for Optimal Control
Discrete- and continuous-time versions

Zdeněk Hurák
June 25, 2021

Dynamic programming is a powerul framework for solving sequential decision
problems, that is, problems where decisions are made one after another. It is

based on a simple yet powerful idea now known as (Bellman’s) principle of optimality.
Our first goal in this lecture is to introduce this principle. The problem of optimal
control is a perfect (but far from the only) opportunity for application of such frame-
work, therefore our second goal is to formulate a general optimal control problem as
a dynamic program. For the popular LQ-optimal problem, dynamic programming
serves as a theoretical framework within which the Riccati-equation based solution
(now already familiar to us from the previous lecture) can be derived. Although
primarily intended for discrete-time systems, the framework can also be extended
to continuous-time systems, wherein the principle of optimality is captured by the
celebrated Hamilton-Jacobi-Bellman’s (HJB) equation. For a general nonlinear prob-
lem including the popular LQ-optimal control with bound contraints or quantized
controls (on-off control), dynamic programming provides a numerical computational
procedure yielding a feedback controller in the form of a look-up table. The latter use
of dynamic programming is only tractable for simplest textbook problems. For any-
thing more realistic, dynamic programming suffers from the curse of dimensionality.
A remedy is called approximate dynamic programming (ADP), in which the lookup
table is approximate by a function. Yet another extension that is gaining popularity
within the control field is called reinforcement learning (RL), which can be viewed as
an instance of an adaptive control. This text does not include details on ADP and
RL but can be used for building prerequisites for introducing ADP and RL.

1 Bellman’s principle of optimality and dynamic
programming

We start by considering an everyday problem of navigating our car from one city
to another. Say, we want to travel from Prague to Ostrava in an optimal way. In
particular, we may want to minimize the total time. Fig. 1 shows what the online
navigator (https://en.mapy.cz/) returns.

Obviously, the optimal route goes through (well, actually around) Brno and then
through (around) Olomouc.

Now, let’s imagine a situation that we are heading to Ostrava to meet our business
partners some of which are travelling from Brno. A natural question pops up: “is our

https://en.mapy.cz/


Dynamic programming

Figure 1: Optimal (shortest time) route from Praha to Ostrava. Reusable aso as an
optimal route from Brno to Ostrava.

optimal route reusable for our business partners from Brno?” An answer that is hardly
surprising is: “yes!” Knowing that our optimal route from Prague to Ostrava goes
through Brno, we can immediately conclude that the optimal route for the colleagues
from Brno is identical to our part of the route from Brno to Ostrava. This intuitive
and simple reasoning was formalized in 1950s by R. E. Bellman:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.”

Let’s now explore this idea a bit more quantitatively using a simple computational
example of finding a shortest path in a graph in Fig. 2.

Astart

B

D

C

E

G

F

H

I

3

1

2

1

3

2

3

3

2

4

4

2

Figure 2: Graph through which a shortest path from the initial node A to the final
node I is to be found. The labels on the edges give transition costs (in our case these
are the times to get from one node to another).

What are possible solution strategies? First, we can start enumerating all the
possible routes (paths) from A to I and calculate their costs (by summing the costs

Lecture 5 on Optimal and Robust Control at CTU in Prague 2

https://en.wikipedia.org/wiki/Richard_E._Bellman


Dynamic programming

of the participating edges). Needless to say, this strategy based on enumeration scale
very badly with the growing number of nodes.

Alternatively, we solve the problem using dynamic programming and relying on
Bellman’s principle of optimality. The crucial attribute of this strategy is that we
proceed backwards. We start at the very final stage. Since it is just one here, there
is nothing we can do here but in general, in case of several possible final stages, we
associate the terminal costs with them. We then proceed backwards to the last but
one (or (N −1)th) stage. These are F and H stages. Again, in these two stages there
is no freedom as for the actions but for each of them we can record the cost to go.
There are 4 for F node and 2 for the H node. Things are only getting interesting if
we now proceed one more step towards the past: we proceed to the stage N − 2. We
now have to consider three possible states: C, E and G. For the nodes C and G there
is still just one action and we can only record their costs to go. The cost for the C
node can be computed as the cost for the immediate transition from C to F plus the
cost for the F node which we recorded previously, that is, 3 + 4 = 7. We record the
value of 7 with the C node. Similarly for the G node. For the E node there are two
possible actions—two possible decisions to be made, two paths/routes to take. Either
to the left (or, actually, up), which would bring us to the node F , or to the right (or
down), which would bring us to the node H. We compute the costs to go for both
decisions and choose the decision with a smaller cost. Here the cost of the decision
to go to the left is composed of the cost to transition to F plus the cost to go from
F , that is, 3 + 4 = 7. The cost to go for the decision to go right is composed of the
transition cost from E to H plus the cost to go from H, that is, 2 + 2 = 4. Obviosly,
the optimal decision is to go right, that is, to the node H. Here on top of the value of
the optimal (smallest) cost to go from the node we also record the optimal decision
(go to the right/down). And we proceed one stage backwards a start analyzing the
costs to go for the nodes B and D. Again we record the optimal costs to go and the
actual optimal decisions. The last step is done by analyzing the same issues for the
initial node A. Note that here coincidently both decisions have the same cost to go,
hence both possible decisions/actions are optimal and we can just toss a coin.

As a result of this backward sweep we have two arrays of numbers—an array (or
table) of optimal costs to go for each node, and an array of optimal decisions (in our
case there is just one possible step that could be made or there are two possibilities).
Once we are done with the whole graph, we can actually discard the array of costs
and only keep the array with optimal decisions.

This artificial looking problem of finding a shortest path in a graph is perfectly
matching our original problem of finding an optimal route from Prague to Ostrava.
Besides obtaining an optimal route as fixed sequence of cities (nodes) to travel through
(around), we get a nice bonus. Since the optimal strategy is realized as a look-up
table—it can be viewed as a feedback controller because at every modelled intersection
we look up an optimal decision from the table. This may come in handy if for some
reason or the other we deviate from the optimal route but still find ourselves in a city
(node) that has an entry in our table.

Lecture 5 on Optimal and Robust Control at CTU in Prague 3



Dynamic programming

A

8
start

B

5

D

7

C

7

E

4

G

6

F

4

H

2

I

0

3

1

2

1

3

2

3

3

2

4

4

2

Figure 3: Graph with the optimal path(s) from A to I highlighted. The optimal
cost-to-go is shown for each node.

2 Dynamic programming and discrete-time optimal
control

2.1 Formulation of the optimal control problem (to be solved
using DP)

Let’s now use this apply the principle of dynamic programming in the formal setting
of discrete-time control systems. In particular, we consider the system modelled by

xk+1 = fk(xk,uk) (1)

on the interval k ∈ [i,N ], with the initial state xi given (say, xi = ri), and we aim at
minimizing the cost function

Ji
(
xi,
[
ui,ui+1, . . . ,uN−1

])
= φ(xN ) +

N−1∑
k=i

Lk(xk,uk). (2)

Three comments are now appropriate

• Note that while looking at the right hand side of the above equation, the cost
function is clearly a function of the full sequence xi,xi+1, . . . ,xN of the state
vectors, all the states starting with xi+1 can be expressed using the initial state
xi and the corresponding (sub)sequence of controls ui,ui+1, . . .. Therefore, we
can write the cost function as a function of the initial state, initial time, and
the sequence of controls.

• The optimization is to be conducted over the sequence ui,ui+1, . . . ,uN of con-
trols, while the initial state xi is typically (but not necessarily always) regarded
as fixed (given) as serves as a parameter for the optimization.

Lecture 5 on Optimal and Robust Control at CTU in Prague 4



Dynamic programming

• Let’s discuss the notation a bit. It turns out that here in this chapter/lecture it
is even more important than usually to use the notation concioussly to our full
advantage. In particular, recall that the lower indices reflect the dependence on
the (discrete) time: we read xk as the state (vector) at the discrete time k and
uk as the input (or control) at the discrete time k. But we should then use the
same interpretation for the functions fk(), Lk() and Jk(), that is, the discrete
time k is another argument for these functions. We could perhaps write these
as f(·, ·, k), L(·, ·, k) and J(·, ·, k) to better indicate that k is really an argument
for these functions. But instead we typeset the discrete time k as the lower
index to make it compatible with the way we indicate the time dependence of
the signals xk and uk.

Having introduced the cost function J parameterized by the initial state, initial
time and the full sequence of controls, we now introduce the optimal cost function J∗

J∗i (xi) = min
ui, i∈[i,N−1]

Ji
(
xi,
[
ui,ui+1, . . . ,uN−1

])
(3)

Let summarize the difference between the J and J∗ functions. Understanding
the difference is vital for understanding what is to come next. While J depends on
the (initial) state, (initial) time and the sequence of controls applied over the whole
interval, J∗ only depends on the state and time.

2.2 Bellman’s principle of optimality aka the principle of dy-
namic programming

Assume we have already found an optimal control from any given state xk+1 at
time k + 1 on, i.e., we already have uk+1,uk+2, . . . ,uN−1 yielding the optimal cost
J∗k+1(xk+1). Don’t ask me now where we get such optimal sequence, we just assume
we have it.

Now, if we apply arbitrary (not necessarily optimal) control uk at a given state
xk at time k, the cost is

Jk(xk,
[
uk,uk+1, . . . ,uN−1

]
) = Lk(xk,uk) + J∗k+1(xk+1). (4)

I highlighted the (sub)sequence of controls on the left hand side starting with uk+1

to emphasize that these were already fixed by the assumed availability of the optimal
cost function J∗k+1.

According to Bellman, the optimal cost from time k on is

J∗k (xk) = min
uk

(
Lk(xk,uk) + J∗k+1(xk+1)

)
. (5)

Hence, at a given state xk at a given time k the optimization is performed over
only one control uk and not the whole sequence!

What we have got in (5) is a recursion scheme. Is initialized at k + 1 = N by
invoking J∗N (xN ) = φ(xN ) and proceeds backwards in time.

Let’s emphasize here that the minimization in (5) needs to be performed over the
sum Lk(xk,uk) + J∗k+1(xk+1) because xk+1 is a function of uk (recall that xk+1 =
fk(xk,uk)). We could have written (5) perhaps as

J∗k (xk) = min
uk

(
Lk(xk,uk) + J∗k+1(fk(xk,uk))

)
. (6)

We will now show how to actually apply this result to solve an optimal control
problem.

Lecture 5 on Optimal and Robust Control at CTU in Prague 5



Dynamic programming

2.3 Dynamic programming as a numerical procedure for com-
puting a feedback controller in the form of a look-up table

In the discrete-time control setting, the controls are computed and applied one after
another at discrete time instances. This is nicely in alignment with the sequential
character of decision making in dynamic programming. However, at a given time,
the number of possible states is infinite! In particular, acceptable states constitute
a subset of Rn, typically a box given by the minimum and maximum acceptable
values for each component of x. Similarly, the number of possible controls (actions,
decisions) at a given time and state can be infinite in general, again lower- and upper-
bounded real variables (although sometimes quantized controls appear naturally, for
instance in on-off control). A ”dirty“ trick can be applied here—discretization (or
gridding or sampling) of the space of states and controls. A sketch is in Fig. 4 for
a first-order system, for which the full state space is a real line and the realistically
restricted states are in the interval [xmin, xmax].

time
0 NN − 1

x
xmax

xmin

kk − 1

Figure 4: Discretized time and state space for dynamic programming

We now start populating two tables in which entries correspond to the grid points
in the state space—one for the optimal costs J∗k () and the other for the optimal
controls uk(xk). As in the shortest path problem we start at k = N . For all grid
points in the state space we evaluate the cost JN (xiN ). Since we are at the end of
the control interval, there is no decision to be made (no controls to compute) at this

Lecture 5 on Optimal and Robust Control at CTU in Prague 6



Dynamic programming

moment (we can just set uN (xN ) = 0 or ignore this step altogether). We record the
computed costs, and proceed to k = N − 1.

At k = N − 1 we again iterate through all the grid points in the state space.
Let’s label the iterations through the state space with the upper index (i). At each

point x
(i)
N−1 we perform another iteration, this time through all the grid points in the

space of controls. Let’s label the iterations through the controls with the upper index

(j). For each control u
(j)
N−1(x

(i)
N−1) we compute the sum of the cost of the transition

from x
(i)
N−1 to the next state xN and the optimal cost to go from the xN state on,

which we already have from the previous step. After iterating through all possible
controls at a given state, we pick the one with minimum cost and and record both

this value J∗N−1(x
(i)
N−1) of the optimal cost-to-go and also the corresponding controls

u∗N−1(x
(i)
N−1), see (5). We decrease the time again to k = N − 2. . . and repeat the

whole procedure.

2.3.1 Interpolation often needed

Unless we are particularly lucky, the evolution of the states of a given discrete-time
model (1) would not be restricted to our grid points. Some interpolation would then
be needed.

. . .

2.3.2 Combinatorial complexity

Restrict ourselves to first-order and single-input systems (extension of this analysis
to higher-order and multiple-input systems is straightforward). That is, the state
vector x actually contains a single a scalar variable and the vector of controls u is
one-dimensional as well. At every discrete time k, the algorithm iterates over the Nx
grid points of x and Nu grid points of u. Hence, the total number of evaluations of
the sum insided the bracket on the right hand side of (1) over the whole time interval
is NxNuN . One possible observation is that the computational complexity scales
linearly with the length of the control interval.

Contrast this with the strategy based on full enumeration of all possible control
sequences. For N = 1, starting at a single x0, there are (trivially) Nu possible control
sequences, hence in total NxNu possible control sequences if arbitrary initial state is
considered. For N = 2, from a single x0, there are now N2

u possible control sequences,
hence in total NxN

2
u . Obviously, on an interval of lenth N the number of possible

control sequences from which we should choose the optimal one scales as NxN
N
u .

Dynamic programming offers a significant saving in the computational effort.

2.4 Discrete LQR via dynamic programming

Consider a linear discrete-time system modelled by

xk+1 = Axk + Buk (7)

with the performance index

J0(x0,u0,u1, . . . ,uN−1) =
1

2
xT
NSNxN +

1

2

N−1∑
k=0

(
xT
kQxk + uT

kRuk
)

(8)

Lecture 5 on Optimal and Robust Control at CTU in Prague 7



Dynamic programming

with SN ≥ 0,Q ≥ 0,R > 0. We now invoke the principle of optimality, that is, we
start at the end

J∗N (xN ) =
1

2
xT
NSNxN (9)

and go backwards (decrement to k = N − 1)

J∗N−1(xN−1) = min
uN−1∈Rm

L(xN−1,uN−1) + J∗N (xN )︸ ︷︷ ︸
JN−1(xN−1,uN−1)

 . (10)

We now expand the expression for the the cost to go

JN−1 =
1

2

(
xT
N−1QxN−1 + uT

N−1RuN−1

)
+ J∗N

=
1

2

(
xT
N−1QxN−1 + uT

N−1RuN−1

)
+

1

2
xT
NSNxN

=
1

2

(
xT
N−1QxN−1 + uT

N−1RuN−1 + xT
NSNxN

)
=

1

2

[
xT
N−1QxN−1 + uT

N−1RuN−1 + (xT
N−1A

T + uT
N−1B

T)SN (AxN−1 + BuN−1)
]

=
1

2

[
xT
N−1(Q + ATSNA)xN−1 + 2xT

N−1A
TSNBuN−1 + uT

N−1(R + BTSnB)uN−1

]
.

We assumed no constraint on uN−1, hence finding the minimum of JN−1 is as
easy as setting the gradient of the cost to go to zero

0 = ∇uN−1
JN−1 = (R + BTSnB)uN−1 + BTSNAxN−1, (11)

which leads to
u∗N−1 = − (BTSNB + R)−1BTSNA︸ ︷︷ ︸

KN−1

xN−1. (12)

The optimal cost can be obtained by substituting u∗N−1 into JN−1

J∗N−1 =
1

2
xT
N−1

[
(A−BKN−1)TSN (A−BKN−1) + KT

N−1RKN−1 + Q
]︸ ︷︷ ︸

SN−1

xN−1.

(13)
Decrement to k = N − 2, N − 3, . . . the rest of the story is known to you from the

previous lecture. . .

3 Dynamic programming and continuous-time op-
timal control—HJB equation

Consider the continuous-time system

ẋ = f(x,u, t) (14)

with the cost function

J(x(t0),u(·), t0) = φ(x(T ), T ) +

∫ T

t0

L(x(t),u(t), t)dt (15)

Lecture 5 on Optimal and Robust Control at CTU in Prague 8



Dynamic programming

Optionally we can also consider constraints on the state at the final time (be it a
particular value or some set of values)

ψ(x(T ), T ) = 0. (16)

We now split the time interval t, T into two parts and structure the cost function
accordingly

J(x(t),u(·), t) =

∫ t+∆t

t

L(x,u, τ)dτ +

∫ T

t+∆t

L(x,u, τ)dτ + φ(x(T ), T )︸ ︷︷ ︸
J(x(t+∆t),u(t+∆t),t+∆t)

(17)

Bellman’s principle of optimality gives

J∗(x, t) = min
u(τ), t≤τ≤t+∆t

[∫ t+∆t

t

L(x,u, τ)dτ + J∗(x + ∆x, t+ ∆t)

]
(18)

Now, perform Taylor series expansion of J∗(x + ∆x, t+ ∆t) about (x, t)

J∗(x, t) = min
u(τ), t≤τ≤t+∆t

[
L∆t+ J∗(x, t) + (∇xJ

∗)T∆x +
∂J∗

∂t
∆t+O((∆t)2)

]
.

Use
∆x = f(x,u, t)∆t (19)

and note that J∗ and J∗t are independent of u(τ), t ≤ τ ≤ t+ ∆t

����J∗(x, t) =����J∗(x, t) +
∂J∗

∂t
∆t+ min

u(τ), t≤τ≤t+∆t

(
L∆t+ (∇xJ

∗)Tf∆t
)
. (20)

Assuming ∆t→ 0 leads to the celebrated Hamilton-Jacobi-Bellman equation

−∂J
∗

∂t
= min

u(t)

(
L+ (∇xJ

∗)Tf
)
. (21)

Since this is a differential equation, boundary value(s) must also be specified

J∗(x(T ), T ) = φ(x(T ), T ), on the hypersurface ψ(x(T ), T ) = 0. (22)

By the way, recall H(x,u, λ, t) = L(x,u, t) + λTf(x,u, t). Hence, HJB equation
can also be written as

−∂J
∗

∂t
= min

u(t)
H(x,u,∇xJ

∗, t). (23)

What we have just derived is one of the most profound results in optimal control—
Hamiltonian must be minimized in order to get optimal control. We will exploit it
practically below and come back to the topic in one of the next lectures on Pontrya-
gin’s principle of maximum.

Lecture 5 on Optimal and Robust Control at CTU in Prague 9



Dynamic programming

4 Deriving continuous-time LQR from HJB equa-
tion

Consider the system modelled by

ẋ = Ax + Bu (24)

and the cost function

J(x(t0),u(·), t0) =
1

2
xT(T )S(T )x(T ) +

1

2

∫ T

t0

(
xTQx + uTRu

)
dt. (25)

The Hamiltonian is

H =
1

2

(
xTQx + uTRu

)
+ λT (Ax + Bu) (26)

and according to (23) our goal is to minimize H, which enforces the condition on its
gradient

0 = ∇uH = Ru + BTλ, (27)

so
u∗ = −R−1BTλ (28)

and the Hessian is
∇2
uuH = R > 0. (29)

The optimal Hamiltonian is

H∗ =
1

2
xTQx + λTAx− 1

2
λTBR−1BTλ (30)

Setting λ = (∇xJ
∗)T, the HJB equation is

−∂J
∗

∂t
=

1

2
xTQx + (∇xJ

∗)TAx− 1

2
(∇xJ

∗)TBR−1BT∇xJ
∗ (31)

and the boundary condition is

J∗(x, T ) =
1

2
xT(T )S(T )x(T ). (32)

We can now proceed by making an assumption (”sweep“) that

J∗(x, t) =
1

2
xT(t)S(t)x(t) (33)

After a few technical steps (see, for example [3]), we finally get the familiar Riccati
equation

− Ṡ = ATS + SA− SBR−1BTS + Q (34)

and the formula for the optimal control

u∗(t) = −R−1BTS(t)x(t). (35)

Note that we have just seen (well, I have not documented all the technical steps,
I admit) the equivalence between a first-order linear PDE and first-order nonlinear
ODE.

Lecture 5 on Optimal and Robust Control at CTU in Prague 10



Dynamic programming

5 Approximate dynamic programming and Rein-
forcement learning

[TBD]

6 Further reading

This lecture was prepared to a major extent with the help of the sixth chapter of
[3], but the more affordable (cheaper) [2] follows the same line of exposition and is
very recommendable. The continuous-time version of the framework problem is nicely
introduced in [1], for which a few copies are available for the students of the course
at the NTK library.

References

[1] Brian D. O. Anderson and John B. Moore. Optimal Control: Linear Quadratic
Methods. Dover Publications, February 2007.

[2] Donald E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
April 2004.

[3] Frank L. Lewis and Vassilis L. Syrmos. Optimal Control. Wiley-Interscience, 2nd
edition, October 1995.

Lecture 5 on Optimal and Robust Control at CTU in Prague 11


	Bellman's principle of optimality and dynamic programming
	Dynamic programming and discrete-time optimal control
	Formulation of the optimal control problem (to be solved using DP)
	Bellman's principle of optimality aka the principle of dynamic programming
	Dynamic programming as a numerical procedure for computing a feedback controller in the form of a look-up table
	Interpolation often needed
	Combinatorial complexity

	Discrete LQR via dynamic programming

	Dynamic programming and continuous-time optimal control—HJB equation
	Deriving continuous-time LQR from HJB equation
	Approximate dynamic programming and Reinforcement learning
	Further reading

