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Continuous-time optimal control—
indirect approach
Introduction to calculus of variations; LQ-optimal control

Zdeněk Hurák
March 24, 2021

In this lecture we will go on with optimal control design, but this time we will step
into the continuous-time domain. Our philosophy will remain the same as in the

discrete-time case. First we will aim at finding the first-order necessary conditions
of optimality. We will see that these come in the form of differential equations with
boundary constraints—two-point boundary value problem (BVP). The solution func-
tions that satisfy these conditions are called extremals. We will then study under
which conditions a given extremal is actually minimizing the cost function.

Since in the continuous-time setting the optimization is performed over functions,
the mathematical formalism of differential calculus is no longer appropriate here. In-
stead, we need to invoke its extension for optimization over functions—the calculus
of variations. In the first part of the lecture we will ask what will be the appropri-
ate replacement for the derivatives and differentials and we will see that variational
derivatives and variations constitute such replacement. We will then show how these
could be applied within the context of continuous-time optimal control. In this lecture
we will only consider the optimal control on a fixed time interval (or time horizon).

Finally, we will show a solution to both the fixed- and free-final state LQ-optimal
control. The former leads to open-loop control, the latter leads to time-varying linear
state feedback, which can be computed by solving differential Riccati equation. Sim-
ilarly as in the discrete-time case, one can aim at finding a constant state-feedback,
which would be suboptimal on a finite time interval, but optimal on an infinite one.
Such state feedback gains can be either determined from the limiting (steady-state)
solution to differential Riccati equation, or as one of the solutions of continous-time
algebraic Riccati equation (CARE). Identical questions pop up as in the discrete-time
case: under which conditions is there a stabilizing solution to the infinite-horizon
LQ-optimal control problem and can it be found by solving the CARE? The answers
will be pretty much identicle as in the discrete-time case.

This is the problem we are going to solve in this lecture

min
x(t),u(t)

[
φ(x(tf)) +

∫ tf

ti

L(x(t),u(t), t) dt

]
, (1)

subject to
ẋ(t) = f(x,u, t) x(ti) = ri, (2)

where the meaning of the latter constraint is that the state at the initial time is given.
Unlike in the discrete-time case, here we are optimizing not over the n-tuples of

real numbers (vectors or finite sequences) but we are optimizing over functions. This
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is emphasized by means of Fig.1, which show instances of such x(t) and u(t) func-
tions/trajectories/curves.

tti tf

x(t)

u(t)

Figure 1: Two instances of state and input trajectories x(t) and u(t), respectively.

To make the assignment of the optimal control design task complete, we have to
specify in which space of functions we perform the search for the optimal “values”.
In this introductory lecture we will consider smooth functions, that is, continuous
function for which their first derivative exists. We will discuss possible needs for
extensions when they are needed.

Besides building a framework for a general problem, our ultimate goal is to find a
solution to the popular LQ problem

min
x(t),u(t)

[
xT(tf )Sfx(tf ) +

∫ tf

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

]
, (3)

subject to
ẋ(t) = Ax(t) + Bu(t), x(0) = r0. (4)

We will provide such solutions for both the fixed and free final state, including a
discussion of the prolongation of the control horizont to infinity.

1 Calculus of variations

Since in our quest for the optimal control we optimize over functions, we can view our
optimization as running in an infinite-dimensional vector space. The mathematical
discipline of calculus of variations provides concepts and tools for such optimization.
The general task (in a scalar version) is to find

min
y(x)∈C1[a,b]

J(y(x)), (5)

where we relabelled the variables in the following sense: the optimization is performed
over y(x), which is a function of the independent scalar variable x. The reason for this
choice is that many of the results in calculus of variations were motivated by problems
where the independent variable was length or position. This change of notation is
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xa b

y(x)

Figure 2: The variables in calculus of variation are functions

shown in Fig.2, which shows a few members of the space in which we search for a
minimizer.

The optimization criterion is now a function of a function. An established name
for such function is functional1 The optimization is conducted over the set C1[a, b] of
continuously differentiable (that is, smooth) functions.

It is now important to reinvoke the very definition of local minimum that we in-
troduced in the lecture on finite-dimensional optimization. The cost function has a
local minimum at a given point if there exists some neighbourhood within which all
the other points achieve equal or higher value. With our current notation, J attains
a local minimum at y∗ if

J(y∗) ≤ J(y) (6)

for all y in some neighbourhood of y∗. The neighbourhood is given as a set of all those
y for which

‖y − y∗‖ ≤ ε. (7)

1.1 Strong vs. weak minimum

The question is, which norm is used in the expression above. In finite-dimensional
spaces the choice of a norm did not have an impact on whether a given point was
classified as a minimum or not. We could use 2-norm (the popular Euclidean norm),
1-norm (also called Manhattan norm) or ∞-norm (also called max norm). But the
situation is dramatically different in infinite dimensional vector spaces; and the spaces
of function can be viewed as having an infinite dimension. There are two main norms
that are popular in calculus of variations. First, the so-called 0-norm, which is defined
as

‖y‖0 = max
x∈[a,b]

|y(x)|. (8)

The second type of norm that we will use is called 1-norm

‖y‖1 = max
x∈[a,b]

|y(x)|+ max
x∈[a,b]

|y′(x)|. (9)

1Note that in modern mathematics, the term functional can be applied to any function which
assigns a real number to an element of a vectors space, not just a space of functions.
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True, this notation is somewhat confusing because the notation ‖.‖1 is typically
used in a different meaning (the sum-of-absolute-values norm). But that’s life too. . .

When ‖.‖0 norm is used to define the neighbourhood, we say that J attains at y∗

a strong minimum. When ‖.‖1 norm is used instead, the minimum is weak.
It may take a few seconds to realize that if y∗ is a strong minimum, it is automat-

ically weak. The oposite is not true. If y∗ is a weak minimum, it is not necessarily
strong. In other words, for a fixed ε, the set N1 = {y : ‖y− y∗‖0 ≤ ε} contains all the
members of the set N2 = {y : ‖y − y∗‖1 ≤ ε} but the other direction does not hold.
The visualization in Fig. 3 may help see this.

x x

y(x) y(x)y∗ y∗
y y

Figure 3: Optimal function y∗ and a neighbourhood in the sense of ‖.‖0 norm in the
left and ‖.‖1 norm in the right. The difference is that in the left any smooth
function can be considered that fits into the graphical bounds, whereas in
the right not only the magnitude (the graphical boundary) matters but the
rate of change is bounded as well.

Example 1.1. Consider the minimization of the functional J(y) =
∫ 1

i
[(y′(x))2(1 −

(y′(x))2)]dx for which it is requested that y(a) = y(b) = 0. Clearly y(x) = 0 is a weak
minimum but is not a strong minimum. Just observe that even for tiny perturbations
in magnitude, if the derivative is high, that is, (y′(x))2 > 1, the functional J is
negative.

What is the role of these two norms in our course? The former—the ‖.‖0 norm—
and the related concept of strong minimum are what we would like to test for, while
the latter—the ‖.‖1 norm—and the related concept of weak minimum are just mathe-
matically more convenient. It is much easier to show that a point is a weak minimum.
Nonetheless, the distinction between these two will only be relevant once we want to
find sufficient conditions of optimality. But we are not there yet. First we need to
find the (first-order) necessary conditions of optimality.

1.2 Variation, variational derivative and first-order conditions of
optimality

Similarly as in the finite-dimensional optimization, we will build the necessary con-
ditions of optimality by studying how the cost function changes if we perturb the
independent variable a bit. Let’s denote the minimizing function as y∗. The per-
turbed function will be denoted as y and is given by

y(x) = y∗(x) + δy(x), (10)

where δy(x) is variation of function and it is a function itself. The variation plays
the same role in calculus of variations as the term dx plays in differential calculus.
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Recall that one aproach to deriving the first-order necessary conditions of optimality
in the case of vector variables was based on fixing the direction first and then analyzing
how the function evolves along this direction. Namely, we considered evolution of the
cost function

f(x∗ + αd) (11)

for given x∗ ∈ Rn and d ∈ Rn while varying α ∈ R. This enables us to convert
the vector problem into a scalar one. We can follow this procedure while perturbing
function. Namely, we can build the variation of a function by writing it as

δy(x) = αη(x), (12)

where η(x) is a given (but arbitrary) function in C1 (playing the role of d in the finite-
dimensional optimization) and α ∈ R. This way we are about to convert optimization
over functions to optimization over real numbers.

Before we proceed, let’s elaborate a bit more on the above expression. Let’s assume
that the function y(x) in the neighbourhood of the minimizing function y∗(x) is
actually parameterized by some real parameter α and for α = 0 is becomes the
minimizing function y∗(x). The Taylor expansion around α = 0 is

y(x, α) = y(x, 0)︸ ︷︷ ︸
y∗(x)

+
∂y(x, α)

∂α

∣∣∣∣
α=0

α+O(α2). (13)

The second term on the right is then the variation δy of the function y. We will
write it down here for later convenience

δy(x) =
∂y(x, α)

∂α

∣∣∣∣
α=0︸ ︷︷ ︸

η(x)

α. (14)

This adds an interpretation for our previous choice in (12). Note also that for a
fixed x the variation is just a differential with respect to α.

So far, so good. We have now discussed in quite some detail the concept of variation
of the function, that is, a concept that will be used to describe the perturbation of the
input argument of a cost functional. But now we want to see if another analogy can
be found with differential calculus. Note that the first-order condition of optimality
of a cost function f(x) of a scalar real argument x can be stated as a condition on
the differential of the cost function

df = 0. (15)

But we also know that that the differential is defined as the first-order approxima-
tion to the increment in the input argument, that is

df = f ′︸︷︷︸
df
dx

dx = 0, (16)

from which it follows that the first-order condition of optimality can be given as a
condition on the derivative

f ′(x) = 0. (17)
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In the vector case of x ∈ Rn, we rewrite the above condition on a differential as

df = (∇f)T dx = 0, (18)

from which it follows that
∇f = 0. (19)

Having recapitulated these basic facts from differential calculus, we are now curious
if we can do similar development within calculus of variations. Namely, we would like
to express the variation of the cost functional using the variation of the function, thus
mimicking (18). Note that the product in (18) is actually the inner product. And
inner products are also defined in other vector spaces, not just Euclidean spaces of
n-tuples. For continuous functions they are defined using integrals. Therefore we can
anticipate the analogy to (18) in the following form

δJ =

∫ b

a

δJ

δy(x)
δy(x)dx, (20)

where the fraction in the above expression is called variational derivative. Please be
aware that the whole fraction should be regarded just as one symbol. You should not
really treat it as a true ratio (and cancel the denominator term with the other δy
term). This is the same type of a trap2 that you can encounter in differential calculus
using Leibniz’s notation.

Now, following (14) we may want to express the variation of J as

δJ =
dJ

dα

∣∣∣∣
α=0

α. (21)

Therefore we will compute the derivative of the cost with respect to the real pa-
rameter α first (recall that both the y and the η functions are considered as fixed
here)

d

dα
J(y(x) + αη(x))

∣∣∣∣
α=0

= lim
α→0

J(y(x) + αη(x))− J(y(x))

α
. (22)

Once we have it, we will just multiply the result by α and we have the desired
variation of the cost.

It seems that we are now perfectly ready for narrowing down the family of cost
functionals. Let’s start by considering some concrete examples. We will then extract
the common features and characterize some general and yet narrow enough class of
cost functionals.

1.3 Some examples of calculus of variations

1.3.1 Minimum distance between two points

Two points are given in the plane. The task is to find the curve that connects these
two points and minimizes the total length. Without a loss of generality consider the
two ends on the x-axis as in Fig. 4. Although the answer to this problem is trivial,
the problem serves a good job of demonstrating the essence of calculus of variations.

The total length of the curve is

J(y) =

∫ b

a

√
(dx)2 + (dy)2 =

∫ b

a

√
1 + (y′(x))2dx. (23)

2Search the internet for phrases such as “Leibniz notation derivative fraction” and you will find
numerous discussions of this topic.
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y(x)

xa b

Figure 4: Minimum distance between two points.

1.3.2 Dido’s problem

Given a rope of length C, what is the maximum area this rope can circumscribe?
Here we have a problem with an equality-type constraint

min
y∈C1

∫ b

a

y(x)dx, (24)

subject to ∫ b

a

√
1 + (y′(x))2dx = C. (25)

1.3.3 Brachistochrone problem

The third classical problem mentioned in every textbook on calculus of variations is
the problem of brachistochrone, where the task is to find a shape of a thin wire with
a bead sliding along it (with no friction) in the shortest time, see Fig. 5 (and possibly
the video by Vsauce at https://youtu.be/skvnj67YGmw).

y(x)

xa b

Figure 5: Brachistochrone.

The cost function is simply the total time, that is

J =

∫ tf

ti

dt = tf − ti. (26)

Note that it does not quite fit into the framework that we currently use because
time enters here as the independent variable. But there is an easy fix to this. We will
express time as a ratio of the distance and velocity. In particular,

J =

∫ b

a

ds

v
. (27)
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We are already well familiar with the numerator but the velocity in the denominator
needs to be determined too. We will use a physical argument here: when the bead
is in the initial position, the velocity is zero and the height (as measured along the
y axis) is zero. Therefore the total energy given as a sum of kinetic and potential
energies T + V is zero. But since we assume no friction, the total energy remains
constant along the whole trajectory, that is,

1

2
mv2 −mgy = 0, (28)

from which we can write
v(x) =

√
2gy(x). (29)

We can finally write the expression for the total time as

J =

∫ b

a

ds

v
=

∫ b

a

√
1 + (y′(x))2√

2gy(x)
dx. (30)

1.4 Basic problem of calculus of variations with fixed ends

The only motivation for including those few simple examples was to justify the fol-
lowing general problem. We will call this the basic problem of calculus of variations
with fixed ends. We will keep considering C1 functions of x defined on an interval [a, b]
with the values at the beginning and end of the interval fixed

y(a) = ya, y(a) = yb (31)

see Fig. 6 and the task is to find y∗ ∈ C1 minimizing the functional of the following
type

J(y) =

∫ b

a

L(x, y, y′)dx. (32)

xa b

y(x)

Figure 6: Basic problem of calculus of variations with both ends fixed.

It is possible to extend this basic problem formulation into something more com-
plicated, for example by relaxing the ends, but this will only be done later. First let
us solve the basic problem and see if we can use it in the optimal control framework.

In order to state the first-order necessary condition of optimality, we need to find
the variation of the cost functional. But we already know that we can form it from
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the partial derivative of the cost functional with respect to some real parameter as in
(22), that is,

dJ(y∗(x) + αη(x))

dα
=

d

dα

∫ b

a

[L(x, y∗ + αη, (y∗)′ + αη′)]dx,

=

∫ b

a

d

dα
[L(x, y∗ + αη, (y∗)′ + αη′)]dx,

=

∫ b

a

[
∂L(x, y, y′)

∂y
η(x) +

∂L(x, y, y′)

∂y′
η′(x)

]
dx

(33)

Now, setting this equal to zero, we do not learn much because the arbitrary η and
also its derivative appear in the conditions. It will be much better if we can modify

this into something like
∫ b
a

[( )η(x)] dx.
Why do we care? It is the content of the fundamental lemma of calculus of vari-

ations that if the following condition is to hold for any η ∈ C1 vanishing at a and
b ∫ b

a

ξ(x)η(x)dx = 0, (34)

then necessarily ξ(x) = 0 identically on the whole interval [a, b]. The proof is given
elsewhere.

Hence we are motivated to bring the formula for the variation into the format
where the derivative of η is missing. This will be accomplished by applying per partes

integration to the term
∫ b
a
∂L(x,y,y′)

∂y′ η′(x)dx

∫ b

a

∂L(x, y, y′)

∂y′
η′(x)dx =

[
∂L(x, y, y′)

∂y′
η(x)

]b
a

−
∫ b

a

d

dx

∂L(x, y, y′)

∂y′
η(x)dx. (35)

Substituting back to our expression for the variation, we get

dJ

dα
=

[
∂L(x, y, y′)

∂y′
η(x)

]b
a

+

∫ b

a

(
∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′

)
η(x)dx. (36)

The first term on the right is zero because we assumed at the very beginning that
the function y(x) is fixed at both ends, hence the variation δy(x) is zero at both ends,
hence η(a) = η(b) = 0. As a result, we have the following equation

∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′
= 0 (37)

or
∂L(x, y, y′)

∂y
=

d

dx

∂L(x, y, y′)

∂y′
. (38)

This is the famous Euler-Lagrange equation. My biased opinion is that it can be
rated as a result that deserves its position in top ten of results in applied mathematics.
Smooth function which satisfy it are called extremals; but note that all that we know
about them is they are just candidate functions for a minimizer, the Euler-Lagrange
equation provides just necessary conditions of optimality.
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In order to finish bringing this result into the variational format, we can now invoke
(21) and we can write

δJ =

∫ b

a

[
∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′

]
︸ ︷︷ ︸

δJ
δy(x)

δy(x)︸ ︷︷ ︸
αη(x)

dx, (39)

from which we can see that the left hand side of the Euler-Lagrange equation gives
us the variational derivative that we were looking for.

You may now wonder why on earth did we actually bother to introduce the new
concept of a variation (of a function and of a functional)? We were able to derive
the Euler-Lagrange equation just using a partial derivative with respect to α. Good
point. In fact, the major motivation was to develop a framework that would resemble
that of differential calculus as closely as possible. Knowing now the resulting format
of the first-order necessary conditions of optimality, let’s now try to rederive it in the
fully variational style. That is, we want to find the variation δJ of the functional
J(y(x)) that is given by the integral:

δJ = δ

∫ b

a

L(x, y, y′)dx. (40)

The variation now constitutes an operation pretty much mimicking the differential
when it comes to dealing with composite functions, products of two function and
other situations. Namely, for constant lower and upper bounds in the integral we can
move the variation operation into the integral

δJ =

∫ b

a

δL(x, y, y′)dx (41)

and then proceeding following those standard rules (shared with operation of differ-
entiation) we get

δJ =

∫ b

a

[
∂L(x, y, y′)

∂x
δx+

∂L(x, y, y′)

∂y
δy +

∂L(x, y, y′)

∂y′
δy′
]

dx. (42)

Now, x is an independent variable, hence it does not vary and δx = 0. Furthermore,
the operations of variation and derivative with respect to x commute, therefore δy′,
which is a shorthand notation for δ

(
d
dxy(x)

)
can be rewritten as

δy′(x) =
d

dx
(δy(x)) (43)

and we can write the variation of the cost function as

δJ =

∫ b

a

[
∂L(x, y, y′)

∂y
δy +

∂L(x, y, y′)

∂y′
(δy(x))′

]
dx. (44)

Identically as in our previous development, we can get rid of the derivative of the
variation using integration per partes, which gives

δJ =

[
∂L(x, y, y′)

∂y′
δy(x)

]b
a

+

∫ b

a

(
∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′

)
δy(x)dx, (45)
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which under the assumption of fixed both ends, that is, δy(a) = δy(b) = 0, gives the
Euler-Lagrange equation. Elegant procedure, isn’t it?

This can perhaps be regarded as culmination of our attempts to develop calculus of
variations as an analogy to differential calculus. Let’s now move on to learning brand
new things.

To make the notation a bit more compact, we will often write the partial derivative
of L(x, y, y′) with respect to y(x) as Ly. Similarly, the partial of the same function
with respect to y′(x) as Ly′ . Using this notation we can immediately show that
Euler-Lagrange equation is actually a second-order ordinary differential equation

Ly − Ly′x − Ly′yy′ − Ly′y′y′′ = 0. (46)

In order to see how we got this, first recall that L() is a function of x, y(x) and y′(x).
Let’s write it explicitly as L(x, y(x), y′(x)). Then, in the Euler-Lagrange equation we
need to find the total derivative of Ly′ with respect to x, that is, we need d

dxLy′

and we invoke the chain rule for this. Remember, that the function Ly′ is generally
(!) a function of three arguments too: x, y and y′. Therefore, applying the chain rule
we will get three terms:

d

dx
Ly′(x, y, y

′) =
∂Ly′

∂x︸ ︷︷ ︸
Ly′x

+
∂Ly′

∂y︸ ︷︷ ︸
Ly′y

dy(x)

dx︸ ︷︷ ︸
y′

+
∂Ly′

∂y′︸ ︷︷ ︸
Ly′y′

dy′(x)

dx︸ ︷︷ ︸
y′′

.

That is it. Combine with the other term Ly from the E.-L. equation and we are
done.

We know that in order to specify a solution of a second-order ODE completely,
we need to provide two values. Sometimes we specify them at the beginning of the
interval, in which case we would give the value of the function and its derivative. This
is the well-known initial value problem (IVP). On some other occasions we specify
the values at two different points on the interval. And this is our case here. In
particular, here we have y(a) = ya and y(b) = yb. which turns the problem into
so-called boundary value problem (BVP). Both analysis and (numerical) methods for
solution for such boundary value problems are a way more difficult that for initial
value problems. But there are dedicated solvers (see bvp4c and bvp5c in Matlab, for
example).

Nonetheless, before jumping into calling some numerical solvers, let’s get some
insight for two special cases by analyzing the situations carefully. First, assume that
L does not depend on y—a “no y case”. Then

0 =
d

dx
Ly′ , (47)

and, as a consequence, Ly′ is constant, independent of x.
The second special case is the “no x case”. Then

Ly − Ly′yy′ − Ly′y′y′′ = 0. (48)

By multiplying both sides by y′, the equation turns into

d

dx
(Ly′y

′ − L) = 0. (49)
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(Certainly this needs at least one line on a paper to complete.) As a consequence,
Ly′y

′ − L is constant along the optimal curve.
The two new functions that are preserved along the optimal solution are so special

that they deserve their own symbols and names:

p(x) := Ly′ (50)

and you will see that the choice of the letter “p” is intentional becase this variable
will be seen to play the role of momentum as you know it from physics, and

H(x, y, y′, p) := py′ − L (51)

and you will see that the choice of the letter “H” is intentional becase this variable
will be seen to play the role of Hamiltonian as you know it from physics.

You may be familiar with these two objects from the courses on physics and/or
theoretical mechanics3.

Let us now see how y and p develop as functions of x and we will use Hamiltonian
for that purpose. First, it is immediate from the definition of Hamiltonian that

y′ = Hp. (52)

Similarly, the derivative of momentum is

p′ =
d

dx
Ly′ = Ly = −Hy, (53)

where the second equality comes from E.-L. equation and the third from the definition
of H. We will now view the two differential equations as one vector equation[

y′

p′

]
=

[
Hp

−Hy

]
(54)

This version of first-order necessary conditions is no less famous in physics and
theoretical mechanics—Hamilton’s canonical equations—and some of our results on
optimal control will come in this format.

Example 1.2. Let us now see how the analysis of the special cases can be practically
useful. We will only have a look at the minimum distance problem. The Lagrangian
is

L(y′) =
√

1 + (y′)2, (55)

which is clearly independent of y (and of x as well). Therefore

Ly′ =
1

2

2y′√
1 + (y′)2

(56)

must be constant. The only way is to have y′(x) constant, that is, the graph of the
function y(x) must be a line. Introducing the boundary conditions, it is now obvious
that the solution is a line connecting the two points.

3Unfortunately, we have to give a warning here, that while the above definitions are well accepted in
the physics-related fields of science, most control theory books adopt a slightly different notation,
which may be confusing. We will have more on that in a while (or see directly 3.4.4 in Liberzon’s
book)
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One important general property will be revealed if we differentiate H with respect
to y′

Hy′(x, y, y
′, p) = p− Ly′ . (57)

If p is chosen as Ly′ , the derivative of Hamiltonian vanishes. In other words, when
H is evaluated on the extremal curve, it has a stationary point with respect to the
third variable. To support this mental step of regarding the third (input) argument
as independent from the rest, we write the Hamiltonian for the extremal with the
third variable relaxed as H(x, y, z, p). The above result says that

∂H(x, y, z, p)

∂z

∣∣∣∣
z=y′

= 0 (58)

when evaluated on the optimal trajectory. In fact, as we will see shortly, Hamiltonian
is not only stationary along the optimal trajectory but it achieves the maximum value.
It will turn out that it is actually this property—the Hamiltonian being maximum
along the optimal trajectory with respect to y′—is the core property of the problem.
The fact that the derivative is zero is just a consequence in the special case when such
derivative exists.

1.5 Sufficient conditions of optimality (minimum)

What remains to be done before we come to applying the EL equation to control
problems is to discuss how we can distinguish the minimum from the maximum.
What if the solution to EL equation actually is maximizing the cost functional? Or
what if it is just a saddle “point”? The mathematics needed to answer these questions
is quite delicate, hence we will only sketch the direction of reasoning and for complete
proofs refer to the literature.

Knowing that the first variation vanishes for an extremal, higher order terms need
to be investigated, starting with the term in the Taylor’s expansion corresponding
to the squared variations. Similarly as in the finite-dimensional optimization we first
argue that for small enough α the second order term dominates all the higher order
terms and then we study under which conditions is the second order term nonnegative
(for the second-order necessary condition) or positive (for the second-order sufficient
condition).

The answer for the necessity part, which relies heavily on the fact that we have
decided to work with the ‖.‖1 norm, is that

Ly′y′ ≥ 0 (59)

needs to be satisfied. This is called the Legendre necessary condition. We have
certainly skipped a lot of nontrivial work that needs to be done to show this result.
Check the literature for details if you are interested.

The sufficiency part is even more complicated. It turns out that merely sharpening
the necessary Legendre condition into

Ly′y′ > 0 (60)

is not enough to guarantee the minimality. The additionial constraint is quite involved
even to be merely stated (it is called Jacobi condition and has something to do with
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absence of conjugate points on the interval of control4). Instead we will state that
the optimality is guaranteed if the inverval of x is not too long.

Crucial observation now is that

Hy′y′ = −Ly′y′ . (61)

Hence, if a given function y minimizes J , then Ly′y′ ≥ 0 and

Hy′y′ ≤ 0, (62)

which reads that Hamiltonian achieves maximum when evaluated on the optimal
curve. This is a key property and constitutes a preview of the celebrated Pontryagin’s
principle of minimum. It can be restated as

H(t, y, y′, p) ≥ H(t, y, z, p) (63)

for all z ∈ C1 on the interval [a, b] and close to y′(t) (in the sense of 1-norm).

1.6 Constrained problems in calculus of variations

Once again following our own path in finite-dimensional optimization, now that we
have covered the first-order necessary and second-order sufficient conditions of op-
timality, we need to cover problems with constraints. Here we will only investigate
equality type-constraints. The inequality-type constraints are beyond the reach of
methods of calculus of variations. But as we will see, an offspring of calculus of
variations—Pontryagin’s principle—will handle these easily.

The constraints that we are going to encounter in optimal control come in the form
of differential equations, and these constitute pointwise constraints

F (x, y, y′) = 0. (64)

For every value of the independent variable (x in the standard setting of calculus
of variations) we have one constraint. Therefore we have a continuum of constraints.
As a consequence, we will need an infinite number of Lagrange multipliers as well—
in other words, the Lagrange multiplier will be a function of x too. The augmented
cost function is

Jaug(y) =

∫ b

a

L(x, y, y′)dx+

∫ b

a

λ(x) · F (x, y, y′)dx, (65)

where the symbol ” · “ is there to emphasize that in the case when both y and λ are
vector functions (hence F is a vector), the second integrand is obtained as an inner
product. Rewriting the above expression for the augmented criterion of optimality as

Jaug(y) =

∫ b

a

[L(x, y, y′) + λ(x) · F (x, y, y′)] dx (66)

suggests that we can introduce an augmented Lagrangian

Laug(x, y, y′, λ) = L(x, y, y′) + λ(x) · F (x, y, y′) (67)

4The only motivation for stating these terms here without actually providing any explanation is just
to provide you with keywords and search phrases just in case you want to learn more elsewhere.
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and continue as we did in the unconstrained case. For completeness, let’s state here
that in the case of vector functions, the augmented Lagrangian is given as

Laug(x, y, y′, λ) = L(x, y, y′) + λ(x)T · F (x, y, y′) (68)

A word of warning is needed here, though. Similarly as in the unconstrained case,
it can happen that the constraints will be degenerate, in which case the EL equation
fails to be a necessary condition of optimality. We will not discuss this delicate issue
here and rather direct the interested student to the Liberzon’s book.

2 Optimal control problem on a finite and fixed time
interval with fixed final state

Now we finally seem to be ready for solving our optimal control problems stated at the
beginning of the lecture. Equipped with the solution to the fixed-ends basic problem
of calculus of variation, we start with the finite-horizon fixed-final state version. We
will extend the result for a free final state in due course. The problem to be solved is

min
x(t),u(t)

[∫ tf

ti

L(x,u, t)dt

]
, (69)

subject to
ẋ(t) = f(x,u, t), x(ti) = ri. (70)

Note that there is no term penalizing the state at the final time since it is requested
that the system is brought to some prespecified state

x(tf) = r(tf). (71)

The augmented cost function and the augmented Lagrangian are

Jaug(t,x, ẋ,u,λ) =

∫ tf

ti

L(x,u, t) + λT (ẋ− f(x,u, t))︸ ︷︷ ︸
Laug

 dt. (72)

Note that compared to the original unconstrained calculus of variations setting, here
we made a notational shift from x to t as the independent variable, y to (x, u, λ) as the
dependent variables and the only derivative appearing in the augmented Lagrangian
is ẋ.

Applying EL equation to this augmented Lagrangian we obtain three equations (or
sets of equations), one for each dependent variable.

Laug
x =

d

dt
Laug

ẋ , (73)

Laug
u = 0, (74)

Laug
λ = 0. (75)

These can be expanded in terms of the unconstrained Lagrangian (and I will assume
scalar functions first for notational simplicity)

∂L

∂x
− λ∂f

∂x
= λ̇, (76)

∂L

∂u
− λ∂f

∂u
= 0, (77)

ẋ(t)− f(x, u, t) = 0. (78)
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In the vector case (when x, hence f(), and/or u are vectors)

∇xL−
n∑
i=1

λi∇xfi(x,u) = λ̇, (79)

∇uL−
n∑
i=1

λi∇ufi(x,u) = 0, (80)

ẋ(t)− f(x,u, t) = 0. (81)

We can also write the same result in the compact vector form. Recall that we
agreed in this course to regard gradients as column vectors and that ∇f for a vector
function f is a matrix whose columns are gradients ∇xfi of the individual elements
of the vector function. We can then write the first order conditions compactly as

∇xL−∇xf λ = λ̇, (82)

∇uL−∇uf λ = 0, (83)

ẋ(t)− f(x,u, t) = 0. (84)

These three (sets of) equations give the necessary conditions of optimality that
we were looking for. We can immediately recognize the last one—the original state
equation describing how the state vector x evolves in time. The other two equations
are new, though. The first one is called costate equation because the variable λ,
originally introduced as a Lagrange multiplier, now evolves also according to a first-
order differential equation. The middle equation is called an equation of stationarity.
With the exception of some singular cases, it can often be used to determine how the
control vector u depends on the state x and the costate λ, in which case u is eliminated
from the two differential equations and we end up with differential equations just in
x and λ.

Note that for differential equations, we always need a sufficient number of boundary
conditions to determine the solution uniquely. In particular, for a state vector of
dimension n, the costate is also of dimension n, hence we need in total 2n boundary
conditions. In our current setup these are given by the n specified values of the state
vector at the beginning and n values at the end. This class of problems is called
two-point boundary value problem (BVP) and generally it can only be solved using
some numerical algoritms. Such algorithms are also implemented in Matlab (bvp4c
and bvp5c functions).

To get some more insight and also to develop a practical design tool, let us consider
the LQ version of this general problem. That is, the augmented Lagrangian is

Laug =
1

2

(
xTQx + uTRu

)
+ λT · (ẋ−Ax−Bu). (85)

The three necessary conditions of optimality are

Qx−ATλ = λ̇, (86)

Ru−BTλ = 0, (87)

ẋ−Ax−Bu = 0. (88)

Provided R > 0, we can express u from the second equation (aka the equation of
stationarity) and substitute into the third one

u = R−1BTλ. (89)
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This leaves us with just two differential equations

ẋ = Ax + BR−1BTλ, (90)

λ̇ = Qx−ATλ. (91)

This is a set of 2n differential equations of first order (we assume that x ∈ Rn). We
have 2n boundary conditions to fully specify the solution

x(ti) = ri, (92)

x(tf) = rf . (93)

Let’s now rewrite the equations as one large vector equation[
ẋ

λ̇

]
=

[
A BR−1BT

Q −AT

]
︸ ︷︷ ︸

Ã

[
x
λ.

]
︸︷︷︸

w

(94)

Similarly as in the discrete-time case, we can find the solution numerically by
relating the the state and costate at both ends of the time interval. In the continuous-
time setting, it is the exponential of the matrix in the above equation that will be
used for that purpose. Let’s do it now. By labelling the block matrix in the above as
Ã and the vector composed of the state and costate vectors as w, we can write

w(tf) = eÃ(tf )︸ ︷︷ ︸
Φ(tf )

w(0), (95)

where Φ() is a state-transition matrix (well, this is how we would call it if it was
related to x only but here we use it for relating not only the state but also the costate
vector). Labelling the blocks as in

Φ(t) =

[
Φ11(t) Φ12(t)
Φ21(t) Φ22(t)

]
, (96)

we can write from the equation for the state

λ(0) = Φ−112 (x(tf)−Φ11x(0)) . (97)

Now, the initial value problem in (94) can be solved for both the state and the
costate. Finally, the control signal can be computed using (89). Some code is available
on the course website.

However feasible the above procedure is, we can get even more insight into the
problem after setting Q = 0, which will essentially decouple the second equation
from the first. Then we can follow the same procedure as we did in the discrete-time
setting. The control design problem can be interpreted as driving the system from
a given initial state to some given final state while minimizing the ”energy“. The
procedure for solving the problem

ẋ = Ax + BR−1BTλ, (98)

λ̇ = −ATλ (99)

then proceeds by expressing from the costate equation the solution for λ as a function
of costate at the final time

λ(t) = e−AT(t−tf )λ(tf). (100)
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We substitute into the state equation

ẋ(t) = Ax(t) + BR−1BTe−AT(t−tf )λ(tf) (101)

and solve for x(t)

x(t) = eA(t−0)x0 +

∫ t

0

[
eA

T(t−τ)BR−1BTe−AT(τ−tf )λ(tf)
]

dτ. (102)

Evaluating this at t = tf , and moving the costate at the final time outside of the
integral

xf = eA(tf−0)x0 +

∫ tf

0

[
eA

T(tf−τ)BR−1BTeA
T(tf−τ)

]
dτ︸ ︷︷ ︸

GR(0,tf )

λ(tf). (103)

The as of yet unknown λ(tf) can finally be extracted

λ(tf) = GR(0, t1)−1
(
xf − eA(tf−0)x0

)
, (104)

where GR(0, t1) is the weighted controllability/reachability gramian. Remember that
its inverse only exists if the system is controllable/reachable. The last step constitutes
in bringing this value back into the formula for the optimal control

u(t) = R−1BTλ(t), (105)

= R−1BTe−AT(t−tf )λ(tf)GR(0, t1)−1
(
xf − eA(tf−0)x0

)
. (106)

The conclusion is identical as in the discrete-time setting: the minimum-energy
control for a fixed final state assignment can be obtained in the form of a precomputed
signal. The necessary condition for the existence of optimal control is controllability
of the system.

Honestly, I can hardly view the contribution of the above procedure (exploiting
the structure of the problem when Q = 0) as anything else than just giving us some
insight. For linear systems we already know from our previous treatment of discrete-
time systems (and we will see it in a while for continuous-time systems too) that much
more useful feedback controller can be designed if we relax the final state constraint.

3 Optimal control on a finite and fixed time interval
with free final state

Apparently, the open-loop nature of the optimal control for the fixed-final-state sce-
nario is not quite satisfactory in most engineering applications. Similarly as in the
discrete-time situation we may suspect that by relaxing the final state we may obtain
a more useful control scheme. Relaxing the final state does not mean that we resign
at the task of controlling the system behavior at the end of the control interval. It is
only that now we will have to use the terminal and the running costs to enforce fast
enough response of the system. The optimal control criterion is then

J = φ(x(tf)) +

∫ tf

ti

L(x,u, t)dt. (107)
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First we need to go back to the basic problem of calculus of variations and see
how the solution to the basic problem changes if we set one of the ends free. As
we are going to see in a minute, the optimal solution will still have to satisfy the
Euler-Lagrange equation, the boundary condition will change, however.

Switching to the notation in the calculus of variations temporarily, the problem is
described in the Fig. 7.

xa b

y(x)

Figure 7: Basic problem of calculus of variations with a free end.

Let us recall here the already derived expression (45) for the first variation

δJ =

∫ b

a

(
∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′

)
δ(x)dx+

[
∂L(x, y, y′)

∂y′
δ(x)

]b
a

. (108)

This time, however, the second term on the right is not zero. In particular, δy(a) =
0 but δy(b) 6= 0. Therefore the first variation is

δJ =
∂L(x, y, y′)

∂y′
δy(x)

∣∣∣∣
b

+

∫ b

a

(
∂L(x, y, y′)

∂y
− d

dx

∂L(x, y, y′)

∂y′

)
δy(x)dx. (109)

The sum must be equal to zero. Note that even though we relaxed the condition
on one end of the curve, the family of perturbations still contains the functions that
vanish at the end point, that is δy(b) = 0. Therefore when searching for the necessary
conditions, it appears that the extremals must still satisfy the EL equation. If the
EL equation is satisfied for perturbations vanishing at the end, the first term on the
right hand above (the integral) must also vanish for the perturbations not vanishing
at the end. As a consequence, the second term on the right must be equal to zero as
well. To conclude, setting one of the ends free, the necessary conditions of optimality
are still given by the EL equation but the boundary condition y(b) = yb is replaced
by

∂L(x, y, y′)

∂y′

∣∣∣∣
b

= 0. (110)

This result can be immediately applied to the free-final-state optimal control prob-
lem. The only deficiency is that the criterion of optimality

J =

∫ tf

ti

L(x,u, t)dt (111)
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does not include the term penalizing the final state. We will correct this in a moment.
For the time being, note that the solution to the current problem is identical to the
solution to the fixed final state problem with the final state condition x(tf) replaced
by the condition

λ(tf) = 0. (112)

Now let’s include the term penalizing the final state. This is actually quite easy:
what we need to do is to bring that term under the integral sign

φ(x(tf)) =

∫ tf

ti

dφ

dt
dt+ φ(x(ti)), (113)

=

∫ tf

ti

[
∂φ

∂t
+ (∇xφ)T

dx

dt

]
dt+ φ(x(ti)). (114)

Note that the last term on the right (the one corresponding to x(ti)) is constant
and excluding it from the optimization has no impact on the optimal solution.

Restricting our attention to time-invariant cases in favor of simplicity (assuming
φt = 0), the augmented Lagrangian is modified to

Jaug(t,x, ẋ,u,λ) =

∫ tf

ti

L(x,u, t) + (∇xφ)T · ẋ + λT(t) · (ẋ(t)− f(x,u, t))︸ ︷︷ ︸
Laug

dt.

(115)
Substituting to (110), the new boundary condition corresponding to the final time

is
(∇xφ)(tf) + λ(tf) = 0. (116)

Specializing the result to the LQ case with the final state penalization

φ(x(tf)) =
1

2
xT(tf)Sfx(tf), (117)

we get the new boundary condition

Sfx(tf) + λ(tf) = 0. (118)

This looks already familiar, right? We found an identical relationship between the
state and the costate at the final time in the discrete-time setting5. The difference is
in the sign, we will comment on this in a while. Suffice to say for now that this has
no impact on the solution.

Restate here the full necessary conditions for the LQ problem. The state and the
costate equations are

ẋ = Ax + BR−1BTλ, (119)

λ̇ = Qx−ATλ. (120)

The stationarity equation is

u = R−1BTλ. (121)

5Note that there was actually a difference in sign. This is due to our arbitrary choice while defining
the augmented Lagrangian. See the discussion of this at the end of this text.
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The two sets of boundary equations are (118) and x(ti) = 0.
Similarly as in the previous scenario with fixed final state, here we can also proceed

by numerically solving the linear boundary value problem. For completeness I will
describe it here, but note that in a few moments we will learn something more about
this problem.

Briefly, from the state equation we have

x(tf) = Φ11x(0) + Φ12λ(0), (122)

which after multiplication by Sf gives

Sfx(tf) = SfΦ11x(0) + SfΦ12λ(0). (123)

The boundary condition in the free final state case is

Sfx(tf) = −λ(tf), (124)

which immediately invites us to substitute to the right side the solution of the costate
equation

−Φ21x(0)−Φ12λ(0) = SfΦ11x(0) + SfΦ12λ(0), (125)

from which we can compute the initial value of the costate

λ(0) = −(SfΦ12 + Φ22)−1(SfΦ11 + Φ12)x(0). (126)

Having computed the initial value of the costate, we can easily solve for the states
and costates throughout the time interval. The optimal control then follows from the
stationarity equation.

Nonetheless, having computed the solution numerically, some important opportu-
nity escaped our attention. In order to discover it, we need to dig a bit deeper. First,
we recall that the boundary condition at the end of the interval gives us a linear
relation between the state and the costate. We now assume that this linear relation
also holds throughout the interval (the familiar sweep method)

S(t)x(t) = −λ(t). (127)

Differentiate both sides to obtain

Ṡx + Sẋ = −λ̇ (128)

Substituting the state equation for ẋ on the left and for λ̇ on the right we get

Ṡx + S(Ax−BR−1BTSx) = −Qx−ATSx, (129)

which, since x can be arbitrary, translates to the condition on S

−Ṡ = SA + ATS + Q− SBR−1BTS. (130)

This is another classical result called Riccati differential equation. Initiated at
the final time tf , the differential equation is solved backwards to obtain a function
(generally a matrix function) S(t), which is then substituted into the stationarity
equation to obtain the optimal control u(t)

u(t) = −R−1BTS(t)x(t). (131)
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The story is now completely identical to the discrete-time case—the solution to
the Riccati equation evolves in time, but it turns out that for a stabilizable system
given by the matrices (A,B), it converges to some bounded limit. This limit can be
either found by implementing the limit searching solver, or it can be retrieved from
the algebraic Riccati equation

0 = SA + ATS + Q− SBR−1BTS. (132)

Numerical solution can be found using specialized solvers such as CARE in Matlab.
The question remains to see how does the solution to ARE relate to the limiting
solution S∞ = limt→−∞ S(t). After all, the ARE is a quadratic equation, which even
in the scalar case can have two real solutions. We can afford to be rather short in the
remaining analysis since the similarity to the discrete-time case is truly very strong.
Thus we can conclude that a unique stabilizing solution of the ARE exists if and
only if the artificial system (A,

√
Q) is detectable (or observable if we require positive

definiteness of S(t)).

4 On notation

4.1 Hamiltonian

Note that there was some ambiguity when forming the augmented Lagrangian. Some-
how arbitrarily we have decided in this lecture to define the augmented Lagrangian
as

Laug = L(x,u, t) + λT(t) · (ẋ(t)− f(x,u, t)) (133)

but we could have easily formulated it as

L̂aug = L(x,u, t) + λ̂
T

(t) · (f(x,u, t)− ẋ(t)) . (134)

Both are clearly correct and perfectly equivalent. Indeed, although the intermediate
steps differ, the final results (Riccati equation, state feedback gain) are identical.
What is the motivation for introduction of two differing notations? The former (and
the one used in this lecture) enables us writing the augmented Lagrangian using
Hamiltonian as

Laug = λT(t) · ẋ(t)−H(t,x,u,λ) (135)

where
H(t,x,u,λ) = λT(t) · f(x,u, t)− L(t,x,u), (136)

whereas the latter notation supports expressing the augmented Lagrangian as

L̂aug = Ĥ(t,x,u, λ̂)− λ̂
T

(t) · ẋ(t), (137)

where

Ĥ(t,x,u, λ̂) = L(t,x,u) + λ̂
T

(t) · f(x,u, t), and λ̂ = −λ, (138)

which is the notation that we decided to use (again, completely arbitrarily, while
paying no attention to being consistent) in our lecture on discrete-time systems.
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Whether one or the other, the canonical equations are identical. It is only that the
second-order sufficiency conditions show maximization of the Hamiltonian in one case
and minimization in the other. This can be concluded by observing that

H(t,x,u,λ) = −Ĥ(t,x,u, λ̂). (139)

See more on this issue in 3.4.4 of [4].

4.2 Variation

Upon consulting numerous textbooks and monographs, it appears that the authors
are far from an agreement regarding a single definition of variation (within the context
of calculus of variations). Essentially, two main definitions appear.

The one that we followed in this lecture defines the variation as an extension of the
concept of a differential. That is, a variation δJ of a (cost) functional is a first-order
approximation to the increment ∆J in the (cost) functional J . This we discussed in
quite some detail in the text.

The other one defines variation as the derivative of the (cost) functional with respect
to the real (perturbation) parameter. In our text, it is the dJ

dα (for fixed y(x) and
η(x)) that would be called a variation and labelled δJ . The increment in the (cost)
functional would be then be approximated by δJ α.

Both definitions are often encountered in the literature (see the section on literature
below), but we prefer the former because the definitions of variation of a functional
δJ and variation of a function δy(x) are consistent. Both serve as differentials, that
is first-order approximations to increments.

5 Summary

We introduced the basic problem of calculus of variations on a fixed interval and
we showed how to solve it both in the situation when both ends are fixed and in the
situation when one end is free. Optimal solutions to both problems must satisfy Euler-
Lagrange equation, they differ in the boundary condition. We also discussed a bit the
sufficient conditions of optimality although we did not go for full derivation. These
fundamental results are then applied to the general optimal control problem on a
finite horizon, both with fixed and free final state. Then these results are specialized
to LTI systems with the popular quadratic cost, leading to the popular LQ opti-
mal control. As the key computational object, the continuous-time algebraic Riccati
equation (CARE) is introduced here. The discussion of existence of a uniqueness of a
stabilizing solution is very brief here since it mimicks the discussion of discrete-time
case completely.

6 Further reading

Calculus of variations is a well-established discipline in mathematical analysis and
many dozens books and hundreds if not thousands of online texts are available. This
lecture was prepared by using a large number of resources, hence it can hardly be
mapped to a single chapter in a single book. But perhaps the chapters 4 and 5 in the
affordable reprint [3] were the most influential. The whole book is also very readable.
Taking also its low price into consideration, the book is highly recommended.
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Furthermore, the slender monograph [2] is a true classic, albeit a bit terse. Another
classic for calculus of variations based optimal control is [1], equally terse but very
comprehensive.

Some inspiration was also found in the relatively recently published [4], in particular
in chapters 2 (intro to calculus of variations), 3 (application of calculus of variations to
general problem of optimal control), a partially 6 (application to LQ optimal control).
The treatment in the book is fairly rigorous and yet accessible to an engineering
student. A draft of the book is available on the author’s academic web page. Note
however, that the author decides to define the variation of a function in the latter way,
that is, for Liberzon the variation of a functional is just the derivative with respect
to α.
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