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Guaranteed stability margins for LQ optimal regulator

G(s)−K

G(s) = (sI − A)−1B

Open-loop transfer function

L(s) = KG(s) = K(sI − A)−1B

First, single-input system (L is scalar):
Return difference 1 + L(s) on the imaginary axis
Magnitude |1 + L(jω)| = | − 1− L(jω)| ∀ω ∈ R.
Easier to evaluate

|1 + L(jω)|2 = (1 + L(jω))(1 + L(jω))
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Conjugate system

L∗(s) = L(−s) some use L̃(s)

L∗(jω) = L(jω)

For MIMO systems
L∗(s) = LT(−s)

L∗(jω) =
(

L(jω)
)T

Exactly what Matlab does with L’
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Kalman’s identity for return difference for LQR

For R = ρI

(I + L∗) (I + L) = I +
1

ρ
BT(−sI − A)−TQ(sI − A)−1B ≥ I

For SISO systems

|1 + KG (jω)| ≥ 1, ∀ω
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Stability margins
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Stability margins
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Stability margins

Real

Imaginary

-1 0

L(jω)

GM+ =∞, GM− =
1

2
, PM− ≤ −60◦, PM+ ≥ 60◦
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Run a few times in Matlab
n = 5 ; % orde r o f the p l a n t
G = r s s (n , n , 1 ) ; % random system , 1 input , n ou tpu t s
G. c = eye (n , n ) ; % a l l s t a t e v a r i a b l e s as ou tpu t s
G. d = z e r o s (n , 1 ) ; % ze ro f e ed th r ough
Q = eye (n , n ) ; % pena l t y on x
R = 1 ; % pena l t y on u
[K, S , e ] = l q r (G,Q,R) % LQR de s i g n
L = K∗G; % open−l oop t r a n s f e r f u n c t i o n
margin (L )
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Stochastic LQ optimal regulator
Plant

ẋ(t) = Ax(t) + Buu(t) + Bww(t), x(0) = . . .

with random initial conditions and random disturbance.
Random initial states: zero mean and a covariance matrix

E {x(0)} = 0,

E
{

x(0)xT(0)
}

= Σx(0)

Disturbace: white noise with spectral density Sw and uncorellated
with the initial state.

E {w(t)} = 0,

E
{

w(t)wT(t + τ)
}

= Swδ(τ)
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The cost function

J =
1

2
E

{
xT(tf)Sx(tf) +

∫ tf

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt

}

But what if tf =∞?

J =
1

2
E

{∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt

}

does not (generally) converge.
Scaling by 2

tf

J ′ =
1

2
E

{
lim

tf→∞

2

tf

∫ tf

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt

}

= E
{

xT(∞)Qx(∞) + uT(∞)Ru(∞)
}
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Stochastic LQR is identical to the deterministic one

1. optimal controller must necessarily be a feedback controller
because of the random initial states and disturbances

2. if Gaussian white noise disturbances assumed, the optimal
controller is a linear state feedback

3. controller independent of the initial state covariance matrix
and the disturbance spectral density matrix.

4. Solution via (algebraic) Riccati equation exactly as in the
deterministic case.

The steady-state covariance matrix for the state vector can be
found by solving the Lyapunov equation

(A− BK)Σx(∞) + Σx(∞)(A− BK)T + BwSwBT
w = 0
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Ex.: Stochastic LQR for a satellite tracking antenna

Pointing antenna subject to random wind torque

[
θ̇(t)

θ̈(t)

]
=

[
0 1
0 −0.1

] [
θ(t)

θ̇(t)

]

︸ ︷︷ ︸
x

+

[
0

0.001

]
u(t) +

[
0

0.001

]
w(t)

where θ(t) is a pointing error [deg ], u(t) is a control torque [Nm]
and w(t) is a random wind toque [Nm].
The wind torque is modelled as white noise with a spectral density
Sw = 5000N2m2/Hz .
Cost function

J = E

[[
θ(∞) θ̇(∞)

] [180 0
0 0

] [
θ(∞)

θ̇(∞)

]
+ u2(∞)

]
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LQR in Matlab

A = [0 1 ; 0 −0.1] ;
Bu = [ 0 ; 0 . 0 0 1 ] ;
Bw = [ 0 ; 0 . 0 0 1 ] ;

Sw = 5000 ;

Q = [180 0 ; 0 0 ] ;
R = 1 ;

[ S ,D,K] = ca r e (A, Bu ,Q,R ) ;

Sx = l y ap (A−Bu∗K,Bw∗Sw∗Bw’ )

Σx(∞) =

[
0.9854deg2 0

0 0.1141deg2

s2

]
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Alternative input-output interpretation of stochastic LQR

∫
dt

A

I

√
R

√
QI

Bu

Controller

Artificial plant

w(t)

u(t)

z1(t)

z2(t)

y(t)x(t)

J = E

{[
zT1 (∞) zT2 (∞)

] [z1(∞)
z2(∞)

]}
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H2 system norm

For a stable and strictly proper LTI system G

‖G‖2 =

√
1

2π

∫ ∞

−∞
tr [G∗(jω)G(jω)] dω

By using Parseval’s theorem (relating inner products in time and
frequency domains)

‖G‖2 =

√∫ ∞

0
tr [gT(t)g(t)] dt
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H2 norm as a gain of a system subject to a stationary
white noise input

E
{

yT(∞)y(∞)
}

= ‖G‖22 Sw

See, for example, Doyle, Francis, Tannenbaum (1990) at
https://www.control.utoronto.ca/people/profs/francis/

dft.html.
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H2-optimal control

∫
dt

A

I

√
R

√
QI

Bu

Controller

Artificial plant

w(t)

u(t)

z1(t)

z2(t)

y(t)x(t)

Find a stabilizing controller that minimizes H2 norm of the closed
loop system.
Matlab: h2syn() from Robust Control Toolbox
Can easily extend to output feedback control, nonwhite noise, ...
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Output feedback LQR

Not all the states are measured:

ẋ = Ax + Bu,

y = Cx(+Du).

Find the optimal output feedback

u = −Ky

that stabilizes the system and minimizes

J =
1

2

∫ ∞

0

(
xTQx + uTRu

)
dt

Generally nonconvex numerical optimization.
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https://www.control.utoronto.ca/people/profs/francis/dft.html
https://www.control.utoronto.ca/people/profs/francis/dft.html


Optimal LQG output feedback control - state feedback and
estimator

Combination of LQ-optimal state feedback and optimal estimator
(Kalman filter).
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Estimator (observer) of the states

Plant
ẋ = Ax + Bu, y = Cx

Observer (estimator)

˙̂x = Ax̂ + Bu + L(y − Cx̂)︸ ︷︷ ︸
correction

˙̂x = (A− LC)︸ ︷︷ ︸
Ao

x̂ + Bu + Ly
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Kalman filter

Plant

ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) = Cx(t) + v(t)

where w(t) and v(t) are white noises with spectral densities Sw

and Sv , respectively.
Observer design is dual to the state feedback design (ARE needs
to be solved)

L = Σe(∞)CTS−1v

0 = AΣe(∞) + Σe(∞)AT + BwSwBT
w −Σe(∞)CTS−1v CΣe(∞)

where
Σe(t) = E

{
[x(t)− x̂(t)][x(t)− x̂(t)]T

}

Matlab: kalman()
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Example: Kalman filter

Estimate the range and radial velocity of an aircraft from noisy
radar measurements.
Model [

ṙ(t)
r̈(t)

]
=

[
0 1
0 0

] [
r(t)
ṙ(t)

]
+

[
0
1

]
w(t)

where r(t) is the actual range of the aircraft. The range
measurements are given

y(t) =
[
1 0

] [r(t)
ṙ(t)

]
+ v(t)

Initial conditions [
r(0)
ṙ(0)

]
=

[
10000m
−150m/s

]
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Sw = 4
m2

s4Hz

Sv = 104
m2

Hz

Σe(0) =

[
106m2 0

0 4× 105m2/s2

]
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Combined Kalman filtering and LQ optimal control: LQG
optimal control

Plant

w(t)

y(t)u(t)

K
x̂(t) v(t)

Kalman filter

Numerical solution: 2 AREs
Matlab: lqgreg() combines the results of lqr() (or dlqr()) and
kalman()
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Example: satellite tracking antenna with noisy
measurements of angle
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Stability margins of LQG

J. Doyle, “Guaranteed margins for LQG regulators,” IEEE
Transactions on Automatic Control, vol. 23, no. 4, pp. 756–757,
Aug. 1978, doi: 10.1109/TAC.1978.1101812.
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Example [Doyle 1978]

ẋ(t) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

+

[
1
1

]
w(t),

y(t) =
[
1 0

]
x(t) + v(t)

Q =

[
10 10
10 10

]
,

R = 1,

Sw = 10,

Sv = 1
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LTR control - Heuristic way to improve robustness of LQG

Make it similar to LQR =⇒ make the Kalman filter rely less on u

Plant

w(t)

y(t)u(t)

K
x̂(t) v(t)Fast

Kalman filter

But how?
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Introduce fictitious noise wf (t) during the design (not in reality)
that enters the system in the same way as the control signal

ẋ(t) = Ax(t) + Buu(t) + Bww(t) + Buwf (t)

= Ax(t) + Buu(t) +
[
Bw Bu

] [w(t)
wf (t)

]

Spectral density of the white noise disturbance is then

S =

[
Sw 0
0 Swf

I

]
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Ex.: LQG/LTR for a robot arm
Single link robotic arm is to be held vertical

J θ̈(t) = mg sin θ(t) + u(t)

Linearizing and submitting some numbers yields

[
θ̇

θ̈

]
=

[
0 1

0.5 0

] [
θ

θ̇

]
+

[
0

0.1

]
u +

[
0

0.1

]
w

where w is a random disturbance by a torquer circuit with a
spectral density Sw = 1. The angular position of the arm is
measured

y(t) =
[
1 0

] [θ
θ̇

]
+ v

where the measurement noise spectral density is Sv = 1. Steady
state LQG controller should minimizes

J = E
{
θ2 + 16u2

}
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LQG as H2-optimal control

∫
dt

A

Cy

√
R

√
Q

Bw

√
Sw

Bu

Controller

Artificial plant

w(t)

u(t)

z1(t)

z2(t)

y(t)x(t)

√
Sv

v(t)

Generalized plant
I two types of inputs:

I exogenous inputs: random disturbance w(t) and noise v(t)
I control inputs: control command u(t)

I two types of outputs:
I regulated outputs: z1(t) and z2(t) to be beaten to zero
I measured outputs: y(t)
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H2-optimal control in full generality

Generalized plantw(t)

u(t)

z(t)

y(t)P (s)

K(s)

minimize
K(s) stabilizing

‖N(P,K )‖2
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To conclude the LQ story

1. design usable controllers by minimizing the integral of some
functions of the states and the inputs

2. minimization of an LQ integral cost can be reformulated as
H2 system norm minization

How about using other system norms?
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