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Uncertainty and robustness Where does the uncertainty come from?

» physical parameters are not known exactly (+5%)

v

physical parameters can vary in time

Definition (Uncertainty) P nonlinear systems linearized around a given operating point

Deviation of the mathematical model from the reality. working around another operating point

» imperfect understanding or even misunderstanding the physics

Definition (Robustness) of the problem (w 1)
Insensitivity of control system to uncertainty. » intentionally using simpler model (do not need PhD,
tmodelling :$)

P intentionally using simpler model to cut the computational
cost (tcomputation :$)
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Robustness as one of 3 reasons for feedback

E— G(S;wny C) >
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Some robustness provided also by an integrator

The error in steady state is zero for whatever parameters of the
systems as long as the closed-loop system is stable.

k _ Ps+1

6() =757 KO =—

The transfer function from the disturbance acting at the output to
the regulation error is

s 1 _ Ts? +s
14+ GK  Ts2+ (kP +1)s+ ki

Limit theorem about the gain in steady state

lim S(s) =0

s—0
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Robustness as one of 3 reasons for feedback

Response of the nominal and uncertain models to a step input
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Classification of models of uncertainty

» real parametric uncertainty

» interval uncertainty (physical parameters at intervals)
» multiple models and polytopic uncertainty (set of operating
points)
» dynamic (also frequency-domain or norm-bounded)
uncertainty

» unstructured uncertainty
» structured uncertainty (several unstructured unc.)

» stochastic models
» stochastic disturbance
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Uncertainty in real (physical) parameters Real parametric uncertainty

Lese "

Advantages

» simple interpretation: value 5% or in an interval.

Disadvantages
» unknown parameters are usually not the only trouble in

modeling the system min maX]
L

mg € [mM", m
» methods for control design not as mature as those for (< [émin gmx]
frequency based uncertainty models ’

01 0 0 0
] 00 %g 0 mi
x(t) = 0 0 0 1| x(®)+ s u(t)
m;+m 1
00 _( L:f;ch)g 0 ~met
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Entering parametric uncertainties in Matlab Literature on parametric uncertainties

1. S. P. Bhattacharyya, H. Chapellat, L. H. Keel, and L. H. Keel,
Robust Control: The Parametric Approach, Prentice Hall,

» Control Systems Tbx: array of LTI objects 1995.
» Robust Control Tbx: class UREAL, USS. 2. J. Ackerman, A. Bartlett, and D. Kaesbauer, Robust Control:
» Polynomial Tbx: some functions for analysis Systems With Uncertain Physical Parameters,

Springer-Verlag, 1993.

3. Ross. B. Barmish, New Tools for Robustness of Linear
Systems, Macmillan Coll Div, 1993.
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Unstructured dynamic uncertainty
Not only parameters but even system order, time delay, phase is
uncertain. The system contains uncertain dynamics.

Simplest transfer function model of uncertainty is A(s)

max |A(jw)| <1, A stable

But typically uncertainty higher at higher frequencies—shaping of
the frequency characteristics using a some function w(w), for
computational reasons approximable using a low-order rational
transfer function W(s) (W(jw) ~ w(w) on the imaginary axis)
The transfer function model of uncertainty then

W(s) A(s), max|A(jw)| <1, A stable
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Singular values, singular value decomposition (SVD)
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=

Matlab: svd
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H~ norm of a system (model)

For SISO systems
1Glloc = sup |G(jw)|
weR

For MIMOQ systems

1Glloc = sup 5(G(jw))

weR

where & is the largest singular value.
Matlab: CST: norm(G,Inf), RCT: hinfnorm(G)

Input-output interpretation of H,, norm

Viewing the dynamic system G as an operator mapping input
bounded-energy signals into output bounded-energy signals

G: [,2—>[,2

the norm describes the worst-case energy gain of the system

@l
G(S)[|eo = sup T—=—
16l = sup ()2

Scaling necessary to get any useful info from MIMO models! See
Skogestad's book, section 1.4, pages 5-8.
https://folk.ntnu.no/skoge/book/ps/bookl-3.pdf
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https://folk.ntnu.no/skoge/book/ps/book1-3.pdf

Models of uncertain systems—additive

G(s) = Go(s) + W(s)A(s)
N—— N——
nominal model additive uncertainty

1G(jw) — Go(jw)| < [W(jw)

Models of uncertain systems—inverse additive

w A
—L GO >

Enable to describe uncertain unstable dynamics.
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Models of uncertain systems—(input-)multiplicative

G(s) = (1 + W(s)A(s)) Go(s)

L

Go

|G6(w) = Go(jw)|
| Go(jw)

> Always some uncertainty at the input. Example with flow
control with the measurement accuracy +1%; step 1 — 1.1
[/min, could be actually 0.99 — 1.01 |/min, rel. error is

0.02/0.1 = 20%.

Models of uncertain systems—inverse multiplicative

< [W(jw)|

j =

Go

Enable to describe uncertain unstable dynamics.
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Linear Fractional Transformation (LFT)
For matrices P and N sized (ny + n2) x (m1 4+ my) and divided into

blocks like
p_ [Pll Plz}
Po1 P

and matrices A a K sized m; X n; and my X n», lower and upper
LFT is

Fi(P,K) = P11 4 P12K(I — PooK) 1Py

Fu(N,A) = Noy + Ny A(I = N3 A) "INy

- — UA A Yn

=y .=
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Real parametric uncertainty cast as dynamic
Consider an uncertain system

G(s) = e, 2<k,T1,0,<3

Bode Diagram
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LFT continued: input-multiplicative uncertainty as LFT

A

0w
s @

Matlab:
» Ift (Control Systems Tbx), Iftdata (Robust Control Tbx)
» LFR Toolbox for Matlab (J.F.Magni, last update 2014)
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Real parametric uncertainty cast as dynamic—contd.

|G(jw) — Grom(jw)|
| Grom(jw))|

< [W(jw)|

TS+ n

VO s 1

where ry is uncertainty at steady state, 1/7 is the frequency, where
the relative uncertainty reaches 100%, r, is relative uncertainty at

high frequency, often r,, > 2.
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Structured dynamic uncertainty = more A blocks

Entering dynamic uncertainty models in Matlab

» Robust Control Thx: ultidyn class
» LFRT toolbox (J.-F. Magni)
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Example of a structured dynamic uncertainty
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Two central properties for which robustness matters

Robust stability is guaranteed stability of the closed feedback loop
with a given controller for all admissible (=considered
apriori) deviations of the model from the reality.

Robust performance is robustness of some performance
characteristics such as steady-state regulation error,
attenuation of some specified disturbance,
insensitivity to measurement noise, fast response, ...).
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Internal stability

All the signals in the loop must be bounded for all possible inputs
<= all the possible closed-loop transfer functions must be stable

O GK 2k 11 s
1+GK_1+§_s+k C14+4GK 1+ k  s+k
k(s+1
y_0s) K S k(s )
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Robust stability (RS) for multiplicative uncertainty using
Nyquist criterion

-1 0 Re
|

1+, |

, N N
K Lol
/ \
! |
LWL | !
\ //

RS & |W(jw)Lo(jw)| < |1+ Lo(jw)|, Vw
W () Lo(j)
1+ Lo(jw)
& [TUw)| < 1/[W(w)|, Yo
S [WTe <1

<1, Vw
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Robust stability (RS) for multiplicative uncertainty

o B

L =GK = GK(1+ WA) = Lo+ LyWA, |A(jw)| < 1,Vw
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Robust stability for LFT—Small Gain Theorem

Fu(N, A) = Nop + Nyt A(1 — Nip A) ™ Ny
M

|1 - M(_]w)A(_]UJ)| >0, van’A’ <1

RS & 1— |M(jw)| >0, Yw
< |M(w)| < 1, Yw
& M|l <1
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Nominal performance (NP)

Using sensitivity function (for MIMO systems it is necessary to
distinguish between input a output sensitivities)

1

0(8) = TG (YK (s)

can express
» requirements on bandwidth (S is typically high-pass),
> largest acceptable tracking error,
> type of system (number of integrators),

» damping (bound on resonance peak)
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Robust performance (RP) for multiplicative uncertainty:
RP + RS + NP

RP < |W,(jw)S(jw)| <1 VS, Vw
& IWy(jw)| < [1+ L(jw)] VL, Voo

L= GK = GK(1+ WA) = Lo+ WLA, |A(jw)| < 1,Vw

RP < |W,(jw)| < |1+ Lo(jw) + W(jw)Lo(jw)A(jw)| VA,Vw

-1 O\l 0 Re

T+, |
Il
!
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/
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Conditions for nominal performance (NP)

1So(w)| < 1/|[Wp(jw)|, Vw [WpSolloo <1

Lol

/

W, ()] < 11+ Lo(jw)| Voo

Simple “templates" usually suffice

5/M +wp (s/VM +wp)?
Wo(s) = L5 T08 yy(s) = BIVET BT
s+ wgA (s+ wB\/Z)
34/53
Condition for RP for multiplicative uncertainty
1+ Lo(w)| > [Wp(jw)| + [W(jw)Lo(jw)], Vw
[ Wo(jw)S(w)| + [W(jw) T (jw)| < 1 Voo |
Not in the format of a condition on the H,, system norm. But
recall that for SISO systems
W,,S] —— ——
= su W, (jw)S(jw)|? + |W(jw) T (jw)|?
W sup [ W) ()2 + W () TG
~——
mixed sensitivity 00
Hint: (T,'(A) = )\,‘(ATA)
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Condition for RP for multiplicative uncertainty
Recall various norms in the Euclidean plane

Ixll2 = /¢ + 3, Xl = bal + bel,  [IXllo = max{xl, x|}

T9 A

%[l

x4

Ixllz < fIxllz < V2[x]l2

Therefore RP can be formulated ( conservatlvely)

7]l <2

Robust performance as robust stability with structured
uncertainty
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Conditions of robust stability for MIMO systems

Generally the model of uncertainty is E = WoAW;, [|Alle < 1.
Necessary to distinguish uncertainty at the input and output. For
multiplicative uncertainty

G= Go(l + EI), G= (| + Eo)Go

‘ A Bo —J
[

My = —WiKGo(l + KGo) ™! = —W; Ty
Mo = —WoGoK(l + GoK) ™t = —WTo
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Structured dynamic uncertainty: p-analysis

In MA configuration, with A having some structure

Ay 0 ... O

0 A, ... O
A= |

0 O A,

Ao <1, i=1,...,n
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Conservativeness of the small gain theorem in MIMO case

1 . 1
sup. 5(A0W)) & sgpa(A(Jw))<

=)

The smallest destabilizing perturbation (when det(l — MA) = 0) is

1
A=—_VUj M= UxXV* 1/61(M) = 0.3162
5’(M) 1 ) ) /Ul( )

However, if we only consider diagonal uncertainty

det (I—M [dl OD =0=di = da/2+1/2

sgp5('\/|(] ) <

Example:

0 d
Solution minimizing max{|di|, |d2|}, is d1 =1/3,dr = —-1/3 =

11 0
A=z
3{0 —1] /5

Methods to calculate SSV: upper bound
For full (unstructured) uncertainty, the largest freedom for
uncertainty ;(M) = 3(M). Too conservative.
To decrease conservativeness: D-scaling

dili 0 0
0 dblo 0
0 0 ... dyl,

A = ADD ! =DAD™!
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sup,, 7(M(jw))

Structured singular value—definition

1

[I>

M
Ha(M) mina {G(A)| det(l — MA) =0 given the structure of A}

1

[I>

M
pal mina k,, {km|det(l — kyMA) =0 for struct. A, 5(A) <

Methods to calculate SSV: upper bound

New (tighter) condition of robust stability

IDMD ™} < 1, D(w) € D

in 5(D(w)M(jw)D? <1,V
omin, 3(D(@)M(j)DH(w)) <1, Vs
Convex (linear matrix inequality, LMI). Up to 3 blocks exactly,
beyond 3 blocks error about 15%.
Robust Control Toolbox: mussv

1}
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Example: structured (diagonal) uncertainty at the input Example: structured (diagonal) uncertainty at the input
Simplified model of a distillation column in DV configuration

1 [-878 14
) = 75511 [108.2 1.4}

40

o, (T ()

and decentralized (diagonal matrix of transfer fcn's) Pl regulator 20f M

1W(j3)
75s+1[-0.0015 0
K == [ 0 —0.075]

Uncertainty modeled as multiplicative at every input: about 20 %
at low frequency, and 100 % above 1 rad/s:

Amplitudova fr. charakteristika (dB)

—60|

_ (s) 0o | _s+02
WI(S) - |:WIO WI(S):| , M(S) = m a0l

the block A is structured 10° 10” 10" 10° 10' 10°

Frekvence (rad/sec)

) 1
/,LA(T(_]W)) < W, Vw, A= |:
Is the system robustly stable?
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A; O
0 A

Robust performance with structured uncertainty Example: robust performance of distillation column
Linear model of distillation column in LV configuration (flows are
the action inputs, concentrations are the outputs)

The total structured uncertainty includes also a ficticious (full,

unstructured) uncertainty Ap G(s) 1 [87-8 —86-4}

T 75511 (1082 —109.6

and some designed controler

ﬂ
b
obPo
Poo
:,
o
~

UA Yya

S
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~
—~~
0
~—
Il
o
[
—~~
0n
~—
o

=13 o

s

Sensitivity and complementary sensitivity functions are

s 0 0.7 0
S(s) — |:s+0.7 < } , T(s) — [s+0.7 0.7 ]
0 s+0.7 0 s+0.7
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Example: robust performance of a distillation column

The inputs are flows and the valves have always (at least 10%) =
multiplicative uncertainty at every input.

(s) = s+0.2
M = 055 +1
The requirements on performance
s/240.05
wp(s) = /S

Four major properties of the closed loop need to be checked
» nominal stability
» nominal performance
P robust stability
» robust performance
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Example: robust performance of distillation column

20
cl(Wp Si)

10| ——— p(wi Ti) b
H(N)

Amplituda (dB)

-30} i

—40F 4

-50 1 1 1
10 10 10" 10° 10 10
Frekvence (rad/sec)
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Example: robust performance of distillation column

NS: no pole-zero cancellation, suffices to check, say, S
NP: A =0 = Fy(N,A) = Nap, where

I wmTr wKS
N(s) = [WPSG WPS:|

with the given controller we get

_ _ s/2+0.05
(M) = 5m8) = |5
RS: only the block Nii:
55+1

pa(Ni1) = pa(wiTr) = 0-2(0,55 1 1)(1.43s + 1)

RP:full N for u analysis

Example: robust performance of distillation column

robust_performance_2x2_sim - simulink academic use

T APPS s -0

SIMULATION DEBUG MODELING FO s
Jopen ~ [@EE Stop Time | 50.0 ~
O @ 5 e g @ P %
New e T Lbrary SffLvormal g T Step Data <
~ & Print v Browser g Fast Restart Back v - Forward Inspector

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS =
robust_performance_2x2_sim

® robust_performance_2x2_sim

ey
S = f— =
55

= *

Reference 1 shaping the reference 1 uncertainty co =

Reference 2 Saping e reference 2 of the distillation column simout
O
Reatly View 1 waming 100% odeds
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