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Lagrange’s equations
Intro to an energy-based analytical modeling methodology

Zdeněk Hurák
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I
n this lecture we will step into the classical domain of energy-based model-
ing, which is centered around the famous differential equation: Lagrange’s

(also called Euler-Lagrange’s) equation. In fact, there are two kinds of the
equation and we call these accordingly—Lagrange’s equation of the first and
second kind. We will only lightly explain where these equations come from,
mainly with the aim to develop a bit of insight, but our main focus in on
learning how to use them for practical modeling. The modeling methodology
has been described in gazzilions of textbooks and (downloadable) lecture notes
but they mostly focus on mechanical systems. Since in our course we adhere
strictly to the multidomain viewpoint—we want to use the given modeling
methodology for mechanical as well as electronic and hydraulic systems—we
will include a discussion of some related issues not commonly found in texts
on theoretical/analytical/classical mechanics.

The essence of the methods is in evaluating the total kinetic and potential
energies and or co-energies in the system. This can be a daunting task even
for a system of a modest complexity if approached naively. Therefore in the
next lecture we will introduce a systematic matrix-vector formalism for eval-
uating kinetic and potential energies of individual components of multibody
mechanical systems.

1 Introduction, motivation

Consider the simplest possible problem of modeling of a motion: a dimension-
less object (a particle) of mass m on which a force is acting in the vertical
(upwards) direction and competing with the weight of the particle. See Fig. 1

The model of such a system, that is, the equation of motion of the particle,
is given by the notoriously known second Newton’s law

mÿ(t) = F (t)−mg. (1)
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Figure 1: Particle of mass m in a gravitational field exposed to a force F which
competes with the weight mg.

Let’s massage this familiar equation a bit. Express the left-hand side as

mÿ =
d

dt
(mẏ) =

d

dt

 ∂

∂ẏ

1

2
mẏ2︸ ︷︷ ︸
T


 , (2)

where T (ẏ) is the kinetic energy of the particle. Similarly, let us write the
gravitational force as

−mg = − ∂

∂y
(mgy) = −∂V

∂y
, (3)

where V(y) is the potential energy. Hence, the Newton’s equation can be
reformulated as

d

dt

∂T
∂ẏ

+
∂V
∂y

= F.

Introducing a new auxiliary function called Lagrangian and defined as

L(y, ẏ) = T (ẏ)− V(y), (4)

the Newton’s equation finally turns into something as contrived as

d

dt

∂L(ẏ, y)

∂ẏ
− ∂L(ẏ, y)

∂y
= F (t), (5)

which we call Lagrange’s (also Euler-Lagrange’s) equation.
What, on Earth, was the point in doing this massaging? Let’s pretend

for a second that we do not know the original equation of motion. We have
just learnt that we can obtain it by evaluating the total kinetic and potential
energies accumulated in the system, using them to form some special function
called Lagrangian, and finally substituting this function into a special differ-
ential equation called by the same scientific giant. It turns out that we have
derive the desired equation of motion by identifying correctly the energies in
the system. This is the leitmotif for this lecture and the next.
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2 Kinetic and potential energy and coenergy

We now need to spend some time with the very fundamental concept of energy.
We already know that potential energy stored in the element called (general-
ized) compliance depends on the (generalized) displacement, while the kinetic
energy accumulated in the (generalized) inertance depends on the velocity.
The formula for kinetic energy T = 1/2mv2 is certainly one of the best notori-
ously known high-school physics formula. But the next paragraphs will show
you that it is actually a bit more ivolved.

Let’s start with the potential energy. An element of type generalized com-
pliance ties the following two variables through a generally nonlinear equation:
the generalized force e and the generalized velocity f . The equation comes in
either of the two forms (with a tiny but common abuse of notation)

e = e(q) (6)

or
q = q(e). (7)

The potential energy can be computed by integrating the instantaneous
power over a time interval:

V =

∫ t1

t0

P(t)dt

=

∫ t1

t0

e(t)f(t)dt

=

∫ t1

t0

e(t)
dq(t)

dt
dt

=

∫ q1

q0

e(q)dq, (8)

where we assumed that no energy was accumulated in the system at the be-
ginning of the time interval (the spring was relaxed, the capacitor uncharged,
the hydraulic accumulator empty,. . . ). Upon relabeling, the formula for the
potential energy is

V(q) =

∫ q

0
e(q̃)dq̃. (9)

Obviously, the potential energy can be computed as the area under the
graph of the function e(q) as the Fig. 2 suggests

We also label the area above the graph using the symbol V∗ and call it
a potential coenergy. Although it has no physical meaning, it can be useful
computationally. Note that

V(q) = eq − V∗(e). (10)
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Figure 2: Potential energy and coenergy

This relationship between the energy and coenergy is an instance of the
use of the Legandre transform.

Recall that for a linear compliance e = 1
C q, hence

V(q) =

∫ q

0

1

C
q̃dq̃ =

1

2

1

C
q2 (11)

and the potential energy can be computed simply as the area of the lower
triangle in Fig. 3.
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Figure 3: Potential energy and coenergy for a linear compliance

Obviously in this case we have V = V∗ and there is no need to distinguish
between V and V∗ computationally.

The story goes along the same line in the case of an accumulator of a
kinetic energy—a generalized inertance. Recall that in the nonlinear case such
element is characterized by a relatinship between the generalized momentum
p and the generalized velocity f as sketched in Fig. 4.

Hence the graph corresponds to either of the two equations

p = p(f) (12)

or
f = f(p). (13)

One of the above two equations will have to be used while evaluating the
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Figure 4: Kinetic energy and coenergy for a linear inertance

kinetic energy by integrating the power over a time inverval

V =

∫ t1

t0

P(t)dt

=

∫ t1

t0

e(t)f(t)dt

=

∫ t1

t0

f(t)
dp(t)

dt
dt

=

∫ p1

p0

f(p)dp. (14)

Relabeling and considering zero momentum at the beginning of the interval
we get the ultimate formula

T (p) =

∫ p

0
f(p̃)dp̃. (15)

The kinetic energy can be visualized as the area under the graph of de-
pendence of velocity on the momentum in Fig. 4. Similarly as in the potential
energy case we can define the complement to the rectangular area as the kinetic
coenergy T ∗ (f).

In the linear case, the relevant relationship is f = 1
I p, and the energy is

T (p) =

∫ p

0

1

I
p̃dp̃ =

1

2

1

I
p2. (16)

This can also be visualized as the area of the lower triangle in Fig. 5.
Of course, it is numerically equal to the area of the upper triangle, but

this happens only in the linear case. Switching temporarily to the symbols
popular in the mechanical domain, we then have

T (p) =
1

2

1

m
p2 =

1

2
mv2 = T ∗(v). (17)

Hence, our old friend, the expression 1
2mv

2 actually stands for kinetic
coenergy and not energy, albeit these are numerically equal in the linear case.
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Figure 5: Kinetic energy and coenergy for a linear inertance

The distinction between the energies and coenergies will be vital in the
next section when we introduce Lagrange’s equation. Note that you will not
find this discussion in most textbooks since they are mostly oriented towards
modeling of mechanical systems and unless the velocity of motion approaches
the speed of light, the velocity remains nicely proportional to the momentum
(p = mv). In fact, it was already in our introductory example that we misla-
beled the kinetic coernergy for kinetic energy (remember that it is the kinetic
coenergy that depends on the generalized velocity), but in this mechanical
case the distinction simply played no role.

But as soon as we start considering accumulators of kinetic energy in mag-
netic field, that is, electric inductors, in particular inductors with iron cores,
the dependence of f on p turns nonlinear, featuring saturation and also hys-
teresis.

3 Constraints

In the modeling techniques that we are about to introduce, we need to charac-
terize the configuration of the system. At first it might seem that in order to
characterize the system fully, a set of six dedicated coordinates must be given
for each moving part (three coordinates for translation and three for rotation).
For a robotic arm consisting of four links interconnected with three joints it
appears that 24 coordinates are perhaps needed. Obviously, one could do away
with significantly lower number of coordinates. Say, the angles in the four mo-
torized joints of the robotic arm. Four instead of 24. A major reduction.
Moreover, the particular modeling technique based on the Lagrange’s equa-
tion requires that not dependency among the coordinates exists. Apparently,
the original set of 24 variables was strongly intercoupled, hence not suitable
for modeling using Lagrange’s equation. The new set of four variables (joint
angles) satisfies constitutes the so-called generalized coordinates. We have to
discuss these.

First, however, we need to classify constraints. In the introductory ex-
ample, the particle in the free air was not constrained at all. In order to
characterize its position, we needed three coordinates: x, y and z (the three
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rotation angles were irrelevant here since we assume a dimensionless point).
We will follow the notational convention that these are grouped in a column
vector and we will add a lower index 1 in order to distinguish this particle and
its coordinates from what is to come

r1 =

x1y1
z1

 . (18)

As soon as we start considering some nonnegligible volume of the object,
we will also need to consider three more coordinates for the orientation.

With the exception of studying dynamics of some space vehicles such as
satellites, which can move freely in the three-dimensional space, the motion
of mechanical objects will be constrained in some sense. There may be two
origins of these mechanical constraints

• constraints that restrict the motion of the objects to some subset of the
full 3D space (vehicle traveling on the ground, bead sliding on a rigid
wire, ...),

• constraints due to coupling with other objects (as a limiting case, rigid
body can be viewed as a set of mutually coupled particles).

As an simple example of the former, we now seat the particle 1 on a table
and we only consider its motion over the surface of the table. Doing this we
have imposed a constraint

z1 = 0. (19)

As a consequence of the constraint, the number of independent variables
among the three coordinates shrinks to from 3 to 2.

As an example of the latter, consider two particles, label them 1 and 2 and
their masses are m1 and m2, respectively. Their positions are characterized
by the coordinate triples

r1 =

x1y1
z1

 (20)

and

r2 =

x2y2
z2

 (21)

respectively. We will introduce here conveniently the concept of a configuration
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space by simply stacking the two vectors on top of each other

r =



x1
y1
z1
x2
y2
z2

 . (22)

We see that we need in total 6 variables to characterize the mechanical
configuration of a two-particle system. We say that the dimension of the
configuration space is 6. Now we connect these two with a massless rigid rod
of length l. This way we introduced a constraint

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = l2. (23)

We again observe that by considering the constraint, we introduced some
dependence among the six variables. These six variables are no longer inde-
pendent. In fact, every constraint reduces by one the number of independent
variables that were originally used to characterize the mechanical configura-
tion. We say, that each constraint reduces the number of degrees of freedom.

Combining the two examples above into one, we just connect to particles
by a massless rod and place it on a surface of a table. By imposing the three
constraints, we reduce the number of degrees of freedom to three.

Seeing this dependence among the variables, a natural quest is to replace
the original (long) list of coordinates by a shorter one that will do the same
job of fully characterizing the mechanical configuration. It seems reasonable
to expect that three variables will suffice. In other words, we aim at expressing
the original six variables by just three. With some abuse of notation we relabel
the original coordinates to x1, x2, x3, . . . , x6 and then

x1 = x1(q1, q2, q3), (24)

x2 = x2(q1, q2, q3), (25)

... (26)

x6 = x1(q1, q2, q3). (27)

In general we will have

x1 = x1(q1, q2, . . . , qn), (28)

x2 = x2(q1, q2, . . . , qn), (29)

... (30)

x3N = x3N (q1, q2, . . . , qn), (31)

where N is the number of particles and n is the smallest possible number of
generalized coordinates, which is defined as the smallest possible dimension
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of the generalized configuration space. In our example it coincides with the
number of degrees of freedom, which inherently means that the qk variables
are independent.

Considering once again the two particles on a table interconnected with
a massless rod, reasonable candidates for the three generalized coordinates
follow from Fig. 6

x

y

L

x1

y1
α

Figure 6: Candidates for the three generalized coordinates for a system con-
sisting of two particles connected by a massless rod.

q =

q1q2
q3

 =

x1y2
θ

 . (32)

Let us restate our observations so far. By exposing the system to addi-
tional mechanical constraints, a dependence among the coordinate variables
is introduced, which we characterize as a drop in the degrees of freedom. Si-
multaneously, a drop in the number of degrees of freedom is accompanied by
a reduction in the dimension of configuration space, that is, the number of
coordinate variables we need to fully characterize the system.

However, is it guaranteed that it will always work like that? Can we rely on
the fact that every constraint reduces the number of the configuration space?
Unfortunately no! We were lucky with our introductory examples because
these belonged to the friendly family of so-called holonomic constraints. There
are, however, some unfriendly constraints, which do not obey this rule.

4 Holonomic constraints

A general form for the holonomic mechanical constraint is

g(x1, x2, . . . , x3N , t) = 0. (33)

Note that we also make provisions for g depending explicitly on time.
Now, in principle we could now use this equation and express one of the
coordinate variables as a function of the rest. Well, we could run into some
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algebraic difficulties. Moreover, this is rarely done because, as you have seen
previously, we may want to choose as the generalized variables something
different from those original coordinates. Anyway, in principle this could be
done. Furthemore, there is no problem to convert the constraints on the
coordinates into the constraints on velocities. Simply differentiate both sides
by t. Note that we have to apply the chain rule for differentiation since we
have a composed function here: g is a function of xk, but xk is a function of t

dg

dt
=

3N∑
k=1

∂g

∂xk

dxk
dt

+
∂g

∂t
= 0. (34)

What we found above is actually the total derivative. We can also view
this constraint from yet another viewpoint

dg =
3N∑
k=1

∂g

∂xk
dxk +

∂g

∂t
dt = 0. (35)

Surely you are recognizing a total (also exact) differential here. To summa-
rize, the holonomic constraints can be equally well expressed in coordinates,
velocities and differentials.

5 Nonholonomic constraints

Nonholonomic constraints typically come as constraints purely on velocities,
most probably than not just as linear functions

3N∑
k=1

ak
dxk
dt

+ at = 0. (36)

Equivalently we can view the above constraint as a constraint on differen-
tials

3N∑
k=1

akdxk + atdt = 0. (37)

The troubles with nonholonomic constraints is that they cannot be con-
verted (by integration) into constraints on coordinates! In other words, the
expression on the left of (37) cannot be integrated.

How can we tell just from the coefficients in the constraint if it is holonomic
or nonholonomic? If the left hand side of (37) represents a total differential,
the coefficient ak is necessarily a partial derivative of some g, see (35). But
then it must hold that

∂ai
∂xj

=
∂aj
∂xi

for all i 6= j. (38)
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As an example of a nonholonomic system, let us consider extension of our
two-particle-one-massless-rod-on-a-table system, which will consist in attach-
ing ice skates to the two particles as in Fig. 5.

As a consequence of this new constraint, the system can only move in such
a way, that the instantaneous velocity of, say, the center of the rod must by
orthogonal to the rod. Note that this certainly does not mean that the rod
can only follow straight lines. It can follow curved trajectories, the constraint
is on the instantaneous velocity. Your experience from ice skating can support
this (of course, it is assumed that skidding is avoided). It is straightforward
to construct the constraint function for this scenario. Finding the constraint
on differentials seems a bit more convenient

dx = − sinα

cosα
dy, (39)

which can be modified to

cosαdx+ sinαdy = 0. (40)

The left hand side in the equation above is not a total differential (check
by yourself), hence the constraint is not holonomic. Finally, you may want to
see how the constraint on the velocities look like

dx

dt
= − sinα

cosα

dy

dt
. (41)

Innocent, and yet it cannot be transformed (integrated) into a constraint
on coordinates. Therefore, this “skating constraint” did steal one degree of
freedom (two are now left) but the dimension of the configuration space is still
three and there is no way to reduce it. Indeed, we still need three coordinate
variables to fully characterize the mechanical configuration and yet these three
are not independent. This interdependence of variables is a major trouble in
further theoretical derivations of modeling methodology based on Lagrange’s
equation. Although we will not prove it in this course (we direct students
for derivations elsewhere), Lagrange’s equation does need independence of
coordinate variables! Keep this in mind.

Another example of a nonholonomic system is a disk rolling over a flat
surface without a slipping and skidding as in Fig. 7.
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Figure 7: Another example of a nonholonomic system: a disk rolling on a flat
surface without slipping and skidding. Four coordinate variables are needed
but the number of degrees of freedom is three due to the nonholonomic con-
straint on the direction of the instantaneous velocity.

Nonholonomic systems are a daily bread for mobile robotists and vehicular
dynamics engineers.

6 Lagrange’s (also Euler-Lagrange’s) equation for
holonomic systems

The equation (5) is just an instance of Lagrange’s equation (also Euler-Lagrange’s
equation or ELE)

d

dt

∂L(q̇, q, t)

∂q̇i
− ∂L(q̇, q, t)

∂qi
= Qk, k = 1, 2, . . . , n. (42)

where Lagrangian L(q̇, q, t) is difference between kinetic coenergy and potential
energy expressed

L(q̇, q, t) = T ∗(q̇, q, t)− V(q) (43)

and Qk are generalized forces which are not derived from a potential energy
function. In other words, if the force acting in the direction of the qk coordinate
is given by −∂V

∂q , it will not appear on the right hand side of (42). Instead
it has already been included in the corresponding term on the left-hand side.
The term Qk on the right-hand side is reserved for nonconservative forces such
as friction or the externally inputs (controls, disturbances). We will discuss
these in a while.

The energies were expressed as functions of the generalized coordinates
q = (q1, q2, . . . , qn) and the generalized velocities q̇ = (q̇1, q̇2, . . . , q̇n). This
assumes that all the qi’s are independent. This automatically excludes systems
with nonholonomic constraints. Furthermore, all the holonomic constraints
had to be used to reduced the dimension of the configuration space to the
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smallest dimension possible. Otherwised the ELE equation in the above format
will not be valid.

Another assumptions of this equation is that the potential energy is a
function of a generalized coordinates only and not of generalized velocity, that
is, we write V(q). This is automatically satisfied in mechanics, but can be
broken in electromagnetism.

The equation (42) certainly belongs into top-ten results/concepts in ap-
plied mathematics and although we do not cover a proof of this result, we
strongly encourage interested students to look up one elsewhere and study it.

7 Simple examples

In this section we will show how to apply the modeling technique based on
Lagrange’s equation to find the equation(s) of motion for some simple mechan-
ical systems. As is becoming clear, the key task in modeling is to evaluate the
total kinetic and potential energies in the system.

7.1 Mass-spring-damper system

As the first example that only slightly complicates our trivial example with a
particle in the free air, consider the setup in Fig. 8. An object of mass m is
hanging on a spring with stiffness k and a viscous damper with the coefficient
b.

mg

k b x

Figure 8: Single mass attached by a spring and a damper.

As a natural candidate for the generalized coordinate, the prolongation x
of the mass can be chosen. Note that if a non negligible size of the object is
considered, one would have to be more accurate as for the exact definition of
the distance. Now the task is to determine the kinetic coenergy and potential
energy. Kinetic coenergy is trivial:

T ∗ =
1

2
mẋ2. (44)
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The potential energy is composed of two parts: energy accumulated in the
spring and energy related to the elevation of the mass in the gravitational
field:

V =
1

2
kx2 −mgx. (45)

The Lagrangian is

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 +mgx. (46)

Before we are ready to substitute into the Lagrange’s equation, we have
to determine its right hand side, that is the nonconservative forces. The only
nonconservative force acting on the object is the friction

Q = −bẋ(t). (47)

Note the minus sign, which just tells that the friction acts against the
motion. Lagrange’s equation can now be written as

mẍ(t) + kx(t)−mg = −bẋ(t), (48)

which is our desired equation of motion.

7.2 Multiple mass-spring-damper system

Now, let us extend the previous example with an additional mass, spring and
damper as in Fig. 9.

The important decision that needs to be made at the beginning is the
definition of the second generalized coordinate. One candidate is the “global
coordinate”, that is, the distance from the “ceiling”. Another candidate is the
relative one, that is, the distance between the two masses. Both options are
fine, but they will have an impact on how we will evaluate the energies. Very
often we choose the generalized coordinates based on the availability of mea-
surements in our real system; after all, our ultimate use of the mathematical
model is to support the controller design. The former option will be appropri-
ate if the positions of the two masses are measured using a computer vision
system. The latter option is appropriate if the distance between the masses
is evaluated by, say, measuring the reflected IR light emitted by a photodiode
or any other kind of a displacement sensor.

The kinetic coenergy is easy, but keep in mind the above discussion of
the definitions of generalized coordinates. Whichever choice you make, kinetic
energy is only determined by the absolute velocity

T ∗ = T ∗1 + T ∗2 =
1

2
m1ẋ

2
1 +

1

2
m2(ẋ1 + ẋ2)

2. (49)

This point is of the uppermost importance! We will bump into it a couple of
times while solving other examples. But you can already feel quite comfortable
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m2g
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Figure 9: Double masses attached by springs and dampers.

about it since you already experienced this with bond graphs where generalized
inertances accumulate energy related to the absolute velocity—inertances are
directly bonded to the type-1 junctions.

While determining the potential energy, we have to make the same type of
analysis—does the accumulated energy correspond to the absolute or relative
position?

V = V1 + V2
=

1

2
k1x

2
1 −mgx1 +

1

2
k2x2

2 −mg(x1 + x2). (50)

Here, apparently the energy accumulated in the second spring corresponds
to the relative displacement whereas the energy due to elevation in the gravi-
tational field corresponds to the absolute position.

Substituting into the Lagrange’s equation we get the motion equations.
Since there are two generalized coordinates, there are two Lagrange equations

d

dt

∂T ∗
∂ẋ1

+
∂V
∂x1

= Q1, (51)

d

dt

∂T ∗
∂ẋ2

+
∂V
∂x2

= Q2. (52)
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Upon substitution of the energies and the friction forces we obtain

(m1 +m2)ẍ1 +m2ẍ2 + k1x1 − (m1 +m2)g = −b1ẋ1 + b2ẋ2, (53)

m2x1 +m2x2 + k2x2 −m2g = −b2ẋ2. (54)

7.3 Pendulum on a massless rod

Consider the standard textbook-style pendulum as in Fig. 10.

θ

m

l
g

x
y

Figure 10: Single pendulum (a particle of mass m and a massless rod).

A natural candidate for a generalized coordinate is the angle θ. We now
need to express the kinetic coenergy and potential energy as functions of θ
and θ̇.

T ∗ =
1

2
mv2 =

1

2
m(lθ̇)2 =

1

2
ml2θ̇2 (55)

V = −mgy = −mg cos θl. (56)

Substituting in the Lagrange’s equation we get

ml2θ̈(t) +mgl sin θ(t) = 0, (57)

which simplifies to the well-known differential equation

θ̈(t) +
g

l
sin θ(t) = 0. (58)

7.4 A bead in a rotating circular tube—and example of a rheo-
nomic (=time-varying) constraint

We consider the hollow tube shaped into a circle. The circle is rotating around
a vertical axis at a given speed. Inside the tube there is a particle of mass m
which slides without a friction, see Fig. 11.

When deriving the kinetic coenergy as a function of the single generalized
variable θ, we must keep in mind that the kinetic energy corresponds to the
motion with respect to the inertial space, not just with respect to the tube.

T ∗ =
1

2
mr2

(
θ̇2 + ω2 sin2 θ

)
, (59)

V = mgr cos θ. (60)
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Figure 11: An example of a system with rheonomic (=time-varying) con-
straints. A bead in a rotating circuilar tube.

We will conclude this example by writing down the Lagrangian. The rest
is straightforward and you are asked to find the motion equation and possibly
simulate the model to get some insight.

L =
1

2
mr2

(
θ̇2 + ω2 sin2 θ

)
−mgr cos θ. (61)

8 Literature

The topic discussed in this lecture constitutes the core of every advanced
course on dynamics or theoretical/analytical mechanics. There are a wealth
of resources, including those freely available online. We can recommend the
lecture notes [4] written in Czech. Do not let the dedication to doctoral
students repulse you. No doubt you can follow most of the exposition there.
Indeed, this is a very nice intro to Lagrange’ and Hamilton’s approach to
modeling dynamical systems.

As for the English written materials, I can warmly recommend [2], al-
though I am not aware of a legally available downloadable version. It is a very
accessible and yet rigorous treatment. A previous version [1] is very famous
and actually also fairly cheep (USD11 on amazon.com). I used the book for
preparation of this lecture. Another high quality classical and yet cheap book
is [5].

All the above recommended books are written by physicists and math-
ematicians. As a consequence, they are rather general and abstract, with
the main focus on principles rather than on practical situations. Should you
desire some practical cookbook, you should certainly look for some robotics
textbook. My favorite is [8]. Its chapter seven is dedicated to modeling. Be-
sides the Lagrange’s technique, the alternative Newton-Euler’s technique is
covered too. Alternatively, [7] can do the same job. Having one of these two
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robotics classics on a bookshelf is highly recommendable for a student aspiring
to become a robotics guru.

In this lecture we paid attention to distinguishing between energies and
coenergies. This could hardly be justified with purely mechanical systems since
it only contributes to the notational clutter. But our motivation is to apply
the same technique to modeling of electronic and electromechanical system
and that is where this distinction is vital. We strongly recommend a relatively
recent tutorial paper on this topic [3]. Similarly, we only recently came across
the textbook on Lagrange-equation-based modeling in mechatronics [6], which
seems to share our multidomain modeling viewpoint.
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