
Simulation of dynamic systems
Numerical solution of ordinary differential equations

Zdeněk Hurák

Advanced Algorithms for Control and Communications (AA4CC)
Department of Control Engineering, Faculty of Electrical Engineering

Czech Technical University in Prague, Prague, Czech Republic

November 26, 2019

Outline

Discretization and Taylor series approximation

Forward and Backward Euler algorithms

Numerical stability

Higher-order methods — single-step methods

Variable integration steps

Stiff systems

Multistep techniques

Problem statement

Find x(t) satisfying

ẋ(t) = f (x , u, t),

where x(t) is a state vector, u(t) is the input vector and the state
is known at some (initial) time t0 < t and

x(t0) = x0.

Discretization in time — Taylor series

Assuming x(t) sufficiently smooth,

x(t0 + h) = x(t0) +
dx(t)

dt

∣∣∣∣
t0

h +
d2x(t)

dt2

∣∣∣∣
t0

h2

2!
+

Plugging in the nonlinear state space model yields

x(t0 + h) = x(t0) + f (x , u, t)|t0 h +
df (x , u, t)

dt

∣∣∣∣
t0

h2

2!
+

In the vector case when x(t) ∈ Rn, the expression is rewritten
componentwise.

Alternative view of Taylor series description — numerical
(approximate) integration

x(t0 + h) = x(t0) +
dx(t)

dt

∣∣∣∣
t0

h +
d2x(t)

dt2

∣∣∣∣
t0

h2

2!
+ . . .︸ ︷︷ ︸∫ t0+h

t0
f (x ,u,t)dt

.

An idea for the (class of) algorithms — truncate the
Taylor series

For example, truncating the Taylor series

x(t0 + h) = x(t0) + f (x , u, t)|t0 h +
df (x , u, t)

dt

∣∣∣∣
t0

h2

2!
+ . . .

after the second term yields

x(t0 + h) ≈ x(t0) + f (x , u, t)|t0 h

which suggests our first algorithm

xk+1 = xk + fkh.

Notation

x(tk) is a value of the solution at the (integration) time step tk .
xk is an approximation to the true value at the time step tk .
fk is an approximation to the true value of f (x , u, t) at tk .

t

x(t)

x(t)

xk
x(tk)

Very often tk = t0 + kh, where h is an integration (time) step. But
variable steps are actually more common in practice.

Truncation introduces errors, how to characterize them?
Big-Oh concept

A function e(x) is said to be O(g(x)) if and only if

lim
x→0

e(x)

g(x)
≤ K > 0.

Often g(x) is a polynomial and the lowest powers matter most for
assymptotic considerations (x → 0). We then say that a function
e(x) is O(xn) or simply n-th order.
The error introduced by truncating after three terms is O(x3)

x(t0 + h) = x(t0) + f (x , u, t)|t0 h +
df (x , u, t)

dt

∣∣∣∣
t0

h2

2!
+O(h3).

Beware of a different use in computer science in algorithmic
complexity (n ∈ Z, n→∞).

Our first algorithm — Forward Euler

xk+1 = xk + fkh

In the linear case ẋ(t) = ax(t) the truncated Taylor series turns
into

x(t0 + h) ≈ x(t0) + ax(t0)h

≈ (1 + ah)x(t0).

(Do not let the linearity-in-x fool you. The derivatives in the Taylor
approximation are done with respect to time.) The algorithm is

xk+1 = (1 + ah)xk

t

x(t)

x(t)

Approximated value

True value

Pseudocode

Algorithm 1 Forward Euler integration (no input u(t))

Require: f (x(t), t), t0, tf , x(t0), h
Ensure: ẋ(t) = f (x(t), t)

tk ← t0
xk ← x(t0)
ẋk ← f (x0, t0)
while tk < tf do

xk ← xk + hẋk
tk ← tk + h
ẋk ← f (xk , tk)

end while

Numerical example

ẋ(t) =
x(t)− 2tx2(t)

1 + t
, x(0) = 5

We are lucky that the analytical solution(s) can be found:

>> d s o l v e (’Dx=(x−2∗ t ∗x ˆ2)/(1+ t) ’)
ans =

0
(t + 1)/(t ˆ2 + C2)

Plot the solutions for h = 0.2, 0.1, 0.05, 0.025, 0.0125

Snippet of a Matlab code

h = 0 . 1 ;

t = 0 ;
x = 5 ;
k = 1 ;

x t r u e = @(t) (1+ t)/ (t ˆ2+1/5); % Exact s o l u t i o n

wh i l e t <= (t f−h)
dxdt = (x (k)−2∗ t ∗x (k)ˆ2)/(1+ t) ;
x (k+1) = x (k)+h∗ dxdt ;
t = t+h ;
e r r o r (k) = x (k)− x t r u e (t) ;
k = k+1;

end

g l o b a l e r r o r 1 = e r r o r (end)

Note that k starts at 1. Matlab cannot start an integer index at 0.

h = 0.2

0 0.2 0.4 0.6 0.8 1

t [s]

0

2

4

6

8

10

12
x
(t

)

h = 0.1

0 0.2 0.4 0.6 0.8 1

t [s]

0

2

4

6

8

10

12
x
(t

)

h = 0.05

0 0.2 0.4 0.6 0.8 1

t [s]

0

2

4

6

8

10

12
x
(t

)

h = 0.025

0 0.2 0.4 0.6 0.8 1

t [s]

0

2

4

6

8

10

12
x
(t

)

h = 0.0125

0 0.2 0.4 0.6 0.8 1

t [s]

0

2

4

6

8

10

12
x
(t

)

Analysis of errors

Global error (at the end of simulation interval) vs. Local error (at
each step)

h n |xn − x(tf)|
0.2 5 3.1155
0.1 10 0.3956
0.05 20 0.1191
0.025 40 0.0542
0.0125 80 0.0261

As h→ 0, the global error |xn − x(tf)| is (approximately) halved
when h is halved =⇒ |xn − x(tf)| = O(h) =⇒ the FE method is
not “cheap”.
The findings correspond to the fact that the local error is O(h2).

What next? Truncating after higher order?

Say, after the third term (the truncation error is then O(h3))

x(t0 + h) ≈ x(t0) + f (x , u, t)|t0 h +
df (x , u, t)

dt

∣∣∣∣
t0

h2

2!
.

But in order to create a functional algorithm, we need to find
derivative(s) of f () with respect to time. This can be accomplished
by

1. symbolic differentiation

2. numerical approximations (see later in the lecture)

Higher order truncation of Taylor series by symbolic
differentiation

Manually only feasible for small problems. Intensive research on
automatic differentiation applicable to medium and larger
problems.
Our example:

syms t x (t)
f (t) = (x (t)−2∗ t ∗(x (t))ˆ2)/(1+ t)
d f d t = d i f f (f (t) , t)

Substituting fk for ẋ(t) and (as before) xk for x(t)

ḟk =
(4xk + 1)fk

tk + 1
− 4xk fk −

xk(2xk + 1)

(tk + 1)2

Higher order truncations by numerical approximations

I higher-order single-step methods (Runge-Kutta)

I multistep methods

But now back to the second-order methods for a while.

Backward Euler method

Why using the “slope” at the beginning of the interval? Why not
the one at the end?

xk+1 = xk + f (xk+1, tk+1)h

t

x(t)

x(t)
Approximated value

True value

In order to find xk+1 we need to know xk+1 . . .

Backward Euler for a linear system and regular sampling

For a linear system and a regular sampling

xk+1 = xk + hAxk+1 =⇒ (I − Ah)xk+1 = xk

Could be solved by a matrix inverse

xk+1 = (I − Ah)−1︸ ︷︷ ︸
F

xk .

but numerically not reliable and efficient. Use the backslash
operator in Matlab instead to solve a set of equations.

Backward Euler method is implicit — calls for solving sets
of equations

The neeed to solve (a set of) equations, in general nonlinear
(algebraic).

Pseudocode

Algorithm 2 Backward Euler integration for a linear system (no
input u(t))

Require: A, t0, tf , x(t0), h
Ensure: ẋ(t) = Ax(t)

tk ← t0
xk ← x(t0)
while tk < tf do

solve (I − Ah)xk+1 = xk for the unknown xk+1

tk ← tk + h
xk ← xx+1

end while

Other options for second-order methods

I evaluate/approximate the slope (derivative) in the middle of
the interval

I average the FE and BE derivatives

Write down the two algorithms on your own and experiment with
them.

One general method for solving nonlinear equations —
Fixed-point iterations

Solve
x = g(x)

Existence and uniqueness given by contractivity of g(x). See Fixed
point theorem or Fixed point principle or Contractive mapping
theorem.
Algorithm: Substitute an initial guess x0 into g()

x1 = g(x0)

and repeat. . .

Solving equations in BE methods — predictor-corrector
scheme

Application to BE:

I the initial guess provided by FE — predictor stage

I the iterative improvement provided by BE — corrector stages

The right side is contractive provided f () is Lipschitz (say,
well-behaved...).

Algorithm 3 Predictor-corrector Backward Euler integration

Require: f (x(t)), t0, tf , x0, h, ε
Ensure: ẋ(t) = f (x(t)), x(t0) = x0

tk ← t0
xk ← x(t0)
while t < tf do

ẋk ← f (xk , tk)
xPk+1 ← xk + hẋk {Predictor}
ẋPk+1 ← f (xPk+1, tk + h)

xC1

k+1 ← xk + hẋPk+1 {1st corrector}
i ← 1
while e > ε do

ẋCi

k+1 ← f (xCi

k+1, tk + h)

xCi

k+1 ← xk + hẋCi

k+1 {i th corrector}
e ← xCi − xCi−1

i ← i + 1
end while
xk ← xCi

k

tk ← tk + h
end while

PC scheme for a linear system

The sequence of matrices F in the discrete-time system
x(k + 1) = Ax(k) is

FP = I + Ah

FC1 = I + Ah + (Ah)2

FC2 = I + Ah + (Ah)2 + (Ah)3

FC3 = I + Ah + (Ah)2 + (Ah)3 + (Ah)4

For an infinite number of iterations this yields

F = I + Ah + (Ah)2 + (Ah)3 + (Ah)4 + . . . ,

which can be shown to be equal to

F = (I − Ah)−1 .

Newton iterations for BE

Classical Newton method solves

g(x) = 0,

The i-th iteration is

x i+1 = x i − g(x i)

ġ(x i)
.

The nonlinear equation to be solved in every iteration of BE is

xk+1 = xk + hf (xk+1, tk+1)

or, in the format ready for application of Newton method

xk + hf (xk+1, tk+1)− xk+1 = 0.

The unknown variable is xk+1 and the Newton iteration is

x i+1
k+1 = x ik+1 −

xk + hf (x ik+1, tk+1)− x ik+1

h ∂f (x ,t)
∂x

∣∣∣
x ik+1,tk+1

− 1.0
.

Vector version of Newton iterations for BE

Replace the scalar df (x)
dx by its matrix counterpart — Jacobian

matrix

J =
df (x)

dx
=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 .
x i+1
k+1 = x ik+1 −

[
hJ ik+1 − I

]−1 · [xk + hf (x ik+1)− x ik+1

]
Jacobian for a linear model is just the matrix A; the vector version
of the algorithms is then

x i+1
k+1 = x ik+1 − [Ah − I]−1 · [xk + (hA− I)x ik+1]

= [I − Ah]−1xk

And we see that in the linear case the behavior of BE is revoked.

Numerical stability

Numerical stability = for slightly perturbed data only slightly
perturbed simulation outcomes.
In control systems language: Is the discretized system stable when
the original continuous-time system is stable?
Analytical results available only for linear systems.

Stability for FE

The original continuous-time system ẋ(t) = Ax(t). The
discrete-time model x(k + 1) = Fx(k), where F = I + Ah.

Re

Im

0

I + Ah

Re

Im

0 1

Obviously some continous-time systems are unstable after
discretization.

Domain of stability for FE — preimages of stable solutions

Re

Im

0−1/h

I + Ah

Re

Im

0 1

More often visualized not in the λ-plane but in the ”normalized”
hλ-plane. Does not matter.

Finding the borders of stability domain numerically
Byl plotting the contours for spectral radius ρ(F)

h = 1 ; I = eye (2 , 2) ;

a = l i n s p a c e (−4 ,2 ,100) ; % range o f r e a l v a l u e s
b = l i n s p a c e (0 , 5 , 1 0 0) ; % range o f imag i na r y v a l u e s

rmax = z e r o s (l e n g t h (a) , l e n g t h (b)) ;

f o r i a = 1 : l e n g t h (a)
f o r i b = 1 : l e n g t h (b)

A = [a (i a) b (i b) ; −b (i b) a (i a)] ;
F = I + A∗h ;
rmax (ia , i b) = max(max(abs (e i g (F)))) ;

end
end

[A,B] = meshgr id (a , b) ;

co lormap (g ray)
c on t ou r f (A,B, rmax ’ , l i n s p a c e (0 , 1 , 2 0))
x l a b e l (’Re (h\ lambda) ’) , y l a b e l (’ Im (h\ lambda) ’)
a x i s ([a (1) a (end) b (1) b (end)]) , g r i d on

Could reuse by substituting a different F .

Plotting only the upper half-plane.

Re(hλ)

Im
(h

λ
)

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Conforms to the analytical findings.

Numerical experiment for FE

ẋ(t) = ax(t), x(0) = 1, a = −0.1,−1.0,−2.0,−3.0, h = 1.

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1
a=−0.1

Analytical

Forward Euler

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
a=−1

Analytical

Forward Euler

0 2 4 6 8 10
−1

−0.5

0

0.5

1
a=−2

Analytical

Forward Euler

0 2 4 6 8 10
−1000

−500

0

500

1000

1500
a=−3

Analytical

Forward Euler

FE inappropriate for “fast but stable” or little damped systems.

Analysis of stability for BE

Re

Im

0

(I − Ah)−1

Re

Im

0 1

Domain of stability for BE

Re

Im

0 1/h

(I − Ah)−1

Re

Im

0 1

Numerical stability for BE — an experiment

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1
a=−0.1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
a=−3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
a=−10

0 2 4 6 8 10
−2

0

2

4

6

8

10

12
x 10

12 a=3

Analytical

Backward Euler

Analytical

Backward Euler

Analytical

Backward Euler

Analytical

Backward Euler

BE reliable for fast stable and/or little damped, but unreliable for
unstable (general feature of implicit methods, be careful).

Domain of stability for Predictor-Corrector BE (PC-BE)

When subtracting two ininite series, their regions of convergence
must be considered (F converges for ρ(Ah) < 1)

Re

Im

0 1/h

BE with PC

Re

Im

0 1

Domain of stability for BE with Newton iterations

Newton iterations do not change the region of stability (see the
linear case).

Heun’s method — preview of single-steps methods

ẋk = f (xk , tk)

xPk+1 = xk + hẋk

ẋPk+1 = f (xPk+1, tk + h)

xCk+1 = xk + hẋPk+1.

Substituting all the terms into just one we obtain

xk+1 = xk + hf (xk + hfk , tk + h).

Expand f () in Taylor series and truncate after the linear term

f (xk +hfk , tk +h) ≈ f (xk , tk) +
∂f (x , t)

∂x

∣∣∣∣
xk ,tk

hfk +
∂f (x , t)

∂t

∣∣∣∣
xk ,tk

h.

Plugging this into the equation above we obtain −→

xk+1 = xk + hfk + h2

(
∂f (x , t)

∂x

∣∣∣∣
xk ,tk

fk +
∂f (x , t)

∂t

∣∣∣∣
xk ,tk

)
︸ ︷︷ ︸

ḟ (xk ,tk)

.

Now compare this with Taylor expansion of x(tk + h) truncated
after the quadratic term

x(tk + h) ≈ x(tk) + hf (xk , tk) +
1

2
h2ḟ (x(tk), tk).

Modify the PC algorithm to agree with the first three terms of
Taylor series

xPCk+1 = xk + hfk + h2ḟ (xk , tk)

xk+1 =
1

2

(
xPCk+1 + xFEk+1

)
.

or

ẋk = f (xk , tk)

xPk+1 = xk + hẋk

ẋPk+1 = f (xPk+1, tk+1)

xCk+1 = xk +
1

2
h
(
ẋPk+1 + ẋk

)
.

LE of Heun’s method is of third order, hence GE is second order.

Runge-Kutta methods

Generalize Heun’s method

ẋk = f (xk , tk)

xPk+1 = xk + hβ11ẋk

ẋPk+1 = f (xPk+1, tk + αh)

xCk+1 = xk + h
(
β22ẋ

P
k+1 + β21ẋk

)
.

Plugging the equations into each other and expanding into Taylor
series yields

xCk+1 = xk + h(β21 + β22)fk

+
h2

2

(
2β11β22

∂f (x , t)

∂x

∣∣∣∣
xt ,tk

fk + 2α1β22
∂f (x , t)

∂t

∣∣∣∣
xk ,tk

)
.

Comparing with the Taylor expansion for x(tk + h) we learn that
the following three equations need to be satisfied

β21 + β22 = 1

2α1β22 = 1

2β11β22 = 1

Heun’s method

α1 = 1, β11 = 1, β21 = 0.5, β22 = 0.5.

But another format popular — Butcher tableau

0 0 0
1 1 0

1/2 1/2

The Butcher tableau for the Explicit midpoint scheme

0 0 0
1/2 1/2 0

0 1

The corresponding algorithm

ẋk = f (xk , tk)

xP
k+ 1

2
= xk +

h

2
ẋk

ẋP
k+ 1

2
= f (xP

k+ 1
2
, tk+ 1

2
)

xCk+1 = xk + hẋP
k+ 1

2

Fourth-order RK method

Matrix-vector format for the coefficients

α =


1/2
1/2

1
1

 , β =


1/2 0 0 0

0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6


Equivalently, the Butcher tableau is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

Fourt-order RK4 algorithm contains four “stages”

ẋk = f (xk , tk)

xP1 = xk +
h

2
ẋk

ẋP1 = f (xP1 , tk+ 1
2
)

xP2 = xk +
h

2
ẋP1

ẋP2 = f (xP2 , tk+ 1
2
)

xP3 = xk + hẋP2

ẋP3 = f (xP3 , tk+1)

xk+1 = xk +
h

6

(
ẋk + 2ẋP1 + 2ẋP2 + ẋP3

)
.

Stability regions for RK methods — Heun’s method

F = I + Ah + A2h2

and its stability domain

Re(hλ)

Im
(h

λ
)

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Stability region for RK4 method
Finding F tedious but straightforward

F = I + Ah +
1

2
A2h2 +

1

6
A3h3 +

1

24
A4h4.

Re(hλ)

Im
(h

λ
)

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Integration step size control

I The local error depends on the integration step h. If the
current error is known and is not satisfactory, the step can be
decreased.

I Where to get an error? Run two algorithms simultaneously
and subtract their outcomes. Generally works.

I Why wasting numerical effort for two independent tasks? How
about RK4 and RK5? Possibility of reuse of major part of
effort.

I Voila! ode45() solver

Some experiment in Simulink

s em i l o g y (tou t (1 : end−1) , d i f f (t ou t))

Stiff systems — example (Cleve Moler))

dx

dt
= x2 − x3, x(0) = d , 0 < t < 2/d , d = 1/100.

Analytical solution possible:

x = d s o l v e (’Dx=xˆ2−xˆ3 ’ , ’ x (0) = 1/100 ’) ;
x = s i m p l i f y (x) ;
p r e t t y (x)
e z p l o t (x , 0 , 2 00)

d = 0 . 0 1 ;
F = @(t , x) xˆ2−x ˆ3 ;
op t s = ode s e t (’ Re lTo l ’ , 1 . e−4);
ode45 (F , [0 2/d] , d , op t s) ;

and then try with

ode23s (F , [0 2/d] , d , op t s) ;

One more note on errors — rounding errors

Errors come not only through truncating but also through finite
precision arithmetic. Guess at the outcome

>> (0.1+0.2)==0.3

IEEE 754 single precision (type single) is valid only down to 7
decimal places (2−23 ≈ 1× 10−7). Let us see the impact for the
truncation process. Think of some example where h = 0.001,
|x | ≈ |f | ≈ |ḟ | ≈ |f̈ | = 1.

|x(t0 + h)| ≈ |x(t0)|+ |f (x(t0))h|+
∣∣∣∣df (x(t0))

dt

h2

2!

∣∣∣∣+

∣∣∣∣d2f (x(t0))

dt2
h3

3!

∣∣∣∣
≈ 1.0 + 0.001 + 10−6 + 10−9.

Multistep techniques — Why discarding the values from
previous steps

Approximate the higher order derivatives of x(t) numerically

x(t0 + h) = x(t0) +
dx(t)

dt

∣∣∣∣
t0

h +
d2x(t)

dt2

∣∣∣∣
t0

h2

2!
+O(h3).

Alternatively, approximate derivatives of f ()

x(t0 + h) = x(t0) + f (x , u, t)|t0 h +
df (x , u, t)

dt

∣∣∣∣
t0

h2

2!
+O(h3).

Approximate the derivative of ḟ by a forward difference

Taylor series for the derivative

ẋ(t0 + h) = ẋ(t0) + ẍ(t0)h +
1

2

...
x (t0)h2 +O(h3)

From which

ẍ(t0)h = ẋ(t0 + h)− ẋ(t0)− 1

2

...
x (t0)h2+O(h3)

Substitute to Taylor series for x

x(t0 + h) = x(t0) + ẋ(t0)h

+

[
ẋ(t0 + h)− ẋ(t0)− 1

2

...
x (t0)h2+O(h3)

]
h

2!
+O(h3)

= x(t0) +
h

2
(ẋ(t0 + h) + ẋ(t0)) +O(h3).

Trapezoidal method — one step, order 2, implicit

xk+1 = xk +
h

2
(fk + fk+1)

Adams-Bashforth method AB(2)

Another Taylor series for the derivative

ẋ(t0−h) = ẋ(t0)− ẍ(t0)h +
1

2

...
x (t0)h2 +O(h3)

From which

ẍ(t0)h = −ẋ(t0 + h) + ẋ(t0) +
1

2

...
x (t0)h2+O(h3)

Substitute to Taylor series for x

x(t0 + h) = x(t0) + ẋ(t0)h

+

[
−ẋ(t0 + h) + ẋ(t0) +

1

2

...
x (t0)h2+O(h3)

]
h

2!
+O(h3)

= x(t0) +
3

2
hẋ(t0)− 1

2
hẋ(t0 − h) +O(h3).

AB(2) is explicit, two-step technique, order 2

xk+2 = xk+1 +
3

2
hfk+1 −

1

2
hfk

Other two-step techniques

General structure

xk+2 + α1xk+1 + α0xk = h (β2fk+2 + β1fk+1 + β0fk)

Adams-Moulton (implicit, order 2)

xk+2 − xk+1 =
1

12
h (5fk+2 + 8fk+1 − fk) .

Simpson (order 4, implicit)

xk+2 − xk =
1

3
h (fk+2 + 4fk+1 + 1fk) .

General multistep methods

xk+n+αn−1xk+n−1+. . .+α0xk = h (βnfk+n + βn−1fk+n−1 + . . .+ β0fk) .

ρ(z) = zn + αn−1z
n−1 + . . .+ α0,

σ(z) = βnz
n + βn−1z

n−1 + . . .+ β0.

Classic multistep methods
Adams-Bashforth — explicit, order n

ρ(z) = zn − zn−1

xk+n − xk+n−1 = h (βn−1fk+n−1 + . . .+ β0fk) .

Adams-Moulton — implicit, order n + 1

ρ(z) = zn − zn−1

xk+n − xk+n−1 = h (βnfk+n + βn−1fk+n−1 + . . .+ β0fk) .

Backward differentiation formulas (BDFs) — implicit,
generalization of backward Euler, order n

σ(z) = βnz
n

xk+n + αn−1xk+n−1 + . . .+ α0xk = hβnfk+n.

A-stability for multistep techniques

AB(3)

Re(h λ)
-4 -3 -2 -1 0 1 2

Im
(h

λ
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compare with FE (=AB(1)), AB(2), . . .

Not all multistep have small stability region — BDF rules
BDF(3)

xk+1 =
18

11
xk −

9

11
xk−1 +

2

11
xk−2 +

6

11
hfk+1

Re(h λ)
-4 -3 -2 -1 0 1 2

Im
(h

λ
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compare with FE (=AB(1)), trapezoidal (=AB(2)).

Why does the stability region shrinks for n growing?

Interpolation of x(t) at tk , tk−1,. . . , tk−n, by a polynomial.
Interpolation OK but extrapolation poor for growing n!

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x
(t

)

(a) n = 4

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

(b) n = 8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

x
(t

)

(c) n = 12

−5 −4 −3 −2 −1 0 1 2 3 4 5
−14

−12

−10

−8

−6

−4

−2

0

2

t

x
(t

)

(d) n = 16

Polynomial interpolation — Newton method

Find a polynomial of nth order that passes through n + 1 function
values f0, f1,. . . , fn at time instants t0, t0 + h,. . . , t0 + nh.

Forward differences

∆f0 = f1 − f0,

∆2f0 = ∆f1 −∆f0 = (f2 − f1)− (f1 − f0) = f2 − 2f1 + f0,

∆3f0 = ∆2f1 −∆2f0 = f3 − 3f2 + 3f1 − f0,

...

Newton-Gregory polynomial

s =
t − t0
h

f (t) ≈ f0 + s∆f0 +
s(s − 1)

2!
∆2f0 + . . .+

(
s

n

)
∆nf0

Backward differences and backward Newton-Gregory
polynomial

∇fi = fi − fi−1,

∇2fi = ∇fi −∇fi−1 = fi − 2fi−1 + fi−2,

∇3fi = ∇2fi −∇2fi−1 = fi − 3fi−1 + 3fi−2 − fi−3,

...

f (t) ≈ f0 + s∇f0 +

(
s + 1

2

)
∇2f0 +

(
s + 2

3

)
∇3f0 + . . .

+

(
s + n − 1

n

)
∇nf0

Using backward Newton polynomial to approximate
integral of f

ẋ(t) = f0 + s∇f0 +

(
s + 1

2

)
∇2f0 +

(
s + 2

3

)
∇3f0 + . . .

∫ t1

t0

ẋ(t)dt = x(t1)− x(t0),

=

∫ t1

t0

[
f0 + s∇f0 +

(
s + 1

2

)
∇2f0 +

(
s + 2

3

)
∇3f0 + . . .

]
dt,

=

∫ 1

0

[
f0 + s∇f0 +

(
s + 1

2

)
∇2f0 +

(
s + 2

3

)
∇3f0 + . . .

]
dt

ds
ds

x(t1) = x(t0) + h

∫ 1

0

[
f0 + s∇f0 +

(
s + 1

2

)
∇2f0 +

(
s + 2

3

)
∇3f0 + . . .

]
ds

Adams-Bashforth

x(t1) = x(t0) + h

[
f0 +

1

2
∇f0 +

5

12
∇2f0 +

3

8
∇3f0 + . . .

]
ds

AB(3) — cutting after the quadratic term and expanding

xk+1 = xk +
h

12
(23fk − 16fk−1 + 5fk−2).

AB(4) — cutting after the cubic term and expanding

xk+1 = xk +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3).

	Discretization and Taylor series approximation
	Forward and Backward Euler algorithms
	Numerical stability
	Higher-order methods — single-step methods
	Variable integration steps
	Stiff systems
	Multistep techniques

