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Classical linear time-invariant system simulation methods are based on a transfer function, impulse response. or
Input/state/output representation. :nt a method for computing the response of a s 1 to a given input
and initial conditions directly from a ‘tory of the system, without explicitly identifying the system from the
data. Similar to the classical approach for simulation, the cal approach for control is model-based: first a
model representation is derived from given data of the plant and then a control law is synthesised using

and the control specifications. We present an approach for computing a linear quadratic tracking control signal
that circumvents the identification step. The results are derived assuming exact data and the simulated response
or control input is constructed off-line.

Keywords: simulation; data-driven control; output matching; linear quadratic tracking; system identification

1. Introduction that avoid the explicit derivation of a model
representation.

Data-driven algorithms for tems and control
problems are presently less developed than their

aleorithms are based on input/state/output. transfer model-based counterparts. Only a few control

The wusual starting point of systems and control
problems is a given representation of the plant. As a
consequence, the developed solution methods and
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Data-Enabled Predictive Control: In the Shallc

Jeremy Coulson

Abstract—We consider the problem of optimal traj
tracking for unknown systems. A novel data-enabled pmmum
control (DeePC) algorithm is presented that computes optimal
and safe control policies using real-time feedback driving the
unknown system along a des ile s "
ng a finite number of data samples

d

ure trajectories. The DeePC

valent to the classical and widely

th

ase of deterministic linear time-invariant systems. In the case
of nonlinear stochastic s regularizations to
the DeePC alga s are provided to illustrate
performance and compare the algorithm with other methods.

NTRODUCTION

As systems are becoming more complex and data is
becoming more readily available, scientists and practitioners
are beginning to bypass classical model-based techniques
in favour of data-driven methods [1]. Data-driven methods
are suitable for applications where first-principle models
are not conceivable, when models are too complex for
control design, and when thorough modelling and parameter
identification is too costly

A challenging problem in systems control is optimal
trajectory tracking, where a control policy is computed based
on output feedback that drives a dynamical system along a
desired output trajectory while minimizing a stage cost and
respecting safety constraints. One of the most celebrated
and widely used control techniques for trajectory tracking
is receding horizon Model Predictive Control (MPC), pre-
cisely because it allows one to include safety considerations
during control design [2]. The key ingredient for MPC is
an accurate parametric state space model of the system, but
obtaining such a model is often the most time-consuming
and expensive part of control design [3]

In the context of unknown black-box systems, there is
no approach which solves the optimal trajectory tracking
problem subject to constraints and partial (output) obse
tions. However, some more benign variations of the optimal
trajectory tracking problem have been approached using data-
driven and learning based methods. We single out some

John Lygeros

s of the DeePC

Florian Dorfler

approaches usually require a large number of data sam-
ples to perform well, and are often sensitive to hype
parameters leading to non-reproducible and highly variable
outcomes [4]

Other approaches propose performing sequential system

identification (ID) and control. System ID can be used to
> an approximate model and provide finite sample
o5 quantifying model uncertainty, allowing for robust
control design [5]. In this spirit. an end-to-end ID and control
pipeline is given in [6] and arrives at a data-driven control
solution with guarantees on the sample efficiency, stability,
performance, and robustness. The system identification step
in these approaches disregards one of the main advantages
of a data-driven approach: independence from an underlying
parametric representation. Additionally, they only consid
regulation, rely on having full state information, and do not
enforce constraint satisfaction.

Beyond reinforcement learning and sequential ID and
control, there are many other safe learning approaches [7]
However. they rely on a-priori stabilizing controllers and safe
regions, and thus apply only to a small class of problems.

IPC based on Dynamic Matrix Control has been his-
torically used as a data-driven control technique, in which
zero-initial condition step responses are used to predict
future trajectories [8]. Although this technique has many
limitations [9], it motivates llu use of a non
predictive control model. Other non-parametric predictive
models have been proposed in [10], [11]. These methods
do not solve the problem of optimal trajectory tracking with
constraints, but serve as building blocks for our approach.

Here we present a Data-enabled Predictive Control
(DeePC) algorithm. Unlike classical MPC and the learning
based control techniques outlined above, the DeePC algo-
rithm does not rely on a parametric system representation.
Instead, similar to [10]. we approach the problem from a
behavioural systems theory perspective [12]. Rather than
attempting to learn a parametric system model, we aim
at learning the system’s “behaviour” (see Section IV for
the precise definition). Our novel predictive control strategy
computes optimal controls for unknown systems usin;
time output feed

ding horizon implementation,

Bridging direct & indirect data-driven control
formulations via regularizations and relaxations

lorian Dérfler, Jeremy Coulson, and Ivan Markovsky

on compatible
with recorded data assembled in a Hankel matrix and robustified
through suitable regularizations. We formulate these two prob-
lems in the language of behavioral syster

subspace identification and control:
control and low-rank approxi

to be consistent with a non-parametric predictor derived from

{rcspcui\cl\ the column span of) a data Hankel matrix. In both

s we conclude that d regularized data-driven control

an be derived as conve ation of the indire
jon step. Our
ht on the

I. INTRODUCTION

The vast realm of data-driven control methods can be clas-
sified into indirect data-driven control approaches consisting
of sequential system identification and model-based control as
well as direct data-driven control approaches seeking an opti-
mal decision compatible with recorded data. Both approaches
have a rich history, and they have received renewed interest
cross-fertilized by novel methods and widespre interest in
machine learning. Representative recent surveys are [1]-[6].

The pros and cons of both paradigms have often been elab-
orated on: e.g., modeling and identification is cumbersome,
its results are often not useful for control (due to, e.g., incom-
patible uncertainty quantifications), and practitioners generally
prefer end-to-end approaches. While direct data-driven control
promises to resolve these problems by learning control policies
directly from data, the available methods often do not (yet)
lend themselves to real-time and safety-critical control systems
due 1o lack of certificates and overburdening computational
and sample complexity, among others. Quite a few approaches
tried to bridge the two paradigms. Of relevance to this article,

We take a similar perspective here: the sequential identifi-
cation and control tasks can be abstracted as nested bi-level

optimization problem: find the best con
where the model is the best fit to a da
pothesis class. This approach is modult
tractable formulations, but generally it it
is no separation principle — aside fron
Section 4] — for these two nested optii
end-to-end direct algorithmic approact
indirect methods if a tractable formulat

the latter we resort to a paradigm squarc &3

system theory and subspace system id¢

Behavioral system theory [11]-[13]
on dynamical systems as sets of trajec
require parametric representations whi
from a data-centric perspective. For
invariant (LTI) systems are character
subspaces within an ambient space of t
identification is to find such a low-dir
data. Subspace methods take a similar
mic) viewpoint [14]-[16] and extract p
the range and null spaces of a low-ran

Both lines of work come together
the Fundamental Lemma [17]; see als
extensions. It states that, under some
of all finite-length trajectories (the re:
LTI system equals the range space of
This result serves as the theoretic unc
subspace identification [19]-[21] and
particular subspace predictive control b
models [22]-{24], explicit feedback pc
data mat [25]-[27). and data-enal
seeking compatibility of predicted trajc
space of a data Hankel matrix. The la
been established for deterministic LTI
and have recently been extended by st

optimal control problems. Closed-loop
in [30]. The regularizations were first n

Data-Enabled Predictive Control
of Autonomous Energy Systems

Florian Dorfler

Automatic Control Laboratory, ETH Zurich
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