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I
n this lecture we will introduce causality into bond graph models by means
of so-called causality strokes. Although it was exactly the acausality of

bond graph methodology that allowed us to build the model of a system,
we need to introduce the causality in the final stage of model development
just in order to extract the state equations. Through this lecture we will
finish our introduction to the modeling methodology based on power bond
graphs. Namely, we will show how a state-space model can be obtained from
a bond graph with the causality of all the bonds completely determined. The
extracted state equations use generalized momenta and generalized displace-
ments as the state variables. The procedure is very straightforward. However,
there may be situations when the causality cannot be completely assigned to
all the bonds within a graph. Either there are some conflicts and we cannot
set integral causality for all the energy storage elements, in which case we talk
about overdetermined causality (in short, overcausality), or it turns out that
there is some freedom even after we set integral causality for the energy stor-
age elements (compliances and inertances) and we can choose the causality of
some components arbitrarily, in which case we talk about underdetermined
causality (in short, undercausality). In this lecture we will show how to deal
with these.

1 Causality in power bond graphs

For the purpose of building the model of the system by assembling models
of elements and subsystems we took advantage of acausality of bond graphs.
Nonetheless, when we finally want to extract state equations from the bond
graph, we need to introduce causality in the bond graph.

1.1 Causality for the elements—causal stroke

Bond graph models for individual elements always relate two variables but
they do not say which of the two is the input and which is the output. The
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only exception was an ideal source of generalized force or generalized velocity,
for which the causality was included in the definition of the elements. Now we
have to consider causality for other elements.

We will use a causal mark to denote whether the generalized force was the
(independent) input enforce on the element or if the generalized velocity was
the input. Note that this is unrelated to the half-arrow issue, therefore you
can safely disregard it, pay no attention.

1.1.1 Resistor

R
e

q̇

Generalized force as the input:
q̇(t) = q̇(e(t)).

R
e

q̇

Gen. velocity as the input:
e(t) = e(q̇(t)).

Commonly it makes no difference which causality we choose. In particular,
for linear resistors we have

R
e

q̇

Generalized force as the input:

q̇(t) = e(t)
R .

R
e

q̇

Gen. velocity as the input:
e(t) = Rq̇(t).

But for some nonlinear resistors only one of the two variants of causality
can be modelled as a function of one variable on the other.

1.1.2 Compliance

For simplicity we only consider linear models

C
e

q̇

Generalized force as the input:
q̇(t) = C d

dte(t).

R
e

q̇

Gen. velocity as the input:
e(t) = 1

C q(t) = 1
C

∫
q̇(τ)dτ .

Apparently, the two types of causality differ significantly—the input vari-
able needs to be either differentiated or integrated. We call thes two derivative
and integral causality, respectively. For reasons explained later we will prefer
the integral causality, that is, we will like to see the generalized velocity as the
input to the compliance.

1.1.3 Inertance

Similarly as with compliance, here we have an integral and derivative causality
too with the integral causality being a prefered option.
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I
e

q̇

Generalized force as the input:
q̇(t) = 1

I p(t) = 1
I

∫
e(τ)dτ .

I
e

q̇

Gen. velocity as the input:

e(t) = I dq̇(t)
dt .

1.1.4 Transformer

T
e1

q̇1

e2

q̇2

One possible causality for a trans-
former.

T
e1

q̇1

e2

q̇2

Another possible causality for a
transformer.

Since the transformer is defined as q̇2 = T q̇1 and e1 = T ė2, it is impossible
to have both es as the inputs.

1.1.5 Gyrator

G
e1

q̇1

e2

q̇2

One possible causality for a gyra-
tor.

G
e1

q̇1

e2

q̇2

Another possible causality for a
gyrator.

Similar arguments as for the transformer.

1.1.6 Type-0 junction

0
e1

q̇1

e4

q̇4

e2 q̇2

q̇3e3

One possible causality for a Type-
0 junction.

0
e1

q̇1

e4

q̇4

e2 q̇2

q̇3e3

Another possible causality for a
Type-0 causality.

The type-0 junction is characterized by a common effort. Hence there
may be only one bond throuh with the effort is enforced upon the junction.
Therefore there is only one bond with a causal stroke at the type-0 junction.
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1
e1

q̇1

e4

q̇4

e2 q̇2

q̇3e3

One possible causality for a Type-
1 juction.

1
e1

q̇1

e4

q̇4

e2 q̇2

q̇3e3

Another possible causality for a
Type-1 junction.

1.1.7 Type-1 junction

The type-1 junction is characterized by a common flow. Hence there may be
only one bond throuh with the flow is enforced upon the junction. Therefore
there is only one bond without a causal stroke at the type-1 junction.

1.2 Adding the causal strokes in the bond graphs

We start by adding the causal strokes to the sources. Then we add the causal
strokes to the compliances and inertances which will guarantee the integral
causality.

1.3 Block diagrams for bond graph elements with the causality
already fixed

Finally we can actually use Simulink to implement bond graph elements.

2 Extracting the state equations from bond graphs

We assume here that the causality strokes were added to all bonds in the
graph with no conflict and also with no freedom once the integral causality
was set for the energy storage elements. If this is not the case, overcausality
or undercausality occurs and we will show in the ńext sections how to solve
the issue. We consider the bond graph in Fig. 9

Se 1 0 C : C

R : R I : L

u0

×

Figure 9: Bond graph for a parallel interconnection of two electrical capacitors
connected to a voltage generator.
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Start by labeling the generalized effort on the bond at every generalized
inertance. However, express the generalized effort as a derivative of a gener-
alized momentum, that is, ṗ(t). The generalized momentum p(t) will become
a state variable. Labeling its derivative in the graph will allow us reading
off a state equation directly (we will be ready to do it in a while). Brown
recommends circling the variable ṗ in the graph for convenience. Then we can
immediately write down the generalized velocity at the same bond, which is
given by p/I. Then label the generalized velocity at a bond at every gener-
alized compliance. Since generalized velocity has been named q̇, this directly
gives us the left hand side for the state equation we are going to build. In
other words, the generalized displacement q will be another state variable. The
generalized effort at the same bond can be set to q/C. Then we propagate
these values to the rest of the graph following the definitions of the elements
such as junctions, transformers and resistors and being guided by the causal
strokes. The result is in Fig. 10

Se 1 0 C : C

R : R I : L

u0

×
u0− q

C

R
u0 − q

C

q
C

u0− q
C

R

q
C

q̇

p
Iṗ

Figure 10: Bond graph for a parallel interconnection of two electrical capaci-
tors connected to a voltage generator.

The state equations are

ṗ(t) =
q(t)

C
, (1)

q̇(t) =
u0 − q

C

R
− p(t)

I
. (2)

If you want to see these in the matrix-vector form, here it is[
ṗ(t)
q̇(t)

]
=

[
0 1

C
−1

I − 1
RC

] [
p(t)
q(t)

]
+

[
0
1
R

]
u0(t). (3)

A comment is appropriate here. The bond graph corresponds to an RLC
circuit (can you “reverse-engineer” the bond graph to come up with the original
circuit?) and you might be surprised to see what are the state variables here.
You might have expected that we will have the voltage across the pins of an
capacitor and the current through the inductor as the state variables. Instead
we have p and q. First, what is the interpretation of p (q is easy—charge)?
Well, you may want to look into your old textbooks on electronics to see that
this is actually a variable called flux linkage and often denoted λ(t) in electrical
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engineering literature. Second, obtaining your desired uL and iC is easy. Just
attach these two output equations to your two state equations

iL =
p

L
, (4)

uC =
q

C
. (5)

3 Overdetermined causality

It may happen that the standard procedure for furnishing the bond graph
with causal strokes cannot be accomplished. Consider an example of a bond
graph in Fig. 11.

Sf : q̇0 0 G : G 1 I : I2

I : I1

C : C R : R

×
q̇0

Figure 11: Bond graph for a system for which the task of determining the
causality for all the bonds with the accumulators of energy having an integral
causality cannot be accomplished.

If this is attempted, one runs into troubles and as a result, one of the
three energy storage elements must accept derivative causality. Let us pick
the element I2 as the loser here. The causality is then as in Fig. 12. We also
determined all the variables characterizing the bonds.

Reading the state equations for p1 and q directly from the bond graph is
straightforward

ṗ1 =
q

C
, (6)

q̇ = q̇0 −
p1
I1
− R

CG2
q − I2

CG2
q̇. (7)

The essence of the problem is visible on the right side of the state equation
for q—the derivative of the state variable is now present on both sides of the
differential equation! However, such problem is trivial to solve—bring all the
terms with q̇ on the left hand side of the equation.(

1 +
I2
CG2

)
q̇ = q̇0 −

p1
I1
− R

CG2
q (8)
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Sf q̇0 0 G : G 1 I : I2

I : I1

C : C R : R

×
q̇0

q
C

R
CG2 q + I2

CG2 q̇

R
CGq + I2

CG q̇

q
CG

q
CG

R
CGq

I2
CG q̇

q
CG

ṗ1
p1

I1

q̇q
C

Figure 12: Bond graph for a system for which the task of determining the
causality for all the bonds with the accumulators of energy having an integral
causality cannot be accomplished.

We obtained an implicit differential equation. In this particular case the
final step is easy—simply divide both sides by

(
1 + I2

CG2

)
and we have a stan-

dard state space equation. In other cases, this division may be needed in
matrix form. This does not change the essence of the problem, though.

We have seen that it is easily possible to resolve the causality conflict in
an algebraic way. It is occasionally possible to avoid such conflicts even at
the stage of building and simplifying the bond graph. Consider two electri-
cal capacitors interconnected in parallel and to which a voltage generator is
attached, see Fig. 13.

Se : u0 0 C : C1

C : C2

u0

×

Figure 13: Bond graph for a parallel interconnection of two electrical capaci-
tors connected to a voltage generator.

Apparently, there is no way to assign integral causality to both capacitors
(generalized compliances). However, it is possible to create an equivalent bond
graph, which will only contain a single generalized compliance as in Fig 14.

Se : u0 0 C : C
u0

×

Figure 14: Bond graph with an equivalent capacitor.

Although it is trivial to find the value of this equivalent capacitor (looking
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the expression for a parallel interconnection of capacitors in some introductory
electronics textbook), we will demonstrate here one versatile procedure for
finding the parameters of equivalent elements. It is based on the powerful fact
that the energy stored in the original system and the simplified (equivalent)
one must be the same. In order to arrive at usable results, we need to express
the energy as a function of the variable which will be preserved both in the
new as well as the original scheme. In our case it is the voltage. Hence we are
going to express the energy stored in the capacitor as a function of the voltage
across the capacitor leads

1

2
C1u

2
0 +

1

2
C2u

2
0 =

1

2
Cu20, (9)

from which it follows that
C = C1 + C2. (10)

This result was certainly perfectly anticipated, but let us demonstrate
the power and simplicity of the procedure by considering a slightly modified
situation.

Se : u0 0 C : C1

T : T

C : C2

u0

×

Figure 15: Bond graph which we are striving to represent by a simpler bond
graph with a single equivalent compliance.

The procedure based on evaluation of energy gives

1

2
C1u

2
0 +

1

2
C2

 u0
T︸︷︷︸
u2


2

=
1

2
Cu20, (11)

from which we can immediately write

C = C1 +
1

T 2
C2. (12)

Make sure you have mastered this procedure by finding equivalent values
for moduli of compliance and inertia elements in various interconnections.
This is indeed very useful. You will not have to store these formulas in your
memory.
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4 Underdetermined causality

Handling one type of causality conficts—overdetermined causality—was rela-
tively easy. But there is yet another type of defective scenario that one can
encounter, such as the one in Fig. 16

Sf : q̇0 0 R : R2

I : I

T : T

1C : C R : R1

×
q̇0

Figure 16: Bond graph for which the causality cannot be uniquely determined
after setting the causality for the flow source and the two energy storages.

Apparently, after assigning the integral causality to all the energy storage
elements, there is still some freedom in assigning the causality of the rest. This
does not look like a problem. One possible choice can be as in Fig. 17

Sf : q̇0 0 R : R2

I : I

T : T

1C : C R : R1

×
q̇0

Figure 17: One particular choice of causality for a bond graph from Fig. 16.

Now, even before we try to extract the state equations, let us build an
block diagram (Simulink style) implementing this causal bond graph.

When the simulation is run for the Simulink diagram in Fig. 18, Simulink
gives a warning message about the presence of algebraic loop. We will have
more to say about algebraic loops in Simulink once we start discussing tech-
niques for numerical simulation1. For now, suffice to say that presence of

1You can read a bit about algebraic loops in Simulink on pages 3-39 to 3-80 of Simulink
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Figure 18: Simulink implementation of a bond graph with an algebraic loop
formed by the closed path T → R1 → T → 1/R2.

algebraic loops presents some extra load for the solver. Mature simulation
environments such as Simulink are able to cope with it, but at the expense
of extra computational load. But if the computational time is acceptable, we
can safely rely on the solver. If it is not, one has to think about reformulation
of the model which would get rid of the algebraic loop. Another option is
to avoid simulating such system in a signal-based environment and stick to
some equation based environment such as Simscape or Modelica, which are
specialized at simulating systems described by differential-algebraic equations
(DAE). More on this later in the course.

Let us see now how we can extract the equations from the bond graph.
The procedure recommended in [1] is to add a virtual inertance to a type-1

User’s Guide http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
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junction or a virtual compliance to a type-0 junction which do not have the
causality on all their bonds completely and uniquely assigned after the integral
causality of the energy storage elements was assigned. By the adjective virtual
we mean that the corresponding generalized effort or flow, respectively, will
be zero. This way the new virtual element does not disrupt the dynamics of
the original system, and yet from the viewpoint of causality assignment every
such virtual element removes one freedom. For example, in our bond graph we
can add a virtual inertance to the type-1 junction. The rest is then resolved
as in Fig. 19

Sf : q̇0 0 R : R2

I : I

T : T

1C : C R : R1

Iv

×
q̇0

0 fv

Figure 19: The bond graph from Fig. 16 with a virtual inertance attached
to the type-1 junction, which enables setting the causality of the rest of the
graph uniquely.

In order to derive the equations from this causal bond graph, we follow the
same procedure as before. First we set the ṗ and q̇ on the bonds with energy
storage elements and then we propagate the known value into the rest of the
graph. The result is in Fig. 20

The equations can now be written immediately using Fig. 20. We have
three energy storage elements, but remember that one of them is just virtual,
that is, the effort on its bond is equal to zero:

q̇ = fv, (13)

ṗ = R2

(
q̇0 −

p

I
− fv
T

)
, (14)

0 = − q
C
−R1fv +

R2

T

(
q̇0 −

p

I
− fv
T

)
. (15)

Apparently, what we obtained is a set of two differential equation and one
algebraic equation—an instance of the so-called DAE system as mentioned
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Sf : q̇0 0 R : R2

I : I

T : T

1C : C R : R1

Iv

×
q̇0

p
Iṗ

R2(q̇0 − p
I
− fv

T
)

q̇0 − p
I −

fv
T

R2(q̇0 − p
I −

fv
T ) fv

T

R2

T (q̇0 − p
I −

fv
T ) fv

q̇

q
C R1fv

fv

0 fv

Figure 20: The evaluated bond graph from Fig. 16 with a virtual inertance
attached to the type-1 junction, which enabled setting the causality of the rest
of the graph uniquely.

in the introductory lecture. In this particular (simple because linear) case
it is possible to solve the third equation for fv and substitute it to the first
two equations and obtain the standard state space model. In the general
(nonlinear) case, however, this may not be possible and one will have to resort
to techniques for DAE, whether for simulation purposes or for purposes of
analysis or control design.

To summarize: when the causality is not determined uniquely in the bond
graph after the integral causality of the energy storage elements (and of course
the inputs of effort or flow) have been set, some problems can be anticipated.
When implementing the bond graph in Simulink, the problem will exhibit itself
as an algebraic loop. Since Simulink has some built-in support for these situa-
tions, warnings about algebraic loops can be ignored as long as the simulation
time is acceptable. If the simulation is too slow, one then has to reconsider
some simplifying assumptions made in the modeling state. Typically, some
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inertances or capacitances need not actually be negligible. When it is desired
to derive equations from the bond graph, these actually come in the form of
DAE. Such a set of differential and algebraic equations can by transformable to
a set of ordinary differential equation (aka state-space model), but this trans-
formation need not exist. Once again, one can either go back to the model
and reconsider some modeling assumptions or it is also possible to resort to
analytical and numerical tools for DAE. More on this towards the end of the
course within lectures on numerical techniques.

5 Literature

In this lecture we learnt how to extract state equations directly from bond
graphs. This topic is described in [1] in section 3.4. The topic is then also cov-
ered by section 6.1. We also showed two classes of defective systems—systems
with overdetermined causality and systems with underdetermined causality.
Descriptions of these situations and some guidance on how to solve them are
in section 6.2.

Alternatively, the chapter 5 in [3]. Short treatment can also be found in
[2].
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