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Modeling electrical and
electromechanical systems
using Lagrange’s equation
Unified energy-based modeling
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Modeling a dynamical system by evaluating its total kinetic (co)energy and
total potential energy and substituting these into the Lagrange’s equa-

tion is now a well established methodology. The method is covered in literally
every textbook on classical/analytical/theoretical dynamics. However, these
textbooks and, similarly, most introductory physics courses, favor examples in
mechanical domain. The versatility of the Lagrange’s methodology stemming
from validity of energy across physical domains need not be perfectly obvious
then. We are going to break it in this lecture by learning how to find a model
of an electrical circuit following the Lagrange’s approach. While this may seem
redundant for electronic circuits because more taylored modeling methodolo-
gies exist, the apparent advantage is that we are going to use identical concepts
that we have already exercised in the mechanical domain. This will give us a
unified modeling framework for multidomain system such as electromechanical
systems.

1 Modeling electrical circuits using Lagrange’s equa-
tion

1.1 Charge formalism

When looking for a candidate for the generalized variable, our adherence to the
notation that we established at the beginning of the course now pays back. One
good candidate for playing the role of a generalized coordinate (or generalized
displacement) labelled as q is the electric charge (and the generalized velocity
q̇ is then the electric current i = dq/dt).

But how many charges (currents) do we need to determine in the circuit
in order to describe it fully? In other words, what is the number of degrees of
freedom?
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Consider an example circuit below. A resistor, a capacitor and an inductor
are interconnected in series together with a voltage source.
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Figure 1: Circuit diagram of an electrical RLC circuit. Three nodes are labelled
(the ground node not highlighted).

Thinking in terms of charges is perhaps not very intuitive, let’s focus on
derivatives of electric charges—electric currents as generalized velocities. Since
there are four components here, hence four branches, we can label four currents.
However, it is obvious that out of these four currents, three are dependent. In
other words, there is just one independent current, hence charge. Let’s label
it just q.

A general guidance for determining the number of degrees of freedom is
given by the formula

n = B −N + 1, (1)

where B is the total number of branches (a branch is a connection between two
nodes, each branch has a single component) and N is the number of nodes. The
formula comes from the fact that there are B branch currents and these have to
satisfy N − 1 Kirchhoff’s current law conditions corresponding to N − 1 nodes
(the reference node is not considered). Hence the vector of branch currents
lives in the B − (N − 1) subspace.

In our case, substituting into the formula gives n = 4 − 4 + 1 = 1, which
confirms our immediate conclusion that there is just one independent current,
hence charge.

Now, our next task is to find the total kinetic coenergy and potential energy
as functions of q and q̇ = i. Note that in electrical circuits we prefer a different
terminology: we classify the energies and coenergies as magnetic and electric
rather than kinetic and potential. Therefore we write

W∗
m(q̇) =

1

2
Lq̇2 (2)

and
We(q) =

1

2

1

C
q2. (3)
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Lagrange function defined as

L(q, q̇) =W∗
m(q̇)−We(q) (4)

is then
L(q, q̇) = 1

2
Lq̇2 − 1

2

1

C
q2. (5)

Since the circuit also contains a dissipative element, its content function
(also Rayleigh dissipation function) is

D(q̇) = 1

2
Rq̇2. (6)

The nonconservative force E0 (other than the dissipation) is just the single
voltage u0 of the generator.

Lagrange’s equation defined as

d

dt

∂

∂q̇
L(q, q̇)− ∂

∂q
L(q, q̇) = − ∂

∂q̇
D(q̇) + E0 (7)

is then
1

C
q(t) +Rq̇(t) + Lq̈(t) = u0(t). (8)

This is our desired model. It interpretation is obvious. On the left hand
side there is a sum of voltages on the three passive elements. Voilà, Kirchhoff’s
voltage law.

1.2 Flux linkage formalism

Although the choice of the charge as the generalized coordinate seemed natural
(also thanks to the symbol q), there is another choice. It is related to the fact
that it is not only the above defined Lagrangian that satisfies the Lagrange’s
equation but there is also something called co-Lagrangian defined as

L∗(λ, λ̇) =W∗
e (λ̇)−Wm(λ) (9)

that also satisfies the Lagrange’s equation, namely

d

dt

∂

∂λ̇
L∗(λ, λ̇)− ∂

∂λ
L∗(λ, λ̇) = − ∂

∂λ̇
D∗(λ̇) + I0. (10)

Obviously, the promised new candidate for a generalized coordinate is flux
linkage λ. Its time derivative is voltage, that is, λ̇ = u , and it may be a
bit more comfortable for most of us to think in terms of voltages. How many
voltages do we need to characterize the circuit? The number of nongrounded
nodes gives an initial guess

m = N − 1. (11)
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In our case m = 4 − 1 = 3. But note that the voltage on the first node
is directly given by the generator. Hence it should not be regarded as a free
coordinate. Remember that a generalized coordinate is something that will
only be determined by solving the differential equation. Here its time evolution
will be directly determined by the voltage source. Thus we need to consider
two voltages, hence flux linkages as generalized coordinates: λ2 and λ3.

The electric (potential) coenergy is

W∗
e (λ̇) =

1

2
Cλ̇23, (12)

the magnetic (kinetic) energy is

Wm(λ) =
1

2

1

L
(λ2 − λ3)2. (13)

The co-content function is

D∗(λ̇) =
1

2

1

R
(λ̇1 − λ̇2)2. (14)

There is no source of current, hence there will be no term on the right-hand
side of the two equations after moving the terms corresponding to dissipation
to the left. Indeed, there will be two Lagrange’s equations here

d

dt

∂

∂λ̇2
L∗ − ∂

∂λ2
L∗ + ∂

∂λ̇2
D∗ = 0

d

dt

∂

∂λ̇3
L∗ − ∂

∂λ3
L∗ + ∂

∂λ̇3
D∗ = 0, (15)

which after substition take the form of

λ2 − λ3
L

− λ̇1 − λ̇2
R

= 0 (16)

−λ2 − λ3
L

+ Cλ̈3 = 0, (17)

where we should keep in mind that λ1 is an input to the system (u0 = λ̇1).
The interpretation of these two equations is that: 1. the current going

through the inductor is equal to the current through the resistor and 2. the
current going through the inductor is equal to the current through the capac-
itor.

A disconcerting feature of the above model is that we have two variables
in the equations. One appears together with its first derivative while the other
also appears with its second derivative. This suggests that the corresponding
state-space model would be of order 3. This does not agree with our observation
that we only have two accumulators of energy (L and C elements). Let’s see
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if we can massage the equations to reveal this information. We first sum the
two equations to obtain

− λ̇1 − λ̇2
R

+ Cλ̈3 = 0, (18)

whose interpretation is, no surprise, that the current through a resistor is equal
to the current through the capacitor. Notice that the equation contains only
derivatives (first and second) of the variables. Therefore, we can integrate this
equation to effectively reduce its order

− λ1 − λ2
R

+ Cλ̇3 = 0. (19)

Together with (16) this gives a new set of equations

λ2 − λ3
L

− λ̇1 − λ̇2
R

= 0 (20)

−λ1 − λ2
R

+ Cλ̇3 = 0. (21)

Thus, we have a set of two first-order equations, hence a system of order
two, which agrees with the model obtained using the charge formalism.

Transforming these into a state-space model is an easy exercise left to you.

2 Modeling electromechanical systems using Lagrange’s
equation

Not much new theory needed. Instead, we will clarify the methodology by a
few examples. They are mostly from [9] as most of the material in this lecture.

2.1 Electromagnetic plunger

2.2 Electromagnetic loudspeaker

2.3 Proof-mass actuator

2.4 Electrodynamic isolator

2.5 Sky-hook damper

3 Modeling transducers using energy

4 Literature

The energy-based Lagrange’s modeling has been described in gazzilions of won-
derfull (and less wonderful) texts. Among our most favourite classics are [8]
and [2] and the newer [3], [7] or even the student-friendly [4]. The trouble with

Lecture 7 on Modeling and Simulation of Dynamic Systems 5



Modeling based on Lagrange’s equations

all these texts is that they are exclusively driven by the needs of mechanical
engineers. The same argument holds for the popular textbooks on robotics
that also contain chapters on modeling, such as [11] or [10].

Luckily, there are a few texts that emphasize the multidomain approach.
A recommendable text is [9]. In fact, I used it to prepare this lecture.

I also recommend the tutorial paper [5] which describes the duality in La-
grange’s modeling with quite some rigor. There are a few other recent texts
such as [1] or [6] but, personally, nothing can beat the wonderful three-volume
classic [12]. The more so that it is freely (and legally) downloadable at http://
ocw.mit.edu/resources/res-6-003-electromechanical-dynamics-spring-2009/
front-end-matter/.
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