Simulation of dynamic systems

Numerical solution of ordinary differential equations

Zden&k Hurak

Advanced Algorithms for Control and Communications (AA4CC)
Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague, Prague, Czech Republic

November 26, 2019

Outline

Discretization and Taylor series approximation
Forward and Backward Euler algorithms
Numerical stability

Higher-order methods — single-step methods
Variable integration steps

Stiff systems

Multistep techniques

Problem statement

Find x(t) satisfying

x(t) = f(x, u, t),

where x(t) is a state vector, u(t) is the input vector and the state
is known at some (initial) time tp < t and

X(to) = XQ.

Discretization in time — Taylor series

Assuming x(t) sufficiently smooth,

h2
. 2!

dx(t)
dt

d2x(t)
dt?

X(to + h) = X(to) +

to
Plugging in the nonlinear state space model yields
df(x,u, t)| h?

x(to + h) = x(to) + f(x,u,t)|, h+ i

2!

to

In the vector case when x(t) € R”, the expression is rewritten
componentwise.

— + ...

Alternative view of Taylor series description — numerical
(approximate) integration

h2
, 2!

dx(t)
dt

d2x(t)
dt?

x(to + h) = x(to) +

to

SO (xu,t)dt

An idea for the (class of) algorithms — truncate the
Taylor series

For example, truncating the Taylor series

df(x,u,t) h: n
dt 20

to

x(to + h) = x(to) + f(x,u, t)[, h+
after the second term yields

x(to + h) = x(to) + f(x,u, t“)]tO h

which suggests our first algorithm

X+1 = Xk + fxh.

Notation

x(ty) is a value of the solution at the (integration) time step .
Xy is an approximation to the true value at the time step tx.
fx is an approximation to the true value of f(x, u, t) at ty.

x(t)

Very often tx = ty + kh, where h is an integration (time) step. But
variable steps are actually more common in practice.

Truncation introduces errors, how to characterize them?
Big-Oh concept

A function e(x) is said to be O(g(x)) if and only if
e(x)

lim — 2 < K > 0.

x—0 g(X)
Often g(x) is a polynomial and the lowest powers matter most for
assymptotic considerations (x — 0). We then say that a function
e(x) is O(x") or simply n-th order.
The error introduced by truncating after three terms is O(x3)

df(x,u, t)| h? 3
—a |t O(h>).

to

x(to + h) = x(to) + f(x,u, t)[, h+

Beware of a different use in computer science in algorithmic
complexity (n € Z, n — o).

Our first algorithm — Forward Euler

’Xk—f—l = X + fkh‘

In the linear case x(t) = ax(t) the truncated Taylor series turns
into

x(to + h) = x(to) + ax(to)h
~ (14 ah)x(to).

(Do not let the linearity-in-x fool you. The derivatives in the Taylor
approximation are done with respect to time.) The algorithm is

’Xk+1 = (1 + ah)xk ‘

Approximated value

y
True

value

¢
—~

N—’

Pseudocode

Algorithm 1 Forward Euler integration (no input u(t))

Require: f(x(t),t), to, tr, x(to), h
Ensure: x(t) = f(x(t),1t)
ty < to
Xi X(to)
X f(Xo, to)
while t, < tr do
Xk < Xk + hxy
tyk <t + h
Xk f(Xk, tk)
end while

Numerical example

, x(t) — 2tx?(t)
Y=~~~/

x(®) 1+t

We are lucky that the analytical solution(s) can be found:

>> dsolve ('Dx=(x—2xt*xx"2)/(1+t)")
ans =

x(0)=5

0
(t + 1)/(t"2 + C2)

Plot the solutions for h = 0.2,0.1,0.05,0.025,0.0125

Snippet of a Matlab code

h=20.1,;
t = 0;
x = 5;
k = 1;

xtrue = @(t) (1+t)/(t"24+1/5); % Exact solution

while t <= (tf-h)
dxdt = (x(k)—2*xtxx(k)"2)/(1+t);
x(k+1) = x(k)+hxdxdt;

t = t+h;
error (k) = x(k)—xtrue(t);
k = k+1;

end

global_errorl = error(end)

Note that k starts at 1. Matlab cannot start an integer index at 0.

t[s]

‘\‘\

=

§:\]
T T 1 T 1

0.2 0.4 0.6 0.8 1

t[s]

h =0.05

12

0.8

0.6

0.4

0.2

t[s]

h =0.0125

12 T T T T

t[s]

Analysis of errors

Global error (at the end of simulation interval) vs. Local error (at
each step)

h n | |xn — x(tf)]
0.2 5 3.1155
0.1 10 0.3956
0.05 20 0.1191
0.025 | 40 0.0542
0.0125 | 80 0.0261

As h — 0, the global error |x, — x(tr)| is (approximately) halved
when h is halved = |x, — x(tf)| = O(h) = the FE method is
not “cheap”.

The findings correspond to the fact that the local error is O(h?).

What next? Truncating after higher order?

Say, after the third term (the truncation error is then O(h3))

df(x, u,t) hj
dt 2l

to

x(to + h) = x(to) + f(x,u, t)], h+

But in order to create a functional algorithm, we need to find
derivative(s) of f() with respect to time. This can be accomplished
by

1. symbolic differentiation

2. numerical approximations (see later in the lecture)

Higher order truncation of Taylor series by symbolic
differentiation

Manually only feasible for small problems. Intensive research on
automatic differentiation applicable to medium and larger
problems.

Our example:

syms t x(t)
F(t) = (x(t)—25t+(x(£))"2)/(1+¢)
dfdt = diff (f(t),t)

Substituting f for x(t) and (as before) x, for x(t)

. (4Xk + 1)fk Xk(QXk + 1)

‘ _
k te+ 1 (tx +1)2

Higher order truncations by numerical approximations

» higher-order single-step methods (Runge-Kutta)
» multistep methods
But now back to the second-order methods for a while.

Backward Euler method

Why using the “slope” at the beginning of the interval? Why not
the one at the end?

X1 = Xk + F (X1, tk+1)h‘

True value

J
Approximated value

In order to find xxy1 we need to know xi1 ...

Backward Euler for a linear system and regular sampling

For a linear system and a regular sampling

Xk+1 = Xk + hAXk+1 - (/ — Ah)Xk+1 = Xk

Could be solved by a matrix inverse

Xk+1 = (I — Ah)_l X -
——
F

but numerically not reliable and efficient. Use the backslash
operator in Matlab instead to solve a set of equations.

Backward Euler method is implicit — calls for solving sets
of equations

The neeed to solve (a set of) equations, in general nonlinear
(algebraic).

Pseudocode

Algorithm 2 Backward Euler integration for a linear system (no
input u(t))

Require: A, to, tr, x(to), h
Ensure: x(t) = Ax(t)
t, < to
Xy < X(to)
while t, < tr do
solve (I — Ah)xk+1 = xk for the unknown X1
ty <t + h
Xk €= Xx+1
end while

Other options for second-order methods

> evaluate/approximate the slope (derivative) in the middle of
the interval

» average the FE and BE derivatives

Write down the two algorithms on your own and experiment with
them.

One general method for solving nonlinear equations —
Fixed-point iterations

Solve
x = g(x)

Existence and uniqueness given by contractivity of g(x). See Fixed
point theorem or Fixed point principle or Contractive mapping
theorem.

Algorithm: Substitute an initial guess xg into g()

x1 = g(xo)

and repeat. ..

Solving equations in BE methods — predictor-corrector
scheme

Application to BE:
P the initial guess provided by FE — predictor stage
P the iterative improvement provided by BE — corrector stages

The right side is contractive provided f() is Lipschitz (say,
well-behaved...).

Algorithm 3 Predictor-corrector Backward Euler integration

Require: f(x(t)), to, tr, x, h, ¢
Ensure: x(t) = f(x(t)), x(to)=xo
ty < 1o
X < X(to)
while t < tr do
Xi < (X, t)
le+1 + xx + hx, {Predictor}
Xipr < F(xCi1s t+ h)
Xk%—l — X + h)’(,fH {1 corrector}
i+1
while e > ¢ do
X5y F(xChy, ti+ h)
X1<C4i-1 — X+ h>'<kcjrl {ith corrector}
e — xC — xCi—1
i+—i+1
end while
Xg Xkc"
ty <ty + h
end while

PC scheme for a linear system
The sequence of matrices F in the discrete-time system

x(k 4+ 1) = Ax(k) is

FP =1+ Ah

F& =1 4 Ah+ (Ah)?

F< =1+ Ah+ (Ah)® + (Ah)®

FS =1+ Ah+ (Ah)? + (Ah)® + (Ah)*

For an infinite number of iterations this yields

F =1+ Ah+ (Ah)® + (Ah)® + (Ah)* + ...,

which can be shown to be equal to

F=(l—Ah"".

Newton iterations for BE

Classical Newton method solves

g(x) =0,
The i-th iteration is
Xl+1 — Xi _ g(X’
g(x!

The nonlinear equation to be solved in every iteration of BE is

Xk+1 = Xk + hf (Xiq1, tes1)

or, in the format ready for application of Newton method

Xk + hf(Xk+]_, tk+1) — Xk4+1 = 0.

The unknown variable is x,11 and the Newton iteration is

Y ht (Xjey1 ter1) = Xiga
k+1 — Tk+1 h 8f(X,1.’) 1 0 .
Ox i :
Xpy1oth+1

Vector version of Newton iterations for BE

Replace the scalar () by its matrix counterpart — Jacobian

matrix

of ofi of
)) 3
oh of oh

= df(X) | Ox1 Oxx T Oxp

dx :

ofy Ofy Ofy
Ox1 x> Tt Oxp

XLill = Xk+1 [hJL+1 - ’]_1 : [Xk + hf(x,i+1) - X/i+1}

Jacobian for a linear model is just the matrix A; the vector version
of the algorithms is then

II:&_—ll =Xjy1 — [AR= 117" D + (hA = 1)xi 4]
= [l — Ah]"1x,

And we see that in the linear case the behavior of BE is revoked.

Numerical stability

Numerical stability = for slightly perturbed data only slightly
perturbed simulation outcomes.

In control systems language: Is the discretized system stable when
the original continuous-time system is stable?

Analytical results available only for linear systems.

Stability for FE

The original continuous-time system x(t) = Ax(t). The
discrete-time model x(k + 1) = Fx(k), where F = | + Ah.

Im Im
jrww I + Ah F T
(Re'vvvv\/) ?
| 0 1\ 0 1
) (
L I

Obviously some continous-time systems are unstable after
discretization.

Re

Domain of stability for FE — preimages of stable solutions

I + Ah

Re Re

More often visualized not in the A-plane but in the " normalized”
hA-plane. Does not matter.

Finding the borders of stability domain numerically
Byl plotting the contours for spectral radius p(F)

h=1; | = eye(2,2);
a = linspace(—4,2,100); % range of real values
b = linspace(0,5,100); % range of imaginary values

rmax = zeros(length(a),length(b));

for ia = 1l:length(a)
for ib = 1:length(b)
A = [a(ia) b(ib); —b(ib) a(ia)];
F =1 + Axh;
rmax(ia,ib) = max(max(abs(eig(F)))):
end
end

[A,B] = meshgrid(a,b);

colormap(gray)
contourf(A,B,rmax’, linspace (0,1,20))

xlabel ("Re(h\lambda) '), ylabel('Im(h\lambda)")
axis ([a(1l) a(end) b(1l) b(end)]), grid on

Could reuse by substituting a different F.

Plotting only the upper half-plane.

5

45

Conforms to the analytical findings.

Numerical experiment for FE

x(t) = ax(t), x(0)=1, a=-01,-1.0,-2.0,-3.0, h=1.

a=-0.1 a=-1
Analytical Analytical
09 —o— Forward Euler 08 —o— Forward Euler
0.8
07 06
0.6 04
0.5
0.2
0.4
0 —O—©0©0-0—0—000°©
0 2 4 6 8 10 0 2 4 6 8 1
a=-2 a=-3
1500
Analytical Analytical
—©— Forward Euler 1000 —©— Forward Euler
0.5
500 /
0
oo A
—<g’ V
-05
-500
-1—0 © © © © -1000
0 2 4 6 8 10 0 2 4 6 8 10

FE inappropriate for “fast but stable” or little damped systems.

Analysis of stability for BE

(T 11

Re

(I — Ah)~1

Re

Domain of stability for BE

(I — Ah)~1

i I I

v
Y
)

Re

Numerical stability for BE — an experiment

a=-0.1 a=-3

1R 1G
= Analytical = Analytical
09 —©— Backward Euler 0.8 —©— Backward Euler
0.8
0.7 0.6
06 0.4
0.5
0.2
0.4
0 €
0 2 4 6 8 10 0 2 4 6 8 10
a=-10 x 10" a=3
1G 12
Analytical = Analytical
08 —e— Backward Euler 10 —e— Backward Euler
8
06 6
0.4 4
2
02)
0 ©—0—06—0—106—10—10—7°9 -2
0 2 4 6 8 10 0 2 4 6 8 10

BE reliable for fast stable and/or little damped, but unreliable for
unstable (general feature of implicit methods, be careful).

Domain of stability for Predictor-Corrector BE (PC-BE)

When subtracting two ininite series, their regions of convergence
must be considered (F converges for p(Ah) < 1)

Im
— A —

-
?
{
|
?

u
f
)
?
3
n

b

Re

Im

Re

Domain of stability for BE with Newton iterations

Newton iterations do not change the region of stability (see the
linear case).

Heun's method — preview of single-steps methods

Xk = f(xk, tk)
).(If+1 = f(XII:Hv tx + h)

c P
Xicy1 = Xk T hXpy g
Substituting all the terms into just one we obtain
Xk+1 = Xk + hf(Xk + hfi, tie + h).

Expand f() in Taylor series and truncate after the linear term

Of (x, t)
ot

Of (x, t)
0

Xicstk

f(Xk+hfk,tk+h) ~ f(Xk,tk)—l— hf +

Xicrtk

Plugging this into the equation above we obtain —

Of (x, t)
Ox

Of (x, t)
ot

fk+

Xk tk

X1 = Xk + hfi + b (

Xk,tk>

Now compare this with Taylor expansion of x(tx + h) truncated
after the quadratic term

f:(sztk)

1 ..
x(tx 4+ h) = x(ti) + hf (xi, tie) + Ehzf(x(tk), ty).

Modify the PC algorithm to agree with the first three terms of

Taylor series

or

le—fl = Xk + hfk + hzf(Xk, i‘k)

1
PC FE
Xkl = 5 (Xk+1 + Xk+1> .

Xk = f(Xk, tk)
P P
Xpr1 = F(Xep1) that)

1) .
Xicy1 = Xk + >h (leJrl + Xk) :

LE of Heun's method is of third order, hence GE is second order.

Runge-Kutta methods

Generalize Heun’s method

xk = f(xk, tk)
XFr1 = Xk + hBiix
Xjp1 = F(Xyp1s tk + ah)
Xkc+1 =xx+h </322>'<f+1 + “‘321)'(;() .

Plugging the equations into each other and expanding into Taylor
series yields

X1 = Xk + h(Bo1 + Baz)f

h? Of (x, t)

t5 <2ﬁ11ﬁ22 e Of(x. 1)

ot

fx + 201820

Xtk

letk)

Comparing with the Taylor expansion for x(tx + h) we learn that
the following three equations need to be satisfied

Bo1 4 B =1
201800 = 1
2P1182 =1

Heun's method

a; =1, 611 =1, ﬁgl = 0.5, 522 =0.5.
But another format popular — Butcher tableau

0l 0 o0
11 0
| 1/2 1/2

The Butcher tableau for the Explicit midpoint scheme

o]0 o
1/21/2 0
0 1

The corresponding algorithm

P — —

xk+% = Xk + 2xk
P P
Xl = (X1 tep1)

Fourth-order RK method

Matrix-vector format for the coefficients

1/2 12 0 0 0
12 o 12 0o o0
e=171 f=l9g 0o 1 o
1 1/6 1/3 1/3 1/6

Equivalently, the Butcher tableau is

olo o0 o
/2112 0 0
/2] 0 1/2 0

1|0 o0 1

|1/6 1/3 1/3 1/6

Fourt-order RK4 algorithm contains four “stages”

Xk = f(xk, tk)
h.

xP1 :Xk+§Xk

P Py

x = f(x ,tk+%)
h.

xP2 :xk—l—fxp1

2
xP2 = f(x,t, 1)
2
xPs = Xk + hxP2

%P = F(xP5 tisr)

h
Xir1 =X+ g (xk 4 2xP 4 oiP 4 >'<P3) .

Stability regions for RK methods — Heun's method

F =1+ Ah+ A%h?
and its stability domain

5

451 b

-1
Re(ht)

Stability region for RK4 method
Finding F tedious but straightforward
1

1
F =14 Ah+ = A%H?
+Ah+ 2 +2

1
ASHd 4+ — A%ht
Y

Re(ht)

Integration step size control

» The local error depends on the integration step h. If the
current error is known and is not satisfactory, the step can be
decreased.

> Where to get an error? Run two algorithms simultaneously
and subtract their outcomes. Generally works.

» Why wasting numerical effort for two independent tasks? How
about RK4 and RK57 Possibility of reuse of major part of
effort.

> Voila! ode45() solver

Some experiment in Simulink

| & () variable_integration_step_demonstr... (%) (&) Scope & &) X

|l
© File Edit View Simulation Format Toals Help ‘ = % |@& IQ ‘ E E m| @ ﬁ '%- b

] r—a
st L,
Fulse Transfer Fon Seope
Generator

semilogy (tout(l:end—1),diff(tout))

Stiff systems — example (Cleve Moler))

d
£:X2_X3, x(0)=d, 0<t<2/d, d=1/100.

Analytical solution possible:

X dsolve ('Dx=x"2—x"3",'x(0)-=_1/100");
X simplify (x);

pretty (x)

ezplot(x,0,200)

0.01;

Q(t,x) x"2—x"3;

pts = odeset('RelTol’ ,1.e—4);
ode45(F,[0 2/d],d,opts);

d
F
o

and then try with
ode23s(F,[0 2/d],d, opts);

One more note on errors — rounding errors

Errors come not only through truncating but also through finite
precision arithmetic. Guess at the outcome

>> (0.140.2)==0.3

IEEE 754 single precision (type single) is valid only down to 7
decimal places (2723 ~ 1 x 1077). Let us see the impact for the
truncation process. Think of some example where h = 0.001,

|x| = |f| = |f| = |f| = 1.

df(x(tg)) h?

2F(x(to)) b3
dt 2!

(o +)] = () + x| s

~ 1.0+ 0.001 + 107 4+ 107°.

Multistep techniques — Why discarding the values from
previous steps

Approximate the higher order derivatives of x(t) numerically

x(to + h) = x(to) + d);(tt)

d2x(t)
. dt?
0

Alternatively, approximate derivatives of f()

h? 3
5 +O(R).
to

2
u + O(h3).

1f(x,u, t
X(to+) = x(t) + Fxo .)] b+ O T
to ©°

dt

Approximate the derivative of f by a forward difference
Taylor series for the derivative
K(to + h) = x(to) + %(to)h + %&'(to)hz + o)
From which
%(to)h = x(to + h) — x(to) — %)’(’(to)hz—s—(’)(h3)
Substitute to Taylor series for x
x(to + h) = x(to) + x(to)h

+ [X(to + h) — x(tg) — %'k’(to)h2+0(h3) % +O(h?)

= x(to) + g (x(to + h) + x(t)) + O(h3).

Trapezoidal method — one step, order 2, implicit

h
Xierl = X+ (fi + fit1)

Adams-Bashforth method AB(2)

Another Taylor series for the derivative

(ty—h) = X(1o) — %(t0)h + 1 ¥ (1) + O(?)
From which

$(to)h = —(to +) + %(t0) + 3 X (10) >+ O(?)
Substitute to Taylor series for x
x(to + h) = x(to) + x(to)h
| =Kt +)+ %(t0) + 3K () PO(R) | 51+ O
— (o) + ghk(to) - %hX(to — B+ O(H).

AB(2) is explicit, two-step technique, order 2

1
Xk42 = Xk41 + Ehfk+1 — §hfk

Other two-step techniques

General structure

‘Xk+2 + a1xky1 + aoxk = h(Bafisz + Bifiyr + Bofi) ‘

Adams-Moulton (implicit, order 2)

1
Xk42 — Xk41 = Eh(5fk+2 + 8fp1 — fi) -

Simpson (order 4, implicit)

1
Xkt2 — Xk = gh(fk+2 +4f 1+ 11) .

General multistep methods

Xktntn—1Xktn—1+. . .Fooxk = h(Bnfitn + Bn-1fitn-1+ ...+ Bofk) -

p(z)=2z"+ an_12" ..+ ao,
0(2) = Bpz" + Bo—12" 1+ ...+ fo.

Classic multistep methods
Adams-Bashforth — explicit, order n

plz)=2"— 2"

Xkn — Xk4n—1 = h(Ba—1fipn—1+ ...+ Bofx).
Adams-Moulton — implicit, order n + 1

o) = 2" — 2"

Xktn — Xktn—1 = h (Bnfktn + Bn-1fktn—1+ ...+ Bofk) -

Backward differentiation formulas (BDFs) — implicit,
generalization of backward Euler, order n

o(z) = ppz"

Xkn + Qn-1Xk4n—1 + - .. + aoxx = hBnfkip.

A-stability for multistep techniques
AB(3)

Compare with FE (=AB(1)), AB(2), ...

Not all multistep have small stability region — BDF rules
BDF(3)

X —18x—9x +2x +6hf
kt1 = 77Xk = k-1 k-2 T gy Mk

5

Why does the stability region shrinks for n growing?

Interpolation of x(t) at tx, txk—1,..., tk—n, by a polynomial.
Interpolation OK but extrapolation poor for growing n!

() n=4 (b) n=

Polynomial interpolation — Newton method

Find a polynomial of nth order that passes through n+ 1 function
values fy, f1,..., f, at time instants ty, to + h,..., to + nh.

Forward differences

Afb:ﬂ_an
N*fy = Af - Afy=(h—fi) = (A —f) =K —2h +h,
Nfy = D — Dy = £ =36 +3f — f,

Newton-Gregory polynomial

t— 1t
S =

h

f(t) = fo +sAf +

s(s—1)
2!

A% fy+ ..

L+ (S>A"fo
n

Backward differences and backward Newton-Gregory
polynomial

Vfi = f; — fi1,
V2 = Vi = Vfiiy = fi = 2fiy + fio,
V3 = V2 — V2 fiiy = f; = 3fiy +3fip — fis,

+2

1
F(t) ~ fo+ sV + (S; >V2fo+ (53

)v3fo+...

-1
+<s+: >V”fo

Using backward Newton polynomial to approximate
integral of f

s+2

1
x'(t)zmsvm(j)v?m(!

>v3fo+...

/tl ()t = x(t1) — x(to),

to

t1 1 2
:/ [fo+swo+<5; >V2fo+<sg)V3fo—i—...]dt,
to

1 1 2 dt
=/ [fo+swo+(5+ >V2fo+<s+)V"‘fm—..} s
0 2 3 ds

! 1 2
X(t1)=x(to)+h/ [fr)-l-szE)—F(s;)v2f()+(5; >V3fo+...] ds
0

Adams-Bashforth

1 5 3
x(t1) = x(to) + h |fo + 5V + Ev% + gv% +...|ds

AB(3) — cutting after the quadratic term and expanding

h
Xk+1 = Xk + E(Z)’fk — 16fc_1 + 5fk_2).

AB(4) — cutting after the cubic term and expanding

h
Xk4+1 = Xk + ﬁ(55fk —59f_1 +37f_o — 9fk73).

	Discretization and Taylor series approximation
	Forward and Backward Euler algorithms
	Numerical stability
	Higher-order methods — single-step methods
	Variable integration steps
	Stiff systems
	Multistep techniques

