Infroduction to numerical
simulation

Single step and multistep methods

Zdenék Hurak
November 26, 2019

IMULATION of a dynamic system is just another keyword for numerical solu-
S tion of the underlying set of differential and/or algebraic equations. Unlike
the modeling skills, which are easily understood as indispensable for an en-
gineer, the simulation skills are often relegated to numerical mathematicians
who develop the computational packages. These are then viewed as black
boxes by engineers and used without any awareness of possible shortcomings.
A prominent example is Simulink by The Mathworks. It is very common for
engineering students to create the block diagrams modeling their system only
to learn that the default setting of the simulation parameters does not yield
satisfactory simulation results. A panic then arises leading to chaotic changes
of many parameters of the solver. Even worse, the failure to detect prob-
lems with the numerical solver setting can yield simulation outcomes which
are completely wrong and misleading. It becomes clear that at least basic
understanding of the underlying techniques is a must for every engineer. Fur-
themore, it appears that certain directions in the area of numerical simulation
were only started thanks to engineers who were able to identify the challenge,
such as stepsize control and real-time simulation. Deeper understanding of
simulation methods and their limits thus seems necessary for everyone who
wants to pursue a career in control engineering. This lecture and the next are
a modest contribution to starting your journey.

1 Discretization and Taylor series approximation

Most techniques for systems modeled by ordinary differential equations ap-
proach the problem by discretizing the time axis. The key tool for this is
Taylor series approximation. Consider a system modeled by

i(t) = f(z,u,t) (1)

where z(t) is a state vector, u(t) is the input vector and consider that the
state is known at some (initial) time ¢

Numerical simulation methods

l’(to) = Zo- (2)

The system state at time ¢ = tg + h can be obtained from a Taylor series
approximation. Assuming a scalar model (for notational simplicity) the Taylor
series is

dz(t)
dt

.’L’(to—i—h) :x(to)—l— a2 — 4. ... (3)

d?z(t) ‘ h?
2!
to

to
Plugging in the nonlinear state space model yields

df(:E’ u’ t)
dt

h2

+.... (4)
to
In the vector case when x(t) € R™, the expression is rewritten componen-
twise.
Apparently, the infinite series is not much useful for practical computa-
tions. Instead some finite truncation is used.

2 Approximation accuracy, errors

Obviously, the trunction introduces an error into the computation. It is not
the only source of error but a very significant one. Rounding errors introduced
by the use of a finite precision floating point arithmetics is another one.

2.1 Truncation errors and approximation order

Consider again the Taylor expansion, but now let’s decide that we will only
calculate the first, say, three terms and regard the rest as an error

slta-+ 1) = a(ta) + fa(to)h + LD opn) 5)

This is an opportunity for us to introduce the popular Big-Oh concept.
A function e(x) is said to be O(g(x)) if and only if

e(z)

lim

I @) <K >0. (6)

Often g(z) is a polynomial and the lowest powers matter most for assymp-
totic considerations (z — 0). We then say that a function e(z) is O(z"™) or
simply n-th order.

Now, what does all that mean? What is the use of such concept? Clearly
if the parameter h (the size of the step in our case) approaches zero, the low-
order terms dominate. The O(x3) then does not reveal the exact size of the
error, but it does reveal that decreasing the step to 1/10 would make the error

Lecture 11 on Modeling and Simulation of Dynamic Systems 2

Numerical simulation methods

thousand times smaller. Thus, we have an assymptotic behavior of the error,
an order of the error.

Note that the same notion is used for studying assymptotic complexity
of algorithms, where the integer variable is considered growing to infinity. It
should be always clear from the context which concept is used.

The important issue is that by truncating to, say, the first three terms,
that is, n = 2, not all the terms in Taylor expansion can be computed directly.
Namely, the %&to)) is not available, it must be obtained somehow. There are
two possible ways:

1. Compute the higher-order derivatives of f(x) analytically. This only
works if the differential equations is just one and relatively simple. This
restriction is also valid when using some nifty computer algebra systems
to compute the derivatives. This approach is not used often but it is
good to be aware of this path. We will not develop it further in this
course.

2. Estimate the higher-order derivatives of f(t) (or x(t)) from the (pre-
viously computed) samples of x. The topic of approximate derivatives
based on samples of a function usually earns separate chapters in books
on numerical methods. Whichever class of algorithms is used, the order
of the introduced error must be consistent with the order of the error
enforced by the truncation of the original Taylor series. For example,
with n = 2, the order of the truncation error is 3, hence the derivative of
f() should be approximated such that the corresponding term wg—?

still dominates, that is, it must of of order 2. Observing that it contains
the quadratic h? part, the approximation to derivative must be of or-
der 0. We will come back to this concept when talking about multistep
methods. Note that in single step methods the higher order derivatives
are evaluated indirectly through multiple function calls within a single
integration step.

2.2 Rounding errors

Hopefully none of you needs to be persuaded that the computations carried on
current computers using Matlab or similar SW packages are inexact. Ignoring
this fact can lead to many frustrating situations. The other day one of the
students claimed discovery of a bug in Matlab by noticing that 0.140.2 # 0.3.
I am not kidding.

>> (0.140.2)==0.3
ans =

0

Note that the current standard for storing floating point numbers on com-
puters is IEEE 754 an IEEE 854. These define what exactly is meant by
single and double floating point precisions.

Lecture 11 on Modeling and Simulation of Dynamic Systems 3

Numerical simulation methods

C-programmers would recognize the data type called float corresponding
to IEEE 754 single precision. For quite some time Matlab did not even offer
computations with single precision numbers. Currently their new data type is
called single. In decimal expansion it is valid only down to 7 decimal places
(272 ~ 1 x1077). Let us see the impact for the truncation process. Think of
some example where h = 0.001, |z| = |f| = |f| = |f] = 1.

T 2
olto +)] ~ b + ot + [N

d*f(@(to)) h°
dt? 3!

(7)
~ 1.0+ 0.001 +107¢+107°.

Apparently, the fourth term contributes nothing to the outcome, why both-
ering to compute it then? The third term is just at the edge. Implementing a
second-order method on a microcontroller with 8- or 16-bit arithmetics would
be a nonsence (unless using software libraries for double arithmetics, which,
however, make the system very heavy and slow).

2.3 Local vs. global errors

The errors discussed so far describe how inacurate the computation of z(t+ h)
is. How much it differs from a true value. The error is called local error.
However, in the end it is very often the value at the end of the simulation
interval that matters. For a “well-behaved” algorithm (to be defined in a while
by introducing the concept of numerical stability), the global error arises as a
composition of the individual local errors. Now we want to guess the order of
the global error knowing the local one. The reasoning is roughly that for a unit
simulation time interval, the number of steps of lenght h is 1/h. Therefore,
for a second-order algorithm, the global error is first-order.

2.4 Absolute vs. relative errors

This distinction is standard in all other disciplines. Shall we by happy with
an error of the order 10767 Well, it depends. For a variable with the nominal
value, say, 10, the error seems very small, but for a variable with the value
107° the error will have detrimental effect. The relative error then seems the
right tool.

3 Basic first order methods

3.1 Forward Euler approximation

The last expression gives suggestion for a very simple technique; just keep
the first two terms on the right hand side and throw away the rest. We will
study later how much error we introduce by this truncation of the infinite

Lecture 11 on Modeling and Simulation of Dynamic Systems 4

Numerical simulation methods

Taylor series. The new algorithm giving an approximate solution relies on the
fact that

CC(tQ + h) ~ x(to) + f(x(to))h (8)

This suggests an algorithm

Tp1 = ok + frh, (9)

where we use the new notation zj as an approximation to x(ty) and f =
f(xg, uk, tx) as an approximation to f(x(tx), u(tr),tx). Make sure you under-
stand the difference between the two.

Note that in the linear case 4(t) = ax(t) the truncated Taylor series turns
into

x(to + h) = x(tg) + ax(to)h

~ (14 ah)z(to). (10)

(Do not let the linearity-in-x fool you. The derivatives in the Taylor ap-
proximation are done with respect to time.)
Hence the algorithm is

1 = (1 + ah)zy. (11)

Note that extension to a vector case (z regarded as a vector variable) is
straighforward. The only difference is that the Taylor expansion is now carried
out in the vector sense (the scalar a turning into a matrix A).

This simple method is called Forward FEuler integration method. The
reason for calling it forward is obvious from Figl]

x(t)

Approximated value
y
True value

Figure 1: Numerical integration using Forward Euler method.

The increment in x(t) is approximated by its linear part only (called dif-
ferential). As an approximation of the derivative over the whole interval, the
value of derivative at the beginning of the interval is taken.

Lecture 11 on Modeling and Simulation of Dynamic Systems 5

Numerical simulation methods

Algorithm 1 Forward Euler integration (no input u(t))
Require: f(z(t),t), to, ty, z(to), h
Ensure: i(t) = f(z(t),t)
tr < 1o
T < :IJ(t())
while ¢, <ty do
Tp f(l‘k, tk)
T < T + hay
ty <t +h
end while

The algorithms is then very simple, see Alg[l]

This algorithm belongs to a class of algorithms denoted as explicit because
the value of x at the next time instant can be calculated directly using the
values at the previous time instants.

Example 3.1. Consider the following scalar problem

de x— 2tz? 2
O = 17_”, fE(O) == (12)

The exact solution can be found analytically using Symbolic Toolbox for
Matlab as

>> dsolve ('Dz=(z—2xtxz"2)/(1+¢))

which returns

t+1
W=
parameterized by the constant C in addition to the trivial (zero) solution.
Ploting the exact solutions for a few values of the constant C and super-
posing the numerical solution for a given initial value leads fo Figld
A closer look at Fig[d reveals that the the accurate (analytical) and the nu-
merical solution do not match perfectly. This is a first evidence that the process
of numerical solution brings about some innacuracies. This gets amplified as
the sampling period h grows, see Figl3

(13)

In fact, the current simple algorithm is well known for its poor accuracy
when longer integrations steps are used. Where does this poor performance
come from? The key contribution to the error is the truncation of Taylor
series; in fact, we only kept the first two terms. This suggests that the local
truncation error is O(h?) while the global error is O(h). Do the results of
numerical computations correspond to this anticipation?

The differences between tltqe+ (fomputed values x; at the end of the interval

s

and the true value z(ty) = 2 where C was chosen consistently with the
f

initial conditions (C' = 1/5 for z(0)=5) are

Lecture 11 on Modeling and Simulation of Dynamic Systems 6

Numerical simulation methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tls]

Figure 2: Analytical solutions to the example problem versus the numerical
solution obtained by Forward Euler method for a given initial condition and
h=0.1.

h no| |y, —x(ty)]
0.2 5 3.1155
0.1 10 0.3956

0.05 20 0.1191
0.025 | 40 0.0542
0.0125 | 80 0.0261

Clearly, halving the integration step h halves (approximately) the global
error. Hence the global error is a linear function of the integration step and
it is indeed O(h). This is not a very admirable property since for reducing
the error by one order (in order to get one more valid digit in the result), the
number of steps must be increased ten times.

Now, let’s have a look at another variant of Euler method.

3.2 Backward Euler approximation

In the Forward Euler method, the increment in z(t) was approximated by
its linear part (linear in h, with the derivative of z(t) at the begining of the
discrete time interval playing the role of the constant of proportionality). How
about using the value of the derivative at the end of the interval? Visually
this is sketched at Fig[d]

We can express our new algorithm as

Tit1 = Tk + f(Tht1, thr1)h. (14)

The trouble with this method is that in order to calculate an approximation
xr to x(tx) at some given time ti, we also need xp in order to determine

Lecture 11 on Modeling and Simulation of Dynamic Systems 7

Numerical simulation methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tls]

Figure 3: Analytical solutions to the example problem versus the numerical
solution obtained by Forward Euler method for a given initial condition and
h=0.2.

(t)

True value

>
Approximated value

Figure 4: Numerical integration using Backward Euler method.

an approximation f(xg,tx) to f(x(tx),tx)). This method represents a class
of methods called implicit methods. When not treated properly, this could
introduce so-called algebraic loops. What is the proper treatment? Usually
some sort of solving (systems of) equations is inevitable. Consider a linear
time invariant case to illustrate the point

z(t) = Az(t), x(0)=z9€ R". (15)

For a regular sampling, the Backward Euler scheme leads to the following
algorithm

Tpy1 = T + hATE 1. (16)

Bringing the xp1 terms on the left side gives

Lecture 11 on Modeling and Simulation of Dynamic Systems 8

Numerical simulation methods

(I — Ah)xps1 = xg, (17)
which can be rewritten as
T = (I — Ah) ' . (18)
—_——
F

Apparently, in the vector case, there is no way to avoid the need to solve a
set of linear equations (note that although we have stated a matrix inversion in
the above formula, numerically it would be very inefficient to actually compute
it. Instead, a set of linear equations [17]is solved with dedicated solvers (in
Matlab use the \ operator).

A pseudocode for the Backward Euler algorithm for a linear system &(t) =
Ax(t), x(to) = xo is here

Algorithm 2 Backward Euler integration for a linear system (no input wu(t))
Require: A, to, ty, x(to), h
Ensure: i(t) = Ax(t)
tr < 1o
zy < z(to)
while ¢, <ty do
solve (I — Ah)zyy1 = xy for the unknown zjyq
ty <t +h
Tp < Tyl
end while

In a nonlinear system, a nonlinear (typically algebraic) equation will have
to solved instead of a linear one. There are a several approaches. Two of them
will be discussed shortly, one of them based on fixed point iterations and the
other one based on Newton iterations.

Before we delve into that discussion, it may be useful to point out that
in the previous two methods we somehow arbitrarily approximated the slope
(the derivative) of x by its derivative at the beginning or the end of the step.
Both seem to do just an approximate job. But there is no reason why we could
not use the derivative of x somewhere inside the interval. It is your task to
propose an algorithm that would evaluate f at t + h/2.

Another method can be obtained by averaging the results of the two meth-
ods (FE and BE). Again, it is your task to write down such algorithm. Later
you will also be asked to apply some analysis for the two new algorithms.

3.3 Predictor-corrector method

The celebrated principle of Fixed Point iterations (often regarded as one of
the most fundamental results in analysis) deals with the nonlinear equation

Lecture 11 on Modeling and Simulation of Dynamic Systems 9

Numerical simulation methods

x = g(x). (19)

Existence and uniqueness of such solution is in a very general mathematical
setting examined by Banach’s Fized point theorem (or Fized point principle
or Contractive mapping theorem). The message is that a unique solution to
(19) exists if and only if g(z) is contractive (look it up on your own). As
a consequence of the contractivity of g(x), it is guaranteed that if some xg
is plugged into ¢(), the resulting z; = g(xp) comes a bit closer to the true
solution x. Repeating this step, that is, substituting z1 into g() to get o and
then substituting xs. .., converges to the solution .

Although beyond the scope of this course (most probably covered by some
previous math course), we can only state as a fact that in our setting the
function ¢ is always contractive. It follows from the analysis of existence and
uniqueness of the original ordinary differential equation (remember function
f defining the differential equation needs to be Lipschitz for an equation to
have a unique solution).

Why not applying the principle here? First we need to get some estimate of
a solution in order to get close enough to the solution. This is predicted by the
Forward Euler method. Then we can start the fixed point iterations in order
to get a correction of the estimate. The iterations run as long as the difference
between two successive approximations is above some predetermined treshold
€. Practically, just a few iterations suffice.

Let us examine what the algorithm does for a linear system. The sequence
of matrices F in the discrete-time system z(k + 1) = Az(k) is

FP =T+ Ah
FO =T+ Ah + (Ah)? (20)
FO =T+ Ah + (Ah)? + (Ah)?
FY =T+ Ah + (Ah)? + (Ah)® + (Ah)*
For an infinite number of iterations this yields
F =1+ Ah+ (AR)? + (AR)®> + (AR)* + ..., (21)
which can be shown to be equal to
F=(I-Ah)". (22)

Just multiply from the left by Ah and subtract it from . Identity
results.

Before we analyze the performance of this and the previous algorithm, let
us consider one more modification.

Lecture 11 on Modeling and Simulation of Dynamic Systems 10

Numerical simulation methods

Algorithm 3 Predictor-corrector modification of Backward Euler integration
Require: f(x(t)), to, ty, =0, h, ¢
Ensure: i(t) = f(z(t)), x(to) = xo
tr < 1o
T < x(to)
while t <t do
Tp f(a:k, tk)
xf < xp + hiy, {Predictor}
iy @y te + h)
mgj_l @ + hif, {1 corrector}
141
while e > ¢ do

e C;
Tty flagi te +h)

c .C; (:th
T4y < 2+ hal) {i™ corrector}

e zCi — glim
1+ 1+1
end while
t t + h
end while

3.4 Newton iterations in BE method

The predictor-corrector type of methods rely on fized point iterations algo-
rithm for solving the nonlinear algebraic equation. But other numerical tech-
niques can be used. One of the most popular (because of its conceptual sim-
plicity and fast convergence rate) is the Newton method. Let us recall that
the method aims at solving

g(l‘) =0, (23)

that is, to find the root(s) of the function g(x). The method is iterative as
well and its ¢-th iteration is described by

g9(z*)
The nonlinear algebraic equation that needs to be solved in every iteration
of BE algorithm is

Tpt1 = Tk + hf(Tht1, thr1) (25)

or, in the format ready for application of Newton method

Tk + hf($k+1,tk+1) — Tk+1 = 0. (26)

Lecture 11 on Modeling and Simulation of Dynamic Systems 11

Numerical simulation methods

The unknown variable is xx4; and the Newton iteration is

. ‘ xp+hf(xt .t —at
xgj-ll _ x2+1 . k f(k+1 k+1) k+1) (27)
i picad) ~ 1.0
Ox w}‘g+17tk+1

This expression is easily reformulated for vector variables x. The only

complication is that instead of a scalar derivative %(;) we have to consider its

matrix counterpart, so-called Jacobian matrix

of of of

dry Odzz " Odzp

oh of ofs
J df(®) _ |ow 8z Bwa (28)

dz :
9fn Ofn Ofn
Or1 Oz 7 Ozp
, A , -1 ‘]

25y = Thpr — Wi — 1 - e+ hf (2h 1) = 2hp4] (29)

The Jacobian matrix for a linear state-space model is just the matrix A;
the vector version of the algorithms is then

x;;tll = 952+1 —[Ah — I]fl [k + (hA — I)ﬁcﬂ]

= [I — Ah] 'ay, (30)

And we see that in the linear case the behavior of BE is revoked.

4 Numerical stability

Numerical stability, loosely speaking, is a property of an algorithm, which
guarantees that for slightly perturbed input data the computed solution will
only by slighty inaccurate. One of the ways to approach numerical stability
of algorithms for solving initial value problems is quite familiar to us, control
engineers. The solution algorithm is viewed as a discrete-time approximation
of the original continuos-time system. You may already know from an intro-
ductory course on automatic control that unstable discrete-time model can be
obtained for a stable continuous-time model.

This direction will be explored a bit in this section. The fact is, that
we only have analytical tests for stability of linear systems. Nonetheless the
analysis can bring some insight. We will start with the Forward Euler method.

4.1 Domain of numerical stability of Forward Euler method

As we have already learnt, the Forward Euler integration process turns the
original continuous-time system #(t) = Axz(t) into the approximate discrete-
time model x(k+1) = Fxz(k), where F' = I + Ah. Obviously the discretization

Lecture 11 on Modeling and Simulation of Dynamic Systems 12

Numerical simulation methods

Im Im
T T e
} I+ Ah §
2 Refvvv\/\/} Q o
(| [0 [\ 1o 1
R B

Figure 5: Mapping the left-half plane by the Forward Euler integration
method.

maps the region of stability of the continous-time model (which is the open
left half-plane) onto a shifted half-plane as in Fig

Obviously some continous-time systems are unstable after discretization.
More insight can be obtained if we scrutinize the subset of the complex plane
that is mapped into the unit circle as is in Figl6]

Im Im

I+ Ah

Figure 6: Preimage of the unit circle for Forward Euler integration method.

Note that it is more common to see the visualization of the domain of
stability not in the A-plane but in the "normalized” hA-plane. But the message
is the same. Whichever way, although derivation of the stability domain is
straightforward in this case, in the more complicated cases to come it will
not be easy, therefore numerical tools may come in handy. We can plot the
contours of spectral radius p(F), that is, the maximum (in absolute value)
eigenvalue and the boundary of the stability domain is given by the contour
for p(F') = 1. Matlab code is below

h=1; I =eye(2,2);
a = linspace(—4,2,100); % range of real values
b = linspace (0,5,100); % range of imaginary wvalues

rmax = zeros (length(a),length(b));

for ia = 1l:length (a)
for ib = 1l:length(b)
A = [a(ia) b(ib); —b(ib) a(ia)];

Lecture 11 on Modeling and Simulation of Dynamic Systems 13

Numerical simulation methods

—

-4 -3 -2 -1 0 1 2
Re(h})

Figure 7: Stability domain once again. This time produced using contour plot
for the spectral radius of F' (for normalized h = 1, equivalently, the domain is
plotted in hA-plane.

F =1 + Axh;
rmax (ia ,ib) = max(max(abs(eig(F))));
end
end

[A,B] = meshgrid(a,b);

colormap (gray)

contourf (A,B,rmax’, linspace (0,1,20))

xlabel (’Re(h\lambda)’), ylabel(’Im(h\lambda)’)

axis ([a(1l) a(end) b(l) b(end)]), grid on

which produces Fig. [7] equivalent to the analytically obtained [l We will reuse
this code later to plot stability domains for other methods. The only thing
that needs to be replaced is the definition of the F' matrix.

Besides the boundary of the stability domain, these graphs also show the
shape of the spectral radius inside the stability domain. The darkest spots
represent the minimum. We will find a use for this information later when
discussing simulations of stiff systems.

Example 4.1. Consider a scalar LTI system

z(t) = ax(t), x(0)=1, (31)

and pick the values of a as -0.1, -1.0, -2.0, -3.0. The response to initial values
1s plotted in Fig@ using the impulse() command in Matlab, which computes
the "accurate” solution via the exponential. On top of the analytical solutions
are visualized the numerical solutions using FFE and h = 1.

Apparently, for a = —0.1 the numerical solution agrees fairly well with the
analytical solution. For a bit faster system (a = —1), the response computed

Lecture 11 on Modeling and Simulation of Dynamic Systems 14

Numerical simulation methods

a=-0.1 a=-1
1R 1@
Analytical Analytical
0.9 —6— Forward Euler 0.8 —6— Forward Euler
0.8
07 06
0.6 04
0.5
0.2
0.4
D
0 ©—0—0—0—0—0—0—10—79
0 6 8 10 0 2 4 6 8 10
a=-2 a=-3
1® @ © @ © 1500
Analytical Analytical
—©— Forward Euler 1000 —6— Forward Euler|p
0.5
0
-0.5
-1 O © © O © -1000
0 2 4 6 8 0 2 4 6 8 10

Figure 8: Numerical experiment with Forward Euler approximation for 4(t) =
ax(t).

numerically using FE resembles the accurate solution only faintly. Moving the
pole of the original continuous-time system further to the left, the FE solution
becomes oscilate even though the original system is nicely stable. Making the
system even faster with a = —3 (still stable, in fact, the most stable of all the
systems considered), the FE computed solution is unstable.

Demonstrated by the numerical example, we are now aware of poor per-
formance of FE method for stable but fast systems. But it should not go
unnoticed that the method is not able to simulate lightly damped systems
(poles near the imaginary axis), no matter how fast sampled.

4.2 Domain of numerical stability of Backward Euler method

Determining the domain of numerical stability for BE method is a little bit
more tedious. In fact, it is one of a few instance where the analytical de-
termination is feasible, for most algorithms we will use some computational
algorithm based on gridding. But let us go for the job of determining the
relationship between the two complex planes. The mapping considered here
is (I — Ah)~!. I can be viewed as a composition of three mappings: first the
complex number is multiplied by a real negative scalar —h. Then it is shifted
by 1. Finally, it is inverted. Examining the border of continous-time stability,
the first two steps map it to a vertical line crossing the real axis at 1. What
remains to interpret geometrically is the inversion of this line in the complex

Lecture 11 on Modeling and Simulation of Dynamic Systems 15

Numerical simulation methods

plane. As Fig@ reveals, the line is mapped onto a circle centered at 1/2 and
with a radius of 1/2. And the whole left half plane is mapped onto this closed
disc.

Im Im

4

(I — Ah)~!

0 I
=
@
=
@

Figure 9: Mapping the left-half plane by the Backward Euler integration
method.

A sketch of the proof serves as a nice illustration of how convenient complex
numbers are when it comes to planar geometry. Keep considering the scalar
(first-order) system @(t) = ax(t) for notational simplicity (in the higher order
case the scalar a turns into a matrix A which necessitates considering eigen-
values). The vertical line shifted to 1 in the complex plane can be described
as a complex number

14 jaw, VweR. (32)

We need to compute its inverse and for that purpose it is more convenient
to have the complex number in the other format

—jarctan aw
1+ jaw = V1 + a2w?e a (33)
Its inverse can be easily found to be
1 _ 1 ej arctan aw. (34)

L+jaw 1+ a%w?

With the hindsight of Fig@ shift this set by 1/2 to the left. A centered

circle with a diameter 1/2 should result. In the viewpoint of complex numbers,

the resulting set shall be characterized by the constraint |z|/ < 1/2. Let us

verify this. For that purpose, we need to bring the expression into the
Im-Re format, in which easy subtraction of 1/2 can be carried out.

ej arctanaw __

1 1
- - - .
V14 a?w? V1 4+ a?w?

Realizing that

osa+j sina—1/241/2. (35)

1
V14 a2w?

Lecture 11 on Modeling and Simulation of Dynamic Systems 16

Numerical simulation methods

1 . aw
cosa = T sina = T (36)
makes the rest quite straighforward. Just check that the absolute value of
the first two components in the complex number is after substiting the
previous expressions equal identically to 1/2. Hence, the full set is a circle
wirth a radius 1/2 and centered at 1/2.

Fig[9|reveals that BE method always maps stable continuous-time systems
into stable discrete-time systems, hence the resulting simulation algorithms are
stable. So far so good. But to gain more insight, let us see what is actually
mapped to the unit circle. Fig[I0] gives an answer. Proving the figure is an
easy task for you now but you can also use the provided Matlab code to obtain
the stability domain numerically. Do it.

A striking conclusion is that even some unstable continous-time systems
can appear as stable when simulated using BE algorithm. No matter how
short the discretization period is. This is a general feature of implicit methods
and one should be aware of it. The fact is that in the past not much attention
was paid to unstable systems in numerical mathematics, and yet in engineering
we need to simulate these too.

On the other hand, the method handles stable and fast systems much
better than FE method. These properties are illustrated by the numerical
example.

Im Im

I~ ||

(I — An)~!

K
Ny

CL L1 IO
=
@
=
@

I I
o

Figure 10: Preimage of the unit circle for Backward Euler integration method.

Example 4.2. Consider again the system i(t) = ax(t), x(0) = 1. Use the
fized discretization period h = 1 and the finite simulation time t; = 10s.
Perform BE simulation for a few as.

The results are in Fig[I]]

4.3 Domain of numerical stability of Backward Euler method
with predictor-corrector

The Backward Euler method with predictor-corrector iterations seems to be
equivalent to the pure BE method if the number of iterations is infinite. How-
ever, there is a pitfall hidden here. We subtracted two series, that is, and

Lecture 11 on Modeling and Simulation of Dynamic Systems 17

Numerical simulation methods

a=-0.1 a=-3
1R 1G
Analytical Analytical
0.9 —6— Backward Euler 0.8 —©— Backward Euler
0.8
07 06
0.6 0.4
0.5
0.2
0.4
0 —0—©0—0—0—0—9
0 2 4 6 8 10 0 4 6 8 10
a=-10 x 10" a=3
1G 12
Analytical Analytical
0.8 —6— Backward Euler 10 —©— Backward Euler
8
06 6
04 4
2
0.2
D
0 —0—0—6—0—06—0069 -2
0 2 4 6 8 10 0 4 6 8 10

Figure 11: Numerical experiment with Backward Fuler approximation for

z(t) = ax(t).

scaled In order for this operation to be valid, we must consider its region
of convergence, that is, all the eigenvalues of Ah must be inside a unit circle.
Intersection with the numerical stability domain of BE algorithm yields the
half moon domain as in Fig[I2] Clearly, the method works well for a very
constrained set of systems.

Im

A |~

Re

}
|
S
|
=

5 A N [

Im

Figure 12: Preimage of the unit circle for Backward Euler integration with
predictor-corrector iterations.

Lecture 11 on Modeling and Simulation of Dynamic Systems 18

Numerical simulation methods

4.4 Domain of numerical stability of Backward Euler method
with Newton iterations

Having already analyzed the behavior of BE method with Newton iterations
for a linear system in , we can immeadiately conclude that Newton itera-
tions do not alter the domain of stability of BE method.

5 Single-step methods

5.1 Heun’s method

Recall the predictor-corrector scheme introduced previously

oy = f(ok, tr)

P .
Tpy1 = Tk + hig

. (37)
xfﬂ = f(‘rkPJrla ty +h)
i1 = o+ W
Substituting all the terms into just one we obtain
Tp1 = Tk + hf (T + hf, te + h). (38)

Now expand f() in Taylor series and truncate it after the linear term

of (x,t) Of (z,t)

f(wp + by, tr + h) =~ f(xp, t) + o |, hfx + 5 t h. (39)
Tl Th,lk
Plugging this into the (38)) we obtain
of (x,t) of(x,t)
=]’L h2 2 ’ ° 4
Ty = Tk + hfp + (o t Jr + 5 t (40)
Tkt Tkslk
flan.te)

Now compare this with Taylor expansion of x(t; + h) truncated after the
quadratic term

x(ty + h) = x(tp) + hf (xp, te) + %th(x(tk)atk)- (41)

Clearly these two resemble each other very well, up to the factor 1/2 with
the quadratic term. Hence, the PC based algorithm can be modified so that
it gives an answer that agrees with the first three terms of Taylor expansion
of the true solution.

Lecture 11 on Modeling and Simulation of Dynamic Systems 19

Numerical simulation methods

ah oy = o+ hfe + B2 f (o, te)

1, po (42)
Thil = 5 (ka+1 + 95551) :
In other words
ap = f(ok, ty)
. 43
x£+1 = f(xllc3+17tk+1) (43)

.. .

Derivation of this algorithm is a nice demonstration of how one large fam-
ily of methods is derived: you come up with some algorithmic scheme, for
instance predictor-corrector but with a limited number of corrector stages,
which certainly introduces some error, and you then try to modify the result
so that it agrees with the first n + 1 terms of the Taylor expansion. In the
case of Heun’s method n = 2 and the local error is of order 3.

5.2 Runge-Kutta methods

Heun’s method presented in the previous section can be generalized and the
generalization leads to a class of methods denoted as Runge-Kutta methods
(named after two mathematicians: Runge and Kutta).

T = f(ap, ty)
xp 1 = ok + hBndk

ka+1 =xp+h (322565“ + Bo1d) -

(44)

Plugging the equations into each other and expanding into Taylor series

yields
Tk 7tk> '

(45)
Comparing with the Taylor expansion for x(k + 1) we learn that the fol-
lowing three equations need to be satisfied

2

T = xk+h(/321+,622)fk+% <2511ﬁ22 0f(x,t)

ox

fr + 201 Bao fﬂfgi’t)

Ttk

Lecture 11 on Modeling and Simulation of Dynamic Systems 20

Numerical simulation methods

fo1 + P22 =1
2041ng =1 (46)
2B11P22 =1

This set of equations parameterizes the family of methods. Heun’s method
appears to be just one particular instance

ar=1, fu=1 P21 =05 Pa2=0.5. (47)
It is customary in the ODE literature to use a special format for writing

down these coefficients, so-called Butcher tableau, which for the Heun’s method
is of the form

0] 0 0
1|1 0
[1/2 1/2

The first row describes evaluation of the function at time ¢;. The second
row corresponds to predictor and the bottom row corresponds to corrector.

Different values give a different algorithm. Another popular algorithm is
explicit midpoint rule with Butcher tableau

0] 0 0
1/21/2 0
0 1

The corresponding equations implementing this scheme are

iy = f(ag, tg)
h
P _ =
xk+% =T+ ka
P P
Tt = (@ 1ty 1)
P

Both algorithms belong to the family of Runge-Kutta of second order.
However, the whole idea can be extended to higher orders by including more
predictor or corrector stages. Among all possibilities, the fourth-order and
four-stage Runge Kutta method is notoriously known and used. Its o and 3
parameters, written in a matrix-vector way are

1/2 /2 0 0 0
o] an|l 0 =
1 1/6 1/3 1/3 1/6

Equivalently, the Butcher tableau is

Lecture 11 on Modeling and Simulation of Dynamic Systems 21

Numerical simulation methods

olo o 0 0
1/211/2 0 0 0
12| 0 12 0 0

1|0 0o 1 0
| 1/6 1/3 1/3 1/6

It should be an easy task for you to rewrite it into equations:

Ty = f(w, tr)
h
o = TE + §$k
i = f(xpl,thr%)

h
Py _ - Py
T =xL+ =T
T (49)

Py P>
$2—f(£L‘ 7tk+%)
s :xk—l—h:icpz’

i = fa" tes)

Thi1 = Tp + g (in + 287 + 2272 + 273)

One point is particularly worth noting: the function f() is evaluated a
couple of times inside the integration step. It is not automatically guaranteed
that the times of function evaluations are nondecreasing or even strictly grow-
ing. In the above method the times are certainly not strictly increasing. The
function is evaluated first at tx, then twice at t; + 1/2h and finally at i + h.

5.3 Stability domains of RK algorithms

Here we should explore how the stability domain looks like. Especially in
comparison with the simple algorithms like FE or BE. Let’s start with Heun’s
method. We have seen that its F' matrix is

F =1+ Ah+ A%R% (50)

Its stability domain is visualized in Fig[13]

Obviously, the stability domain is extended in comparisson to FE method,
"prolonged” vertically. This is certainly plausible because a large portion of
the left-half plane is mapped onto the unit circle. In the figure we not only
visualize the boundary of the stability domain, but by plotting contours for
a few values, we have also the information about the value of the underlying
function inside the stability domain. This will become useful soon.

Finding the F' matrix is somewhat tedious but straightforward. Just sub-
stitute the equations in into each other and you obtain

Lecture 11 on Modeling and Simulation of Dynamic Systems 22

Numerical simulation methods

-4 -3 -2 -1 0 1 2
Re(hh)

Figure 13: Stability domain for Heun’s method (just the upper half-plane).

1 1 1
F=I+Ah+ 5A?fﬂ + 6,43h3 + ﬂ,414114. (51)

The stability domain is at Fig. [14]

5.4 Stiff systems, A-stability, L-stability

Here we will examine if a nice stability domain is all we need to guarantee
faithful solution of stiff systems. From the discussion of A-stability above,
we can develop an impression that in a situation when the stability domain
includes the whole left half-plane, the problems with stability are gone. Bad
luck. Things are not that easy for a particular type of systems called stiff
systems. Loosely speaking, stiff systems exhibit both slow and fast dynamics.
The fast yet stable dynamics is what causes a problem. One can view the
leftmost poles of the system as being the most stable poles because they are at
greatest distance from the imaginary axis, right? Nope, recall the fundamental
concept of Riemann sphere in complex analysis. According to it, there is just
one infinity, whichever directions in the complex plane you are approaching
it. That is, if the first order system @(t) = —Az(t), A > 0 is gettig faster and
faster, more and more stable, ultimately as A — oo it becomes “unstable”.

The methods that can cope with this not only have their stability domain
large enough (ideally covering the whole left half-plane) but also have to satisfy
an additional restriction

Jim p(F(AR)) = 0. (52)

A-stable method that satisfies the above restriction is called L — stable.
Apparently, the BE method satisfies this as seen in Fig. Recall that the

Lecture 11 on Modeling and Simulation of Dynamic Systems 23

Numerical simulation methods

Figure 14: Stability domain for RK4 algorithm.

stability domain is obtained as p(F(\h)) < 1.

For the second time in this lecture this confirms the fact that implicit
methods do a good job when simulating stiff systems. In fact, it is only the
implicit methods that are usable for stiff systems.

5.5 Stepsize and order control

We have learnt that the step size is what matters from the viewpoint of sta-
bility and accuracy. The selection of the integration step h now seems crucial.
But why stick to a fixed value of h? Actually it seems a good idea to adjust
the integration step online, based on the error. Is the error larger than what
could be accepted? Then decrease the integration step. Nice application of
basic feedback control principles. However, it is not clear where to get an
error. After all, we do not know the true value. The solution is suprisingly
simple: integrate over one integration step with two different algorithms and
take the difference of their outcomes as the estimate of the error.

True, theoretically it can happen that both algorithms undershoot, in
which case their difference will give a false indicator of a small error. But
this rarely happens! This principle inded works fairly well.

On the other hand, the computational load doubles, which is a pitty. To
releave this extra computational load, the two algorithms are not completely
different, in fact, one can algorithm can be obtained just by adding one more
stage to the RK algorithm. If the coefficients of the algorithm are chosen well,
the new (more accurate) algorithm reuses much of the function evaluations
done by the lower order algotithm. The default algorithm in Matlab—ode45—
is doing exactly that, implementing RK4 and RKS5.

Lecture 11 on Modeling and Simulation of Dynamic Systems 24

Numerical simulation methods

Figure 15: Spectral radius for matrix F' in z(k + 1) = z(k) for BE method.

6 Multiple step methods

Unlike the single-step methods, which need to evaluate the function f() several
times during the step (in so-called microsteps), in a class of methods denoted
as multistep, each step evaluates f() just once. The trick is that unlike in
single step methods, the information from the previous steps is not completely
discarded. Quite the oposite, it is well used in the upcoming steps.

]

7 Literature

The topic of numerical solution of ordinary differential equation has been ex-
tensively described in the literature. Among the huge number of textbooks we
have chosen [2] as the key text for preparation of this lecture and the next. The
reason is that this monograph seems to be best tailored not only to the engieer-
ing language but also to the engineering needs. For instance, the interpretation
of discretization in time domain as finding a discrete-time approximation to
the original continuos-time system is emphasized. This then suggests using
system-theoretic tools for investigation of stability of these methods (systems).
Some advanced topics are also included in the book, which do not appear else-
where, such as real-time simulation. Hardly useful in off-line mathematics but
of use in some engineering applications where the simulation outcomes are in
real-time compared to the true system outputs for the purpose of fault diag-
nosis. Well, yet another reason for preference of this book is the fact that
it is avaible to students of Czech Technical University in Prague through the
institutional subscription, see the web for more information.

Nonetheless, it appears that any serious study benefits from obtaining an

Lecture 11 on Modeling and Simulation of Dynamic Systems 25

Numerical simulation methods

alternative (or perhaps more classical) viewpoint. Among the classics, [I] is
also available electronically for CTU students but it may be perhaps to terse.
Other often cited introductory books are [6] and [3]. The [4] seems also suitable
for undergraduate students, although I am not acquainted with it.

Some practical aspects are nicely exposed in a book written by one of the
founders of The Mathworks company (the producer of Matlab) [5]. The book is
also freely available at http://www.mathworks.com/moler/chapters.html.
The chapter 7 deals with numerical solutions of ODEs. It is just 53 pages. Go
ahead and read it.

One particular topic, namely, the topic of stiff ordinary differential equa-
tions is also analyzed nicely in a blog by Cleve Moler at http://www.mathworks.
com/company/newsletters/news_notes/clevescorner/may03_cleve.htmll

Another interesting blog is run by Guy Rouleau and Seth Popinchalk,
application engineers at The Mathworks. Their article “THE Most Useful
Command for Debugging Variable Step Solver Performance” is worth read-
ing. You can access it at http://blogs.mathworks.com/seth/2012/06/04/
the-most-useful-command-for-debugging-variable-step-solver-performance/.

Needless to say, dozens of nice and freely downloadable lecture notes are
around on the internet, just search for the keywords ”"numerical solution of
ordinary differential equation” in case you still had not enough:-)

References

[1] John C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, Ltd, Chichester, UK, March 2008.

[2] Francois E. Cellier and Ernesto Kofman. Continuous System Simulation.
Springer, softcover reprint of hardcover 1st ed. 2006 edition, October 2010.

[3] David F. Griffiths and Desmond J. Higham. Numerical Methods for Ordi-
nary Differential Equations: Initial Value Problems. Springer, 1st edition,
December 2010.

[4] Arieh Iserles. A First Course in the Numerical Analysis of Differential
Equations. Cambridge University Press, 2nd edition, December 2008.

[5] Cleve B. Moler. Numerical Computing with MATLAB, Revised Reprint.
Society for Industrial and Applied Mathematics, rev rep edition, July 2008.

[6] Lawrence F. Shampine. Numerical solution of ordinary differential equa-
tions. Springer, 1st edition, August 1994.

Lecture 11 on Modeling and Simulation of Dynamic Systems 26

http://www.mathworks.com/moler/chapters.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/may03_cleve.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/may03_cleve.html
http://blogs.mathworks.com/seth/2012/06/04/the-most-useful-command-for-debugging-variable-step-solver-performance/
http://blogs.mathworks.com/seth/2012/06/04/the-most-useful-command-for-debugging-variable-step-solver-performance/

	Discretization and Taylor series approximation
	Approximation accuracy, errors
	Truncation errors and approximation order
	Rounding errors
	Local vs. global errors
	Absolute vs. relative errors

	Basic first order methods
	Forward Euler approximation
	Backward Euler approximation
	Predictor-corrector method
	Newton iterations in BE method

	Numerical stability
	Domain of numerical stability of Forward Euler method
	Domain of numerical stability of Backward Euler method
	Domain of numerical stability of Backward Euler method with predictor-corrector
	Domain of numerical stability of Backward Euler method with Newton iterations

	Single-step methods
	Heun's method
	Runge-Kutta methods
	Stability domains of RK algorithms
	Stiff systems, A-stability, L-stability
	Stepsize and order control

	Multiple step methods
	Literature

