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A
ll the models in mechanical and electrical domains that we derived so far
were completely void of any spatial information. We assumed that either

the systems stretch across negligible area (or fill a negligible volume) or that
considering the spatial dimension is irrelevant since the variables of interest
are identical throughout the whole system.

The first assumption was reasonable for electronic circuits provided they
were not operated at too high frequencies. What happens at high frequencies
(say, GHz and higher) is that the wavelengths become comparable with the
size of the components and systems, hence they must be modeled as spatially
distributed. We do not typically encounter this in electronics for automation
systems.

The second assumption was perfectly valid for rigid-body mechanical sys-
tems. The translation velocities of all the elementary particles comprising
the cart sliding over a flat surface are identical. It is sufficient to replace the
whole bulky object with a single point (of the identical mass) and analyze the
motion of the point. Of course, when rotation motion is superposed on the
translation motion, each elementary volume of the object travels with a differ-
ent translation velocity, but this does not add much more complication—the
whole resulting motion can be easily characterized as a composition of the two
velocities upon introducing the moment of inertia of the object.

On the other hand, we have already encountered an instance of a spatially
distributed system in a hydraulic domain. While learning how to model in-
ertia and friction of a fluid flowing in a pipe using bond graphs, we proposed
to model the two phenomena as an R and I elements attached to a type-1
junction. But we found it confusing to see that the analogous electronic cir-
cuit contained the resistor connected in series with the inductor. Translating
this back into the hydraulic setting, this would suggest that some section of
the pipe will be purely frictional whereas the inertia effect will only be seen
in the adjacent section of the pipe, which is not corresponding to the reality.
Intuitively we feel that both the inertia and friction must be considered con-
tinuously along the pipe. But we were happy with the lumped model since it
can provide reasonable accuracy and waved hands at the problematic inter-
pretation.
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Along the same line of reasoning, while discussing heat transfer, we con-
sidered two key phenomena: heat conductance and heat accumulation. When
modeling heat transfer through a slab of some material (say, a wall of your
house), we modeled each of the two phenomena in their respective layer. How-
ever, in reality there need not be any physical layers in the material, they
are just our mental constructs. The whole wall could be 3D-printed from a
concrete. Intuitively, both the conduction and the accumulation take place
everywhere throughout the material. But we followed the multilayer approach
to obtain a convenient lumped model in the form of a bond graph.

In this lecture we will take a bit more systematic approach to such systems.
Note, however, that we are only able to scratch the surface here because the
topic of spatially distributed systems (aka distributed-parameter systems) is
overwhelmingly vast and whole courses and textbooks are dedicated to it.

There are some fundamental differences between the spatially distributed
and lumped systems. The former can be described by partial differential
equations (PDE) whereas the latter can be modeled using ordinary differential
equations (ODE). While there is now a solid unified theory for ODEs, there
is nothing like that available for PDEs. Instead, PDEs are classified into a
few families and for each family its own bunch of theoretical results have been
derived. This makes studying spatially distributed systems hard.

On the other hand, while the essence of modeling of lumped systems was in
clever assembling of possibly a large number of coupled equations (that is what
we used bond graphs or Euler-Lagrange equations for), there will be no such
challenge for us in spatially distributed systems. Typically we will be given a
physical phenomenon such as heat transfer, chemical diffusion or vibration, for
which the equations are already well known and cataloged in textbooks. The
only remaining modeling activity is in finding the values of physical parameters
and setting the boundary conditions properly. Occasionally, a combination of
two or three phenomena might appear but this still does not constitute a true
challenge in assembling the equation into a single model. The true challenge
with models described by PDEs will be to analyze the model, typically by
means of numerical simulations.

The topic of numerical solution of PDEs is still being intensively studied
but a lot of useful methods exist now. We have no ambitions in this course
(and this single lecture) to give even an overview. Instead, we will see one
particular way of systematic approximation of a PDE by a set of coupled
ODEs—the method of lines (MOL). This will allow us to model spatially
distributed systems using bond graphs.
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1 Heat transfer—heat equation

1.1 Deriving the heat equation

First we consider heat transfer through a layer that separates two bulks of
material, each at their respective temperatures θ1 and θ2, see Fig. 1.

θ1 θ2
Q̇

Figure 1: Two objects separated by a partial thermal isolation through which
they can exchange energy by heat transfer. Each object is characterized by
its temperature θ1 and θ2. We want to determine the heat flow Q̇

Fourier’s law tells us that the heat flow depends on the difference between
the two temperatures. In the simplest case this dependence is just linear

Q̇(t) = H︸︷︷︸
Aλ
h

(θ1(t)− θ2(t)), (1)

where H is the thermal conductance, A is the area of the contact, h is the
thickness of the layer and λ is the (coefficient of) thermal conductivity and it
depends on the material of the layer.

Let’s now align our considered system with a global coordinate axis x
extending horizontally to the right. For the thickness of the layer going to
zero, we get

Q̇(t) = −Aλ lim
h→0

θ(x+ h, t)− θ(x, t)
h

, (2)

which yields

Q̇(t) = −Aλ∂θ(x, t)
∂x

. (3)

Let’s now extend the notation such that both the temperature and the
heat flow are the functions of time t and spatial coordinate x. The above
equation formalizes to

∂Q(x, t)

∂t
= −κ∂θ(x, t)

∂x
, (4)

which is the differential version of Fourier’s law.
We can also extend it to full 3D setup, in which the heat can flow in any

direction. Then the differential version of Fourier’s law generalizes to

∂Q(x, t)

∂t
= −κ∇θ(x, t), (5)
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that is, the heat flow now has a direction (it is a vector) and is given by the
gradient of the temperature field, scaled by k and with the direction reverted.

Besides the heat conduction there is also a heat accumulation. Consider
the scenario in Fig. 2. Heat flow Q̇1 is entering the slab of the material through
its left wall and heat flow Q̇2 is leaving through the right wall. Consider in
this introductory treatment that all the other walls are perfectly insulated.

Q̇1 θ Q̇2

Figure 2: Thermal capacitor. Heat is entering through the left wall and leaving
through the right wall. All other walls are perfectly insulated

Obviously, the difference between the two heat flows must be due to heat
accumulated in the slab, which is observable through a change in the temper-
ature. The heat accumulated in a slab of material of mass m and specific heat
(heat capacity per mass) c is

Qstored(t) = mcθ(t). (6)

If the temperature is not constant throughout the bulk of material, we
need to rewrite the above expression in an integral form

Qstored(t) =

∫
V
ρcθ(x, t)dV. (7)

If the density ρ and the specific heat c are constant throughout the space,
they could be moved outside the integral, but we are not going to rely on it
here.

Differentiating this with respect to time we get the rate at which the ther-
mal energy accumulated in the slab is rising

Q̇stored(t) =
d

dt

∫
V
ρcθ(x, t)dV

=

∫
V
ρcθ̇(x, t)dV. (8)

Now if we assume that the only significant dimension of the slab is the
horizontal (left-to-right), which ensures that the temperature of an arbitrary
point only depends on its x (horizontal) coordinate, we can specialize the
above integral expression into

Q̇stored(t) =

∫ b

a
ρAcθ̇(x, t)dx. (9)

Besides relating the stored energy with the temperature, it can also be
related with the incoming and outgoing heat flows

Q̇stored(t) = Q̇1(t)− Q̇2(t). (10)
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Let’s now shuffle this a bit. First, let’s again consider a horizontal coordi-
nate axis x. The left and right walls are at coordinates a and b, respectively.
We can then rewrite the above equation using a single heat flow Q(x, t) pa-
rameterized by x

Q̇stored(t) = −(Q̇(b, t)− Q̇(a, t)), (11)

which can be further rewritten into

Q̇stored(t) = −
∫ b

a

∂Q̇(x, t)

∂x
dx. (12)

Now we have two expressions for Q̇stored(t)∫ b

a
ρAcθ̇(x, t)dx = −

∫ b

a

∂Q̇(x, t)

∂x
dx. (13)

In fact, this can be augmented with a term describing an internal generator
of thermal energy (a heater), should there be one∫ b

a
ρAcθ̇(x, t)dx = −

∫ b

a

∂Q̇(x, t)

∂x
dx+

∫ b

a
g(x, t)dx, (14)

where g(x, t) is the generated power density.
Upon substituting for Q̇ from (4) and removing the integral signs we get

the differential equation

ρAc
∂θ(x, t)

∂t
= − ∂

∂x

(
−κθ(x, t)

∂x

)
+ g(x, t). (15)

Provided that κ is constant throughout the object, the equation simplifies
to

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
+ g(x, t). (16)

where
α =

κ

ρAc
> 0. (17)

This is the celebrated heat equation (for a homogeneous material). Very
often in textbooks it is only shown without the term corresponding to the
internal generators

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
. (18)

In order to extend this result into full 3D, that is, to the scenarios in which
the heat can be exchanged through all the walls, we need to go back to (11)
and rewrite it using a surface integral

Q̇stored = −
∮
A

(Q̇ · n)dA, (19)
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where Q̇ is now in bold face because it is a vector and n is a unit vector normal
to the surface. Note the minus sign which reflects the fact that by a common
convention the normal vector is oriented out from the volume enclosed by the
surface.

Invoking the divergence theorem we reshape the previous result into

Q̇stored = −
∫
V

(
∇ · Q̇

)
dV. (20)

But after substituting from the vector version of differential Fourier’s law
(5) for Q̇ we get

Q̇stored = −
∫
V

(∇ · (−κ∇θ)) dV, (21)

which, in case of κ constant throughout the volume eventually yields

∂θ(x, t)

∂t
= α∆θ(x, t), (22)

where ∆ stands for Laplace operator, which is defined for a scalar function θ
as

∆θ := ∇ · ∇θ =
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
. (23)

1.2 Discussion of Laplacian

Now, before we move on to exploring the heat equation, let’s spend some time
with this important function—the Laplacian. In order to get some insight into
it, let’s consider the 1D version first.

The second derivative d2f(x)
dx2

characterizes the curvature of some univariate
function f at the point x. It vanishes when the function is linear. That means
that the solution of the differential equation

∂2θ(x, t)

∂x2
= 0 (24)

is a function with a linear graph. Well, actually affine, that is, a linear function
plus some offset

f(x) = ax+ b. (25)

The values of the two parameters a and b have to be determined from
the boundary conditions. For a second-order ODE, two conditions are needed.
One possibility is to fix the values of the function f at the two ends of the
interval, that is

f(a) = fa (26)

f(b) = fb. (27)
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a b

f (a)

f (b)

x

f

Figure 3: Solution of the differential equation 0 = fxx for given boundary
values

In other words, if we know the value of the function at the ends of the in-
terval, we can immediately tell the value of the function everywhere inside the
interval between the function just by linear interpolation as Fig. 3 illustrates

What implication does it have for the heat equation? Consider the asymp-
totic solution of (18), that is, consider what happens as t → ∞. Obviously,
the left-hand side vanishes (this is by the definition of steady state) but then

0 =
∂2θ(x, t)

∂x2
. (28)

The implication is now clear, I suppose. After a sufficient time, the distri-
bution of temperature along the one-dimensional domain is described by an
affine graph. The actual slope and offset will be determined by the boundary
conditions (the temperatures at the two ends).

The above mentioned fact introduces one important property of the steady-
state solution of the heat equation—in every point in the solution domain
(interval in our 1D case), the solution is given as an average of the values in
the neighborhood (again, interval in our case).

The implications in the full 3D case are little bit less intuitive but equally
important. In order to interpret the condition (called Laplace equation)

0 = ∆θ =
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
(29)

consider just a two-dimensional domain (for the ease of visualization), that is,

0 = ∆θ =
∂2θ

∂x2
+
∂2θ

∂y2
. (30)

Now, consider as the solution domain a unit disk in the plane and the
boundary values are given by θ(x, y, t) = xy. The steady-state solution does
not depend on the initial conditions, hence we do not need to know them and
we can solve the Laplace equation to obtain Fig. 4.

Note that unlike in the 1D case, here the graph of the function is not just
a tilted and shifted plane. After all, here it is not the second derivative(s) that
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Figure 4: Solution to Laplace equation over a subset in R2—a unit disk—for
some given boundary conditions

must vanish but rather something more complicated—the Laplacian ∆θ. But
the averaging property works here as well.

1.3 Heat equation vs diffusion equation

It is worth noting that this behavior can not only be found while modeling the
heat conduction but also while modeling (chemical) diffusion. That is why the
heat equation is sometimes also called a diffusion equation. It describes how
a concentration of some chemical evolves in time (in absence of a chemical
reaction).

1.4 Heat equation also describing the distributed consensus
algorithm in networked systems

What may be perhaps even more surprising is to hear that the same prin-
ciples are artificially embedded in some distributed computation schemes in
networked systems. Although a computed network can hardly be regarded as
spatially continuous, with a large enough nodes in the network (or agents in a
multiagent system, or autonomous UAVs in a flight formation), the network
can be viewed as a spatially discretized system. The individual nodes then
periodically send their own value while receiving values from their neighbors
and they update their value by averaging it with the received values. The
process repeats, in which the network mimics the heat conduction or diffusion
phenomenon. Some links to the literature are in the final section containing
tips on literature.

1.5 Numerical solution by the method of lines (spatial dis-
cretization)

Now that we know that the fully accurate model of heat transfer in a slab
of material is a partial differential equation, we may want to analyze it. One
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way to do it is through numerical solution. Among the numerical techniques,
there is one that is particularly suited to the spirit of our course because it
will lead to a set of ordinary differential equations. It is called the method of
lines (MOL) and essentially constitutes in spatial discretization of the solution
domain..

Once again, have a careful look at the heat equation 18

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
. (31)

Does not it look familiar? On the right-hand side we have the first deriva-
tive with respect to time of the variable of interest. This looks pretty much like
a state-space model, right? Well, the complication is that the “variable” of in-
terest is not just a number of n-tuple of numbers, as we are used to in lumped
systems, but it is a segment of a function. You can perhaps view the state
vector as comprised of an infinite number of elements. That is why we call
these systems “infinite-dimensional” in contrast with the finite-dimensional
systems, with which are already familiar.

The theory of infinite-dimensional systems is very involved and certainly
does not belong to an undergraduate curriculum. For example, just have a
look at the “matrix A” in the state-space model, that is, have a look at what
kind of operator we have on the right-hand side. The operator is α ∂2

∂x2
, which

is certainly much more involved than the mere real matrix A in the finite-
dimensional state-space model ẋ(t) = Ax(t).

Elaborating on the didactic advice to view θ(x, t) at a given time t as
a “very long” vector, we can come up with an intuitive finite-dimensional
approximation—just replace θ(x, t) by a long vector

θ1(t)
θ2(t)

...
θn(t)

 (32)

containing approximations to θ(x, t) a grid of points, that is,

θ1(t) ≈ θ(a+ h), θ2(t) ≈ θ(a+ 2h), . . . θn(t) ≈ θ(a+ nh). (33)

The boundary values are

θ0(t) = θ(a, t) (34)

θn+1(t) = θ(b, t). (35)

The solution domain is visualized in Fig. 5. We can see that instead of the
full stripe in the x− t plane, we now only consider a set of (half-)lines, hence
the name of the technique.
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a b x

t

Figure 5: The solution domain for the method of lines (MOL)

What this spatial discretization brought in was that we no longer have to
consider the infinite-dimensional “vectors” but rather can work with the stan-
dard (however long) vectors. However, the right hand side of our “state-space
model” still needs some work. We need to express (actually approximate) the
second derivative of the function using just those finite number of values that
are now available. But that is a very common task. It is called finite-difference
(FD) approximation. We have already used in while discussing numerical al-
gorithms for ODES, do you remember? Forward Euler, Backward Euler, . . . .
These were simple approximations of derivatives. For example, the Forward
Euler scheme approximates the derivative as ẋ(t) ≈ limh→0

x(t+h)−x(t)
h . For

our purposes here they were not quite adequate because they were not sym-
metric. Intuitively we feel that the physics here calls for some symmetric
approximation schemes. Such approximation is proposed by the central dif-
ference(s)

∂θ

∂x
≈ θ(x+ 1

2h)− θ(x− 1
2h)

h
. (36)

The second derivative is then obtained by applied the same approximation
scheme once again

∂2θ

∂x2
≈

θ(x+h)−θ(x)
h − θ(x)−θ(x−h)

h

h
(37)

=
1

h2
(θ(x+ h)− 2θ(x) + θ(x− h)) . (38)

Now, apply this approximation not just at any x but at those grid point
(x+ h, x+ 2h, . . . , x+ nh) to spatially discretize the heat equation

θ̇1(t)

θ̇2(t)
...

θ̇n(t)

 =
α

h2


θ2 − 2θ1 + θ0
θ3 − 2θ2 + θ1

...
θn − 2θn−1 + θn−2

 . (39)

The final task is to reformat this into the popular matrix-vector state-space
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format ẋ = Ax+Bu, which leads to

θ̇1(t)

θ̇2(t)

θ̇3(t)
...

θ̇n−1(t)

θ̇n(t)


=

α

h2



−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
0 −1 −2 . . . 0 0
...
0 0 0 . . . −2 1
0 0 0 . . . 1 −2


︸ ︷︷ ︸

A



θ1(t)
θ2(t)
θ3(t)

...
θn−1(t)
θn(t)


+
α

h2



1 0
0 0
0 0
...
0 0
0 1


[
θ0(t)
θn+1(t)

]

(40)
Voilà our first finite-difference approximation of a partial differential equa-

tion! The pattern of the matrix A is hard to overlook. It is a banded matrix,
actually a very narrow banded matrix. It is a good idea to store the matrix
in a computer as a sparse matrix. Other than that, we obtained a standard
state-space model, which can be analyzed using standard tools from (finite-
dimensional) linear systems theory.

It is fair to admit that this approach is far from superior as soon as we
extend the solution domain to a subset of R2 or even R3. Since the order of
the error introduced by spatial discretization should be comparable with the
order of the error brought in by temporal discretization, the number of “lines”
can be very high. The order of the resulting finite-dimensional system is then
prohibitively high. Just imagine griding a box-like domain with 10× 10× 10
points, which does not seem too dense. The resulting system is of order 1000,
which is already quite a computational load. Nonetheless, the MOL method
certainly deserves a space in our set of tools.

Let’s evaluate the method by means of a numerical example. We consider
a 1D segment located in the interval [0,1] on the x horizontal axis. For 20 grid
points the lumped LTI model given by the MOL method can be created in
Matlab using the following code.

%% Parameters

d = 1 ; % the l eng t h o f the s p a t i a l i n t e r v a l
n = 20 ; % the number o f po in t s on the s p a t i a l i n t e r v a l
h = d/n ; % the l eng t h o f a s p a t i a l segment

a = 1 ;

%% Bui ld ing the s ta t e−space matr ices

c = ze ro s (n−1 ,1) ;
r = ze ro s (n−1 ,1) ;

c ( 1 : 2 ) = [−2 1 ] ;
r ( 1 : 2 ) = [−2 1 ] ;

A = t o e p l i t z ( c , r ) ;
A = a/hˆ2 ∗ A;

B = ze ro s (n−1 ,2) ;
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B(1 ,1 ) = 1 ;
B(n−1 ,2) = 1 ;
B = a/hˆ2 ∗ B;

C = eye (n−1,n−1);
D = ze ro s (n−1 ,2) ;

G = ss (A,B,C,D) ;

If Fig. 6 we can see a visualization of the “sparsity pattern”, that is, the
nonzero entries of the matrix, as produced by the spy command in Matlab.
The tridiagonal character of the matrix as derived in (39) is confirmed.

0 5 10 15 20

nz = 55

0

5

10

15

20

Figure 6: A ”map” of nonzero entries of the state matrix A

In Fig. 7 we see three snapshots of temperature profiles in response to
zero initial conditions and nonzero boundary conditions. Obviously, as time
elapses, the temperature distribution approaches the linear (affine) shape as
predicted.

In Fig. 8 we observe another response, this time it is a response to nonzero
initial conditions (temperature profile) while both boundary conditions are
kept at zero1

Let’s formalize the two types of response into one combined problem state-
ment. Generally, we are given a partial differential equation together with the
initial and boundary conditions; we will refer to them as IC and BC, respec-
tively. In our particular case, the PDE is first-order in time, hence we need
just a single initial condition. But since this is a PDE and not an ODE, our
independent variable is a function, and therefore in order to specify the initial
condition, we need to specify the temperature along the whole interval! Sim-
ilarly, the equation is of second-order in the spatial variable, hence we need
two boundary conditions. One choice of boundary conditions is to have the

1For these introductory purposes I do not even bother to offset the working temperature
to some more practical levels—everyone can certainly do such transformation by themselves.
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Figure 7: Snapshots of the temperature profiles at three time instances; zero
initial conditions, the left boundary temperature set nonzero

values of the independent variable specified at both ends of the interval, as we
suggest in the problem statement below

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
(41)

IC : θ(x, 0) = f(x), (42)

BC : θ(a, t) = θa(t), (43)

θ(b, t) = θb(t). (44)

The boundary conditions in this case are called Dirichlet’s conditions. Al-
ternatively, we can specify the values of the derivatives of the independent
variable at both ends, in which case the boundary conditions are called Neu-
mann’s conditions.

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
(45)

IC : θ(x, 0) = f(x), (46)

BC :
∂θ(x, t)

∂x

∣∣∣∣
x=a

= ha(t), (47)

∂θ(x, t)

∂x

∣∣∣∣
x=b

= hb(t). (48)

Note that by specifying ∂θ(x,t)
∂x we actually specify the heat flow, that is,

∂Q(x,t)
∂t (see the differential Fourier’s law). For example, specifying that the
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Figure 8: Snapshots of the temperature profiles at three time instances; zero
boundary temperature, some nonzero initial temperature distribution

partial derivative of the temperature is vanishing at the boundaries, we are
enforcing complete thermal insulation of the system.

∂θ(x, t)

∂t
= α

∂2θ(x, t)

∂x2
(49)

IC : θ(x, 0) = f(x), (50)

BC : Q̇a(t) = 0, (51)

Q̇b(t) = 0. (52)

1.6 Spatial discretization with bond graphs

Now, finally, let’s have a look how this is related to what we were developing
during most of our course—the power bond graph modeling. In fact, we will
use a pseudo-bond graph, which will model the two important phenomena—
thermal resistance and thermal storage. Consider the multilayer thermal
model of a heat conduction through a wall in Fig. 9.

The corresponding (pseudo-)bond graph is in Fig. 10.
We will leave the development of the state equations up to you. Make sure

you can arrive at these equationsθ̇1(t)θ̇2(t)

θ̇3(t)

 =
1

RC

−2 1 0
1 −2 1
0 1 −2

θ1(t)θ2(t)
θ3(t)

+

 1
RC 0
0 0
0 1

RC

[θa(t)
θb(t)

]
, (53)
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thermal resistor

heat accumulation

Q̇bQ̇a

Figure 9: Sketch of a lumped approximation to a heat conduction through a
slab of a material—layers representing thermal resistance are interleaved with
layer representing heat storage
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θa

×
θb

×

Figure 10: Bond graph for a multilayer thermal model

where

R =
1

H
=

h

Aλ
(54)

C = mc = Ahρc, (55)

from which
1

RC
=

Aλ

hAhρc
=

λ

ρc︸︷︷︸
α

1

h2
. (56)

2 Flexible systems—wave equation

[...] In the meantime see the handwritten notes [...]

3 Literature

This lecture was prepared as a compilation of numerous resources.
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Although our key textbook [1] discusses the distributed-parameter models
in Chapter 10, we do not quite follow their treatment.

Instead, we used some bits from the chapter 10 in [8], which is a book that
generally serves a good job as an alternative [1]. It is not required for you to
get the book, though.

Our treatment is fairly standard and can be found in every other intro-
ductory textbook on partial differential equations, wave phenomena, flexible
mechanical structures, heat transfer and alike. In particular, I favor [7] and [9]
and [10] as practically oriented introductions to partial differential equations.
The widely popular [3] and [6] are focusing more on the analysis and less on
the modeling aspects. For the wave theory, I like [2], [5] and [11].

Distributed computing and in particular distributed control is a vast area
but the seminal paper [4] is certainly one of the good places where to start.
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