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Optimal control on a finite horizon
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Cost function
Weighted norm of the state and the control input.

The norm can be 2-norm, 1-norm, infinity-norm, …
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Explicit MPC
No online optimization needed.

The controller is a piecewise affine function of the state (and the
reference)
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Based on multi-parametric programming.



Multiparametric programming
J (x) =∗ J(z, x)

z
inf

 … optimization variablez

 … parameterx

We study how the optimal cost depends on the parameter ->
parametric programming.

If  is a vector -> multiparametric programming.x



Scalar example

J(x, z)
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Introduce Lagrange multiplicator
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2
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KKT conditions
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The two scenarios can now be combined into a single
piecewise affine function z(x)
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and a piecewise quadratic cost function J (x)∗
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