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Optimal control on a finite horizon

minimize Jy(z(0), (ug, u1,...,un_1))
Ug,Uty. - -, UN-1
subject to

Try1 = Az + Byuy, + Bsop + B,z + By
yr = Cxp + Dyuy, + Dsop + D21, + Dy
Esoy + E,z, < Byuy + Eyxy, + Ey
Umin < U < Umax
Tmin S Tk < Tmax
Pxy <r
zo = x(0)



Cost function

e Weighted norm of the state and the control input.

e The norm can be 2-norm, 1-norm, infinity-norm, ...
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Explicit MPC

e No online optimization needed.

e The controlleris a piecewise affine function of the state (and
reference)
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e Based on multi-parametric programming.



Multiparametric programming

J () = iIzlf J(z, )

e z ...optimization variable
e I ...parameter

e We study how the optimal cost depends on the parameter ->
parametric programming.

e |f 2 is avector -> multiparametric programming.



Scalar example

1
J(x,2z) = 522 + 222 + 227

subjectto 2z <1+ .
e Introduce Lagrange multiplicator
1
L(z,z,\) = §z2 + 22z +22° + ANz — 1 — )

e KKT conditions

z+2x+A=0
z—1—2<0
A>0

AMz—1—2)=0.

e Two scenarios:

e A =0:

z+2x =0
z—1—2 <0.
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e The two scenarios can now be combined into a single
piecewise affine function z ()

z(z) = .
—2x ifx > —=.
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e and a piecewise quadratic cost function J*(x)
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