
Verification of hybrid
systems

Model-based approaches

Zdeněk Hurák

2023-09-01

Hybrid systems (B3M35HYS) Fall 2023

Validation vs verification
According to :PMBOK Guide

Validation
The assurance that a product, service, or system meets
the needs of the customer and other identified
stakeholders. It o"en involves acceptance and suitability
with external customers.

Verification
The evaluation of whether or not a product, service, or
system complies with a regulation, requirement,
specification, or imposed condition. It is o"en an internal
process.

https://www.pmi.org/pmbok-guide-standards/foundational/pmbok

Approches to verification
Testing

Simulation

Formal verification

Formal verification
Proving satisfaction of specifications for all possible
conditions/evolutions of the system.

The specifications are given in a formal language.

Formal mathematical methods are used.

Model checking as one of formal
verification approaches

Based on a model of the system.

For discrete-event and hybrid system the model is in the
form of Labelled Transition System (LTS).

The outcome of model checking is a a proof or a
counterexample.

Labelled Transition system (LTS)
A variant of (hybrid) automaton.

Labels are attached to the states rather than the transitions.

The labels come from the set of atomic propositionsP

P = {p , p , … , p }.1 2 n

Labelling function assigns a set of atomic
propositions to each state.

l : X → 2P

Example: beverage vending machine

init

{}

waiting

{pending}

swiped
swipe card

reject payment

{paid}

paidaccept payment

{paid, delivered}

coke
dispensedchoose coke

{paid, delivered}

fanta
dispensed

choose fanta

take coke

take fanta

P = {pending, paid, delivered}

Specification #1: The machine never dispenses a beverage
without being paid, that is,

delivered ⇒ paid

Specification #2: If the user pays, the machine will
eventually dispenses a beverage.

But how do we express the “eventually” part?

Formal specifications
Safety (invariance)

Liveness (progress)

More general specifications using temporal logics.

Safety (invariance)
Something bad never happens.

The system never enters bad (unsafe) region of the state
space.

Equivalently, something good always holds.

The system always stays in a good (safe) region of the
state space.

How do we check this?

Reachability analysis

Barrier certificates

…

Reachability analysis
For autonomous systems

Given a set of initial states , determine the set of states
 that can be reached from over the time

interval .

X0

Xreach X0

(0, t)

For non-autonomous (controlled) systems

Given a set of initial states , determine the set of states
 that can be reached from over the time

interval using some control.

X0

Xreach X0

(0, t)

Robust versions: uncertain parameters, disturbances.

Reachability computations for hybrid
systems

Checking a feasibility of an optimal control problem for a
MLD system.

As in Hybrid Toolbox (and Hysdel):
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

Set propagation techniques.

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

Basic computational steps for
reachability analysis based on set
propagation

Given a set of current states , compute the set of
next states of a discrete-time (or discretized) system such
that

Xk Xk+1

x(k + 1) = f(x(k))

Example: linear discrete-time system, the initial states in a
box

x(k + 1)

x(k)

= Ax(k),

∈ X = {x ∈ R ∣ x ≤ x ≤ x }k
n

min max

How does the set look like?Xk+1

Typically an overapproximation of the set of all possible next
states.

Sets to be propagates
Intervals

Polyhedra

V and H representations.

Ellipsoids

Zonotopes

Subclass of polytopes.

O"en more efficient than general polytopes.

Affine transformation of a unit box.

Commonly represented using generator representation (a
center and a finite number of generator vectors).

…

So!ware for reachability analysis
based on set propagation

In Matlab:

Multiparametric Toolbox (MPT): https://www.mpt3.org

Some functionality (invariant set computation) purely
for discrete-time systems

CORA: https://tumcps.github.io/CORA/

Continuous-time and hybrid systems.

you can find quite a few other tools on the web but mostly
unmaintained…

In Julia:

ReachabilityAnalysis.jl:
https://juliareach.github.io/ReachabilityAnalysis.jl/

In Python:

…

https://www.mpt3.org/
https://tumcps.github.io/CORA/
https://juliareach.github.io/ReachabilityAnalysis.jl/dev/

Barrier certificate for continuous
systems
Given two sets:

the set of initial states X0

and the set of unsafe (forbidden) states ,Xu

define the barrier certificate (function) such thatB(x)

B(x) > 0, ∀x ∈ X ,u

B(x) ≤ 0, ∀x ∈ X ,0

∇B(x) f(x, u) ≤⊤ 0, ∀x, u such that B(x) = 0.

Closely linked to Lyapunov function. But it is not the same.

Convex relaxation of the barrier
certificate problem

B(x) > 0, ∀x ∈ X ,u

B(x) ≤ 0, ∀x ∈ X ,0

∇B(x) f(x, u) ≤⊤ 0, ∀x ∈ X , u ∈ U .

Barrier certificate for hybrid systems
For a hybrid automaton with locations ,
not just one but barrier functions/certificates are needed:

l {q , q , … , q }1 2 l

l

B (x) >i 0, ∀x ∈ X (q),u i

B (x) ≤i 0, ∀x ∈ X (q),0 i

∇B (x) f (x, u) ≤i
⊤

i 0, ∀x, u such that B (x) =i 0,

B (x) ≤ 0,i ∀x ∈ R(q , q , x) for some qj i
−

j

and x ∈ G(q , q) with B (x) ≤ 0.−
j i j

−

Convex relaxation of barrier
certificates for hybrid systems

∇B (x) f (x, u) ≤i
⊤

i 0, ∀x ∈ X (q), u ∈0 i U(q),i

B (x) ≤ 0,i ∀(x, x) such that x ∈ R(q , q , x),−
j i

−

and x ∈ G(q , q).−
i j

Liveness
Something good eventually happens.

The system eventually enters a good region of the state
space.

Stability is one example.

General specs using temporal logics
Temporal logis use some temporal operators together with
logical operators and quantifiers.

Several temporal logics

Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)

Mix of the two (CTL*)

Timed CTL (TCLT) – timing added to CTL, used by UPAAL.

Metric temporal logic (MTL) – timing added to LTL.

Signal temporal logig (STL) – real-valued signals.

Temporal operators
 or : Eventually (or Finally)F ◊
 or : Globally (or Always)G □
 or : NeXtX ◯

 or : UntillU ⊔

Logical operators
, , , ¬ ∨ ∧ ⇒

⊨

Linear temporal logic (LTL)
“Linear” refers to linearity in time (as opposed to branching).

Corresponding to the sequence (trajectory) of discrete states
 of the discrete-event or hybrid

system.
x(0), x(1), x(2), …

We consider some property of a sequence of states.ϕ(x)

 is an LTL formula:ϕ

ϕ = true ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ1 1 2 1 2

∣ Xϕ ∣ Fϕ ∣ Gϕ ∣ ϕ Uϕ1 1 1 1 2

for a given state we write

if is true for all possible state trajectories starting at this
state.

x

x ⊨ ϕ

ϕ

Examples of LTL formulas
G¬ϕ

GFϕ

FGϕ

F(ϕ ∧1 XFϕ)2

CTL* (CTL mixed with LTL) supports
branching

Existential quantifiers needed

: For allA

: There existsE

Literature
General

Lin, Hai, and Panos J. Antsaklis. Hybrid Dynamical Systems:
Fundamentals and Methods. Advanced Textbooks in Control
and Signal Processing. Cham: Springher, 2022. Chapter 3.

Mitra, Sayan. Verifying Cyber-Physical Systems: A Path to
Safe Autonomy. Cyber Physical Systems Series. Cambridge,
MA, USA: MIT Press, 2021.

.

Set propagation based reachability analysis
Althoff, Matthias, Goran Frehse, and Antoine Girard. ‘Set Propagation
Techniques for Reachability Analysis’. Annual Review of Control, Robotics,
and Autonomous Systems 4, no. 1 (2021): 369–95.

Althoff, Matthias, Niklas Kochdumper, Mark Wetzlinger, and Tobias Ladner.
‘CORA 2024 Manual’. Matlab, 2023.

.

Barrier certificates
Prajna, Stephen, and Ali Jadbabaie. ‘Safety Verification of
Hybrid Systems Using Barrier Certificates’. In Hybrid
Systems: Computation and Control, edited by Rajeev Alur
and George J. Pappas, 477–92. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2004.

Temporal logics

https://sayanmitracode.github.io/cpsbooksite/about.html

https://tumcps.github.io/CORA/data/archive/manual/Cora2024Manual.pdf

https://sayanmitracode.github.io/cpsbooksite/about.html
https://tumcps.github.io/CORA/data/archive/manual/Cora2024Manual.pdf

Baier, Christel, and Joost-Pieter Katoen. Principles of Model
Checking. Cambridge, MA, USA: MIT Press, 2008.

Clarke, Edmund M., Jr, Orna Grumberg, Daniel Kroening,
Doron Peled, and Helmut Veith. Model Checking. 2nd
ed. Cyber Physical Systems Series. Cambridge, MA, USA: MIT
Press, 2018.

Murray, Richard M, Ufuk Topcu, and Nok Wongpiromsarn.
‘Lecture 3 Linear Temporal Logic (LTL)’. Lecture presented at
the EECI-IGSC, Belgrade (Serbia), 9 March 2020.

.

Wongpiromsarn, Nok, Richard M. Murray, and Ufuk Topcu.
‘Lecture 4 Model Checking and Logic Synthesis’. Lecture
presented at the EECI-IGSC, Belgrade (Serbia), 9 March 2020.

.

http://www.cds.caltech.edu/~murray/courses/eeci-
sp2020/L3_ltl-09Mar2020.pdf

http://www.cds.caltech.edu/~murray/courses/eeci-
sp2020//L4_model_checking-09Mar2020.pdf

http://www.cds.caltech.edu/~murray/courses/eeci-sp2020/L3_ltl-09Mar2020.pdf
http://www.cds.caltech.edu/~murray/courses/eeci-sp2020//L4_model_checking-09Mar2020.pdf

