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Validation vs verification
According to PMBOK Guide:

Validation
The assurance that a product, service, or system meets
the needs of the customer and other identified
stakeholders. It often involves acceptance and suitability
with external customers.

Verification
The evaluation of whether or not a product, service, or
system complies with a regulation, requirement,
specification, or imposed condition. It is often an internal
process.


https://www.pmi.org/pmbok-guide-standards/foundational/pmbok

Approches to verification

e Testing
e Simulation

e Formal verification



Formal verification

e Proving satisfaction of specifications for all possible
conditions/evolutions of the system.

e The specifications are given in a formal language.

e Formal mathematical methods are used.



Model checking as one of formal
verification approaches

e Based on a model of the system.

= For discrete-event and hybrid system the model is in the
form of Labelled Transition System (LTS).

e The outcome of model checkingis a a proof or a
counterexample.



Labelled Transition system (LTS)

e Avariant of (hybrid) automaton.

e |Labels are attached to the states rather than the transitions.

= The labels come from the set P of atomic propositions

P = {p17p27 <o 7pn}

= Labelling functionl : X — 27 assigns a set of atomic
propositions to each state.



Example: beverage vending machine

P = {pending, paid, delivered }

e Specification #1: The machine never dispenses a beverage
without being paid, that is,

delivered = paid

e Specification #2: If the user pays, the machine will
eventually dispenses a beverage.

= But how do we express the “eventually” part?



Formal specifications

e Safety (invariance)
e Liveness (progress)

e More general specifications using temporal logics.



Safety (invariance)

e Something bad never happens.

= The system never enters bad (unsafe) region of the state
space.

e Equivalently, something good always holds.

= The system always stays in a good (safe) region of the
state space.

e How do we check this?
= Reachability analysis

m Barrier certificates



Reachability analysis

e For autonomous systems

= Given a set of initial states Xy, determine the set of states
X each that can be reached from X over the time

interval (0, t).
e For non-autonomous (controlled) systems

= Given a set of initial states Xy, determine the set of states
X each that can be reached from Xy over the time

interval (0, t) using some control.

e Robust versions: uncertain parameters, disturbances.



Reachability computations for hybrid
systems

e Checking a feasibility of an optimal control problem for a
MLD system.

= Asin Hybrid Toolbox (and Hysdel):
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

e Set propagation techniques.


http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

Basic computational steps for
reachability analysis based on set
propagation

e Given a set A, of current states , compute the set X}, 1 of

next states of a discrete-time (or discretized) system such
that

x(k+1) =f(x(k))

e Example: linear discrete-time system, the initial statesin a
box

x(k +1) = Az(k),
w(k) = Xk = {w c R" | Lmin S L S wmax}

e How does the set X}, 1 look like?

e Typically an overapproximation of the set of all possible next
states.



Sets to be propagates

Intervals

Polyhedra

= \/ and H representations.

Ellipsoids

Zonotopes

= Subclass of polytopes.

= Often more efficient than general polytopes.
= Affine transformation of a unit box.

= Commonly represented using generator representation (a
center and a finite number of generator vectors).



Software for reachability analysis
based on set propagation

e |[n Matlab:
= Multiparametric Toolbox (MPT): https://www.mpt3.org

o Some functionality (invariant set computation) purely
for discrete-time systems

= CORA: https://tumcps.github.io/CORA/
o Continuous-time and hybrid systems.

= you can find quite a few other tools on the web but mostly
unmaintained...

e |In Julia:

= ReachabilityAnalysis.jl:
https://juliareach.github.io/ReachabilityAnalysis.jl/

e |[n Python:


https://www.mpt3.org/
https://tumcps.github.io/CORA/
https://juliareach.github.io/ReachabilityAnalysis.jl/dev/

Barrier certificate for continuous
systems

Given two sets:

e the set of initial states &)

e and the set of unsafe (forbidden) states X,

define the barrier certificate (function) B () such that
B(x) >0, Vae A,
B(x) <0, Ve c X,

VB(z)' f(x,u) <0, Vaz,usuchthatB(x)=0.

e Closely linked to Lyapunov function. But it is not the same.



Convex relaxation of the barrier
certificate problem

B(x) >0, V&< X,
B(z) <0, VYa&c X,

VB(z) ' f(x,u) <0, VxcX,ucl.



Barrier certificate for hybrid systems

e For a hybrid automaton with [ locations {ql, qs, .. ., ql},
not just one but [ barrier functions/certificates are needed:

Bz(a:) > 0, Ve Xu(Qz)a
Bi(x) <0, V& e X (q),
VB;(x)' fj(z,u) <0, Vaz,usuchthatB;(x) =0,

Bi(x) <0, Vx e R(gj,q,x )forsomeq;
andz~ € G(g;,q;) withBj(x~) < 0.



Convex relaxation of barrier
certificates for hybrid systems

VB;(z) fi(z,u) <0, Ve Xo(g),uclU(q),

Bi(x) <0, VY(x,x )suchthatz € R(g;,q,x ),
andx € g(qzacb)



Liveness

e Something good eventually happens.

= The system eventually enters a good region of the state
space.

= Stability is one example.



General specs using temporal logics

e Temporal logis use some temporal operators together with
logical operators and quantifiers.

e Several temporal logics
= Linear Temporal Logic (LTL)
= Computation Tree Logic (CTL)
Mix of the two (CTL)
Timed CTL (TCLT) - timing added to CTL, used by UPAAL.
Metric temporal logic (MTL) - timing added to LTL.

Signal temporal logig (STL) - real-valued signals.



Temporal operators

e F or () : Eventually (or Finally)
e (G or]:Globally (or Always)
e X or():Next

e U orlLl: Untill



Logical operators

¢ _l,\/,/\’j

-



Linear temporal logic (LTL)

“Linear” refers to linearity in time (as opposed to branching).

Corresponding to the sequence (trajectory) of discrete states
z(0),x(1),z(2), ... of the discrete-event or hybrid
system.

We consider some property qb(w) of a sequence of states.

@ is an LTL formula:

¢ = true |p| 1| p1 A da|d1V P2
| X1 |For1 | G| 1 Uo

e for a given state  we write

T =@

if @ is true for all possible state trajectories starting at this
state.



Examples of LTL formulas
G—¢
GF¢
FG¢

F(¢1 N XF¢o)



CTL* (CTL mixed with LTL) supports
branching

e Existential quantifiers needed
= A:Forall

s E: There exists
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