NUR: Visual perception and design
Designing Interactive System

USER NEEDS & BEHAVIOR
- Interview transcriptions
- Scenarios & Use-cases
- Storyboards
- User models
- HTA

IDEAS & CONCEPTS
- Sketching
- Design studio

PROTOTYPING
- Lo-Fi prototyping
- Hi-Fi prototyping
- Information architecture

MODELING
- STN, CTT, PN

Design

Engineering

Sales

Source: Buxton 2007
Visual design in UI

- emotional aspects
 - positive impression
 - aesthetics (nice is better)
 - trust
 - forms the opinion in less than 1s

- usability aspects
 - facilitates visual perception
 - information organization
 - simplifies the overall UI design
 - helps to understand the mental model
 - supports interaction sequences

- good visual design is about details
- sense for visual design is essential
 - following visual design rules is not sufficient
 - no algorithm
 - it is about breaking the rules
 - influenced by fashion
Visual design in UI - Apple system settings
Visual design in UI - Apple system settings
NetBeans IDE: improving download

NetBeans IDE 6.7 Connects Developers

The only IDE you need! Runs on Windows, Linux, Mac OS X and Solaris.
NetBeans IDE is open-source and **free**.

- Learn More about NetBeans IDE
- Get the NetBeans DVD
- Download NetBeans IDE
NetBeans IDE: improving download
NetBeans IDE: improving download

![NetBeans IDE](image)

The only IDE you need! Runs on Windows, Linux, Mac OS X and Solaris. NetBeans IDE is open-source and free.

- Learn More about NetBeans IDE
- Get the NetBeans DVD

Download NetBeans IDE for FREE
NetBeans IDE: improving download

- A/B test performed

<table>
<thead>
<tr>
<th>Version</th>
<th>Download improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download NetBeans IDE for FREE</td>
<td>3.15%</td>
</tr>
<tr>
<td>Download NetBeans IDE for FREE</td>
<td>1.6%</td>
</tr>
</tbody>
</table>
Visual perception
Perception – bottom-up

Features 1,000,000

Patterns

Objects 1-3
cognition bottleneck

bottom-up information drives pattern building
Perception – top-down

Features
1.000.000

Patterns

bottom-up information drives pattern building

top-down attentional processes reinforce relevant information

Objects
DOG friendly pet

1-3
cognition bottleneck

NUR – Visual perception and design
Perception – top-down

- **attention**
 - we perceive what is needed only
- **driven by need to accomplish a goal**
 - goals: actions (close window), cognitive goals (understand idea in a figure)
 - close link perception-action
- **constant priming of action plans**
 - just-in-time strategy: information are perceived when needed
- **causes a bias in signals we are looking for**
 - e.g., if looking for red icons the red spot detector will signal louder

top-down attentional processes reinforce relevant information
Perception – top-down: Standards

Pro stažení DEMO instalaci našich produktů je nutné přihlásit se přiděleným přihlašovacím kódem. Tento kód vám bude zaslan e-mailem na základě vyplnění registračního formuláře.

Kód pro přihlášení:

Přihlásit

POZOR!
Pro stažení PLNÝCH VERZÍ našich produktů jdete prosím do Podpora - Zákaznická služba.
Perception – top-down: Consistency
Perception – top-down: Attraction
Implication for design

- support just-in-time visual queries for every important cognitive task

1. identify cognitive tasks
2. identify visual queries involved in visual perception process
Example: London underground map
Example: London underground map

- Goal: Get from the hotel to the pub
- Cognitive tasks
 - combination of lines
 - shortest route
 - names of stations where train changes
 - how long will it take
 - distance between the pub and the station
- Visual queries
 - locate the station nearest our hotel
 - locate a station near the pub
 - find the route connection

How well are these queries supported?
Example: London underground map

- Visual perception processes
 - find the hotel station (label search)
 - find the pub station (label search)
 - tracing the path of the "hotel" line
 - building the contour (several fixations)
 - tracing the path of the "pub" line + finding intersection with the "hotel" line
 - most of the information of the contour of the hotel line will be lost => tracing must be repeated
 - rough estimate of the number of stations
 - no counting
 - judgment based on distance and previous experience
Example: London underground map
Example: London underground map

Which cognitive tasks are well supported?

<table>
<thead>
<tr>
<th>Cognitive Task</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>station near hotel finding</td>
<td>😞</td>
</tr>
<tr>
<td>route finding</td>
<td>😊</td>
</tr>
<tr>
<td>station near pub finding</td>
<td>😞</td>
</tr>
<tr>
<td>estimating journey time</td>
<td>😞</td>
</tr>
</tbody>
</table>
Low level feature analysis

- primary features analyzed
 - form (orientation, size)
 - color
 - motion
- all in parallel
- provides information to "Where pathway"
 - planning the eye movement to search where the object is located
- PROBLEM: How can we direct eyes to an object if we do not know where it is?
 - biased feature competition
 - based on the knowledge of the object features we are looking for
 - pop-out effect
 - object is sufficiently distinct in primary feature from all the other objects
Low level feature analysis

Combination of features

Similarity of the feature
Visual design consequences

- pop-out important objects
 - use primary features (orientation, size, color, motion)
 - difference in the feature must be significant
 - about 3 different steps for each feature
 - visibility enhancement is not symmetric (size or contrast increase; add extra part)
 - do not combine more features

- more than 8-10 independently searchable symbols impossible

- stylistic consistency => visual search will take longer

- avoiding objects to be invisible
 - do not use unexpected features (biased competition)
 - button which does not look like button
Gestalt principles of visual form perception
Gestalt psychology

- 1930-40 applied into visual perception
 - Max Wertheimer, Wolfgang Köhler, and Kurt Koffka

- does not answer the question WHY?
Gestalt principles

- Proximity
- Similarity
- Symmetry
- Closure
- Continuity
Gestalt principles

- Proximity + Similarity

- Proximity + Different space
Information vs. color
Information coding by color

- Text, shape, color coding
 - visual search is 37% better if color and icon is used compared to text
 - shape vs. color: visual search better for icon compared than color
 - this may be context dependent

- Problem with interference of various cognitive processes
 - perceiving colors
 - reading text
Experiment I

- Name COLORS of the boxes – as fast as possible
- Say "END" when finished
- We will measure the time elapsed
Experiment II

- Name COLORS of words on the next slide – as fast as possible
- Say "END" when finished
- We will measure the time elapsed
Žlutá
Zelená
Bílá
Černá
Červená
Modrá
Experiment III

- Again the same task as in previous experiment
- Name COLORS of words on the next slide – as fast as possible
- Say "END" when finished
- We will measure the time elapsed
Modrá
Černá
Bílá
Červená
Žlutá
Zelená
Influence of interference

- Conclusion
 - Experiments are slower and slower

- Interference of two cognitive processes
 - automatic processing is disturbed and slowed down
Color perception and visual design
Color Perception

- **Rods**
 - gray scale
 - much more than cones

- **Cones**
 - red, green, blue
 - less sensitive than rods
Central and peripheral colors

- cones in the center of retina
- less blue cones and fewer in center of retina
Central and peripheral colors

This is a text.

This is a text.

This is a text.

This is a text.
Colors in design

- use maximum of 4 colors
 - short-term memory limit
- colors invoke associations (cultural dependent)
 - black => funeral, wedding (Japan)
 - red => alert, danger, hot, love, death (Celtic)
 - green => nature, money
 - yellow => weakness, courage (Japan)
 - blue => depression, sadness, wealth (Japan)
- different sensitivity on color variations
 - low: red, purple, green
 - high: yellow, blue-green
 - do not change one component only
- elderly users need brighter colors
Color usage in design

- Use color to label or show hierarchy
- Use color to represent or imitate reality
- Use color to unify, separate, or emphasize
- Use color to decorate
- Use color consistently

- DO NOT code information into color only
Information coded NOT in color only

Title: Mr
First name: Graham
Last name: Charlton
Phone number: 02072691450
Confirm phone number: 0207691540
Alternative phone number:
Email address:

Finish booking

Those phone numbers don't match. Please check and try again.
Please give us a valid email address.
Icon design

- Findability
- Recognition
- Information scent
- Attractiveness
Flat design

- week vs. strong signifiers
- time spent
- number of fixations
- When it can work?
Literature

- Nielsen Norman Group: https://www.nngroup.com/topic/visual-design/

Example question for examination

- What is it pop-out effect? How does it work?
- What is the cognition bottleneck of visual perception process? How it is solved?
- What should be taken into account in icon design process?
- How can be Gestalt principles applied to UI design?
- What should be considered when coding information into color?
Thank you for attention