Kvantování = náhrada přesných hodnot hodnotami povolenými

Dvě metody
- zaokrouhlování (přičtu 0,5 o výsledek oříznutí)
- oříznutí

Příklad:
- převést na celá čísla 1,821
 zaokr.: 1,821 + 0,5 = 2,321 \Rightarrow 2
 oříznutí: 1,821 \Rightarrow 1
- převést 1,231
 zaokr.: 1,231 + 0,5 = 1,731 \Rightarrow 1
 oříznutí: 1,231 \Rightarrow 1

(ze života: zaokr. - nákup na celé Kč, oříznutí - dav, příznání na celé 100Kč dolů)

Kvantizační krok
- pro celočíselné vyjádření
 \[\Delta = 1 \]
- pro zlomkové vyjádření
 \[\Delta = \frac{1}{2^L} \text{, kde } L \text{ počet bitů} \]

Méně exaktně:
- najmenší číslo, se kterým pracujeme (nejmenší možný rozdíl dvou sousedních čísel).

Příklad: celočíselné vyjádření

\[
\begin{array}{ccc}
2^0 & 1 & 2^1 \\
1 & 2 & 4 \\
mohu zapsat
\end{array}
\]

\[
\begin{array}{cccc}
1 & 100 \\
\frac{1}{2} & 010 \\
\frac{1}{4} & 001 \\
\end{array}
\]

Rozdíl \[\Delta = 1 \]

Zlomkové vyjádření

\[
\begin{array}{ccc}
2^{-1} & 2^{-2} & 2^{-3} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\
\end{array}
\]

\[
\begin{array}{cccc}
\frac{1}{8} & .001 \\
\frac{3}{8} & .010 \\
\frac{5}{8} & .011 \\
\text{adg.}
\end{array}
\]

\[\Delta = \frac{1}{2^3} = \frac{1}{8} \]
Poznámka:
Vyše uvedené platí pro vyjádření v digitální oblasti. Pokud uvažujeme vazbu na analogovou oblast, tak např.
mám rozsah napětí 48 V, k disposici 3bity => $2^3 = 8$ úrovní.

Číslo kvantování:

0 -> 0-6
1 -> 6-12
2 -> 12-18
3 -> 18-24
4 -> 24-30
5 -> 30-36
6 -> 36-42
7 -> 42-48

Pak mám z hlediska "analogové strany" kvantizační krok

$\Delta = 6 \text{ V}$

Z toho je dobře vidět kvantizační chyba - chcí zobrazit 7 V, tomu by odpovídalo $1,1667$ v rozsahu digitální hodnot, ale jsem mám k disposici jen celá čísla.

Proto použijí 1

Kvantizační chyba

e = přesná hodnota - kvant. h.

(pro nás příklad e = 1,1667 - 1 = 0,1667)

Platí

$|e| \leq \Delta$ (|k. chyba| < k. krok)

Dynamický rozsah:
(odvození pro celá, kladná čísla)

Pocet úrovní = 2^L, L pocet bitu

$D = 20 \log \frac{X_{max}}{X_{min}} = 20 \log \frac{2^L}{2^L}$

$L \approx L \cdot 6 \text{ [dB]}

[průměr 6,02]
Kvantizační šum vzniká jako důsledek kvantování signálu (z řízku z definice k. chyby - přesnou hodnotu nahradíme zaokrouhlenou nebo oříznutou).

Kvantování koefficientů filtru předu 12, str. 22 vypočtem se dostaneme většinou do plochy, ale realizace je možná jen v daných bodech => „přesun“ se do jednoho z nich.

Kvantování mezivýsledků
Příklad: Násobíme \(\frac{3}{4} \times \frac{3}{4} = \frac{3}{16} \)
\[\begin{array}{ccc}
0 & 1 & \times \\
1 & 1 & = \\
\hline
0 & 0 & 1 & 1
\end{array} \]
mami ale dva bity => 0
k. chyba \(e = \frac{3}{16} - 0 = \frac{3}{16} \)

Filtraci se šum akumuluje a tím zesiluje => dochází ke zmenšení použitelného dynamického rozsahu
(zjednodušujeme - chyba variuje a začne mi znehodnocovat získané nejnižší bity => klesá vlastně počet bitů čísla, která jsou dobré)

Limitní cykly

Viz před. 12, str. 23

\(u[n] = \text{digitalizovaný signál - posoupanost} \)
\(o - \text{posoupanost zobrazena přesně} \)
\(+ - \text{kvantování oříznutím} \) při poklesu pod kvant.
krok je na nulu
\(* - \text{kvant. zaokrouhlením - vzniká chyba si sila sama} \)