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We propose an algorithm for the effective solution of quadratic programming (QP) problems arising from
model predictive control (MPC). MPC is a modern multivariable control method which gives the solution
for a QP problem at each sample instant. Our algorithm combines the active-set strategy with the propor-
tioning test to decide when to leave the actual active set. For the minimization in the face, we use a direct
solver implemented by the Cholesky factors updates. The performance of the algorithm is illustrated by
numerical experiments, and the results are compared with the state-of-the-art solvers on benchmarks from
MPC.
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1. Introduction

We shall be concerned with the sequence of problems to find

f ∗(x) � min
z∈�

f (z, x) = f (z∗(x), x), (1)

where � = {z : z ≤ z ≤ z̄}, f (z, x) = 1
2 zT Hz + hT (x)z, z and z̄ are given column n-vectors, H is

an n × n symmetric positive-definite (SPD) matrix, and h = h(x) is an n-vector, parameterized
by a parameter column nx-vector x ∈ {x1, x2, . . .}. For a fixed parameter x, we define

q(z) = 1
2 zT Hz + hT z. (2)

We suppose that n is relatively small, i.e. n � 200. Moreover, we assume that the sequence {xk}
is not known in advance and xk ≈ xk+1, so that we can use z∗(xk) as a good initial approximation
for z∗(xk+1). It is shown later that such sequence of parameters is generated in model predictive
control (MPC) applications.
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Problems of type (1) arise in many applications, e.g. in moving horizon estimation [37] or in
MPC [17]—our main motivation. MPC is a multi-variable model-based control strategy, which
can naturally handle input, state, and output constraints [28]. It is widely used in industrial [36]
or automotive applications, see, e.g. [15,23,26].

MPC solves at each sampling instant a QP problem, where the optimization problem remains
the same, but the value of the estimated state x changes. We are often limited by available
memory and computation power, e.g. available RAM memory is less than 200 KB and CPU
is 200 MHz micro-controller in standard engine control unit (ECU). Moreover, not all resources
may be available to the MPC solver, since many other systems are running within the ECU. On
the other hand, the number of variables in typical embedded applications of MPC ranges from
tens to hundreds. In the last two decades, there has been a rapid development in optimization
algorithms enabling sampling times in the order of micro or milliseconds.

It has been shown recently that much of the computational effort for solving (1) can be done
off-line. In [2] the authors consider problem (1) as a multi-parametric QP problem and exploit
its parametric nature to obtain explicit solutions to the MPC problem. The online phase of the
MPC controller is then reduced to the look-up table process and the solution is obtained using
an affine map defined by the parameter value. The main drawback of the Explicit MPC is a
large increase in memory requirements with an increasing number of constraints. In spite of
some improvements, see, e.g. [3,5,21,24], the Explicit MPC is limited to models with small
state dimensions and few process inputs. This bottleneck motivates the development of online
methods. Most of them reduce the solution of (1) to a series of unconstrained problems, which
are solved either by iterative or direct methods. They typically combine the modified Newton
method, the active-set method, and the gradient method.

The methods include the fast gradient methods (FGM) [30], which attracted the attention of
the MPC community by the cheap iterations and the rate of convergence, which depends on the
square root of the condition number [39] of H. Moreover, it was shown that the upper bound on
the number of iterations can be determined off-line. The tight upper bound (2-4 times larger than
the real iterations observed) has been reported for the problems with simple bounds in [41]. The
estimate of the upper bound has also been developed in [19,34,40].

The interior-point methods (IPM) typically require a relatively small number of computation-
ally expensive Newton iterations for the auxiliary penalized problems, see, e.g. [7,31,48]. It was
shown in [38] that the equality constrained problems in primal–dual IPM iterations can be solved
at the cost proportional to the length of the prediction horizon when the Riccati recursion is used
for the sparse formulation of MPC. The same computational complexity was achieved in [48]
with the block-wise Cholesky factorization. Moreover, in the paper the warm start with the fixed
barrier parameter and fixed number of iterations was used. This reduced the computational cost
but resulted in a suboptimal solution, which can even violate the system dynamics equation.
The FORCES package [10] produces an automatically generated code in which the Newton-step
computation [48] is enhanced by two substitutions using the triangular factorization with possible
speed-up for special instances. Although the automatically generated problem-tailored code may
result in superior solution time, the code size might increase rapidly with the problem size, thus
preventing an embedded application.

In the active-set methods (ASM), the optimal active set is estimated by the working set [31].
The well-known drawback of ASM is that if the initial working set is far from optimal, then
the algorithm might require many iterations to reach the solution. This has been partly removed
in the open source package qpOASES [14], which implements the active-set strategy combined
with the piece-wise affine structure of the explicit MPC solution.

A combination of the Newton method and the gradient projection (GP) algorithm [31, Chap-
ter 16.7] was applied to a dual sparse MPC formulation [1], and the linear complexity of each
iteration with respect to the prediction horizon using the Riccati recursion was established. The
algorithm [45], based on [4], combines the GP algorithm with projection of the Newton step. The
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Newton step is defined by the current active set, and computed by the Cholesky factorization and
the null-space method [31, Chapter 16.2]. The null-space method was replaced by the conjugate
gradient method in [44] for large-scale MPC. A favourable distribution of the eigenvalues of H
arising in the modified MPC problem was exploited in [43], to speed-up the solution of auxil-
iary linear problems by the conjugate gradients combined with the gradient/Newton projection
algorithm. The combined Gradient/Newton Projection (CGNP) of Otta et al. [32], applied to the
sparse approximation of the MPC problem, explores first the Newton direction up to the first
bound and then proceeds by using either the projection of the Newton direction by projected line
search (PLS) [31, Chapter 16.7] or the GP with the fixed step-size.

The same approach applied to the dense MPC formulation was patented [35] in the domain of
automated process control. This was later developed as part of a commercially available software
product for the diesel engine’s air-path control using MPC, see [23]. The authors report the use of
the software tool in several embedded applications using either directly ECU or rapid prototyping
system: the air-path control of dual loop re-circulation diesel engine [26], the temperature control
of the diesel oxidation catalyst [27], and the thermal management of combustion engine [25].
The CGNP method [32] has been extended to nonlinear MPC [46] using the PLS with the GP.
The resulting method has been applied to the cruise control problem running on the standard
production powertrain control module.

The effective precision control of the solution of auxiliary linear problems is exploited by
the modified proportioning with reduced gradient projections (MPRGP) algorithm [13]. This
algorithm explores the face defined by the current active set by the conjugate gradients until
the component of the gradient which corresponds to the active set dominates the violation of
the Karush–Kuhn–Tucker (KKT) conditions, or an infeasible iteration is generated. In the first
case, the active set is expanded by the GP with a fixed step length, otherwise it is reduced by
the so-called proportioning step. The algorithm has been proved to enjoy a global R-linear rate
of convergence and was successfully applied to the solution of large problems discretized by
billions of variables.

In this paper, we propose a new algorithm for an effective solution of QP problems arising from
MPC, which tries to exploit the advantages of the algorithms MPRGP and CGNP. The algorithm
exploits the control of MPRGP to ‘look ahead’ in order to avoid unnecessary expansion of the
active set in combination with full exploitation of the second-order information to solve the face
problem exactly by the direct solver.

The rest of the paper is organized as follows. In Section 2, the MPC problem is introduced.
Section 3 gives an overview of MPC problem formulation. Section 4 presents the basic ingredi-
ents used later in Section 5, where the proposed algorithm is described. Convergence analysis of
the proposed algorithm is given in Section 6. Effectiveness of the proposed method is confirmed
in Section 7. The last section presents the conclusions.

2. Model predictive control

Let us consider a linear regulator MPC problem

f ∗
MPC(x) � min

u0,...,uN−1

1

2
xT

N PxN + 1

2

N−1∑
k=0

(xT
k Qxk + uT

k Ruk), (3a)

s.t. xk+1 = Axk + Buk , k = 0, . . . , N − 1,

uk ∈ �̃, k = 0, . . . , N − 1,

x0 = x, (3b)
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where x ∈ R
nx is a current state estimate, N ∈ N is the finite prediction horizon, and xk ∈ R

nx

and uk ∈ R
nu denote the state and control input at time-step k, respectively. Matrix Q ∈ R

nx×nx is
symmetric positive semi-definite (SPS), matrices R ∈ R

nu×nu and P ∈ R
nx×nx are SPD.

The control input is assumed to belong to the convex compact set �̃ = {u : u ≤ u ≤ ū} which
contains the origin in its interior.

Remark 1 As there is a new x at each sampling instant, the problem (3) has to be recomputed.
Hence, the so-called receding horizon control concept is established, i.e. the plan of control inputs
u0, . . . , uN−1 is recomputed at each sampling instant with estimated/measured system state x as
the parameter and only the first control move u0 is actually applied to the system, cf. [29]. The
need for re-computation requires a fast solver for problem (3), in order to have a solution ready
by the next sampling time.

Remark 2 The practical need for constraints on system states and outputs can be translated to

Gcuk ≤ Scx + wc, k = 0, . . . , N − 1.

These constraints are treated as soft constraints, i.e. those which can be violated, but any violation
is penalized in the objective function and simple constrained slack variables are added as decision
variables, see, e.g. [22,29].

3. Problem formulation

There are several possible approaches to recast the MPC problem (3) into an optimization
problem. In sparse formulation, the future states xk are added as the decision variables and the
dynamic constraints (3b) are incorporated into the problem as equality constraints. The result-
ing optimization problem then has N(nx + nu) decision variables, but the problem matrices are
sparse. This approach is usually used in combination with IPM, as it can lead to significant speed-
ups, mainly for larger prediction horizons. The problem structure can be exploited to have linear
complexity at each iteration with respect to N, see, e.g., [48].

To eliminate the equality constraints and preserve the linear complexity of each iteration, the
dual optimization of the sparse problem was formulated and solved by the GP algorithm in [1].
The main drawback of the dual formulation is the double number of the decision variables as
compared to the primal one.

In dense formulation, the state variables are eliminated using predictions. Even if the sparse
structure is lost, the number of decision variables is reduced to N · nu, hence this formulation
is favourable for problems with a relatively short prediction horizon (N < 50 samples) or for
problems with a large number of states. Moreover, dense formulation enables to use the move
blocking strategies [8] to further reduce the number of optimization variables.

The state prediction can be expressed as a function of the current state x and the control inputs
U [28] by the recursive use of (3b) as

X = Ax + BU,

where

X = [xT
1 xT

2 . . . xT
N ]T, U = [uT

0 uT
1 . . . uT

N−1]T
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and

A =

⎡
⎢⎢⎢⎢⎢⎣

A
A2

...
AN−1

AN

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B 0

AB B
. . .

...
. . .

AN−2B B 0
AN−1B AN−2B . . . AB B

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Problem (3) can be rewritten in the form (1) denoting z = U ∈ R
n, n = N · nu,

H = BTQB + R, h(x) = (BTQA)x, z = 1N ⊗ u,

Q = diag(IN ⊗ Q, P), R = IN ⊗ R, z̄ = 1N ⊗ ū,

where ⊗ refers to the Kronecker product, IN and 1N are the identity matrix and the column
vector of ones of the dimension N, respectively. The constant term was omitted since it does not
influence the minimizer.

4. Basic ingredients

Let us first review the notations and present the basic ingredients of the proposed algorithm.
For any SPD matrix M, the Euclidean norm and the M-energy norm of y will be denoted by

‖y‖ and ‖y‖M, respectively. Hence ‖y‖2 = yTy and ‖y‖2
M = yTMy. Analogous notation will be

used for the induced norm, hence the spectral condition number κ(M) of matrix M is defined by
κ(M) = ‖M‖‖M−1‖.

The projection P� to � = {z : z ≤ z ≤ z̄} is defined for any n-vector z by

P�(z) = z+,

where the entries of z+ are defined as z+
i = max{zi, min{z̄i, zi}}.

For any matrix N, Ni denotes its ith row. Given the matrix N ∈ R
m×n and any set R ⊆

{1, . . . , m}, C ⊆ {1, . . . , n}, NR,C denotes the submatrix of N, comprising the rows indexed by
R, and columns indexed by C.

4.1 Quantitative refinement of the KKT conditions

For an arbitrary n-vector z, let us define the gradient g = g(z) of q in (2) by

g = g(z) = Hz + h.

The optimal solution z∗ of (1) is fully determined by the KKT optimality conditions1 [7] which
require that for i = 1, . . . , n,

z∗
i =

⎧⎪⎨
⎪⎩

z̄i implies g∗
i ≤ 0,

zi implies g∗
i ≥ 0,

zi ≤ z∗
i ≤ z̄i implies g∗

i = 0.

(4)

Denoting I = {1, 2, . . . , n}, let us define the upper, lower, and active set of z as U = {i ∈ I :
zi = z̄i}, L = {i ∈ I : zi = zi}, and A = U ∪ L, respectively. The complement of the active set is
called the free set F = {i ∈ I : i /∈ A}.
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To give an alternative reference to the KKT conditions (4), let us define the free gradient ϕ

and the chopped gradient β by

ϕi(z) = gi for i ∈ F , ϕi(z) = 0 for i ∈ A,

βi(z) = 0 for i ∈ F , βi(z) = g#
i (z) for i ∈ A,

(5)

where

g#
i =

{
max{gi, 0} if i ∈ U ,

min{gi, 0} if i ∈ L.

Thus the KKT conditions are satisfied if and only if the projected gradient ν = ϕ + β is equal
to zero. It can be checked easily that

‖z − z∗‖2
H ≤ 2(q(z) − q∗(z∗)) ≤ λ−1

min(H)‖ν‖2,

where λmin(H) denotes the smallest eigenvalue of H (see, e.g. [12, Section 5.2]).

4.2 Face problem solution

We shall use the active-set strategy which reduces the solution of (1) to the solution of a
sequence of equality constrained problems. Thus in each iteration, we need to solve the auxiliary
minimization problem

z̃ = arg min
z∈�

q(z), (6)

where

� = {z : zi = z̄i for i ∈ U or zi = zi for i ∈ L}
is the face defined by the lower and upper active sets L,U of the indices which are predicted
to be active in the solution. Since z̃U = z̄U and z̃L = zL, the equality constrained problem (6) is
equivalent to the unconstrained minimization problem defined only for the variables zI\A.

Problem (6) can be solved by the Krylov space methods, which are advantageous in large-
scale optimization. Since a low precision of the solution of auxiliary problems is often sufficient,
the performance of the Krylov space methods can often be improved by an efficient adaptive
precision control [12]. On the other hand, if the size of the problem is relatively small, as we
consider in this paper, we can find the exact solution more efficiently by a direct solver. Since
only simple constraints are present in (1), assuming z ∈ �, the minimizer of the face problem (6)
can be written as

z̃ = z − p,

where

p =
{

pI\A = G−1r,

pA = 0,
(7)

and the reduced Hessian and the reduced gradient are defined as

G = HI\A,I\A, r = g(z)I\A. (8)

The proposed method moves towards the minimizer of (6). If a new constraint is activated
along the way, the active set is expanded via projected line search (PLS) of [31] as described
in Section 4.6.
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4.3 Cholesky factors updates and proportioning

Problem (7) can be solved, e.g. by the Cholesky factorization in O((n − m)3) flops, followed
by two backward substitutions in 2(n − m)2 flops, where m = |A| denotes the cardinality of A.
The cost of factorization can be reduced to O(n2) by the application of the factor update scheme
[18]. Hence the complexity of each iteration is relatively low, but it is still important to keep the
number of iterations small.

The algorithm that we propose here tries to limit the number of updates of the active sets Ak by
using the proportionality test. Given � > 0, we call the iteration zk proportional if the inequality

‖β(zk)‖ ≤ �‖ϕ(zk)‖ (9)

holds [13]. This test tries to limit both, the unnecessary expanding of the active set and the
premature releasing of the constraints from the set Ak by balancing the violation of the KKT
conditions on the active and the free set.

As the proposed algorithm can add or remove an arbitrary number of constraints at each
iteration, we distinguish two phases of the active-set update:

(1) adding new constraints to Ak ,
(2) removing constraints from Ak .

Let us assume that in the kth iteration of the algorithm, we need to add na and remove nr

constraints. If |Ak| = m, then adding new constraints can be executed in O(na(n − m)2) flops by
the successive application of Given’s rotations and the removal of constraints can be executed in
O(nr(n − m − na)

2) flops, see [20] for details.

Remark 3 Since the sequence of problem (1) is typically solved in the MPC for xk ≈ xk+1, it
is possible to use a solution from the previous sample as an initial iteration. Moreover, as the
solution represents a future trajectory of control inputs in MPC, one can shift the solution from
the previous sample to improve the initial iteration to establish a warm-start set-up, see, e.g. [33]
and references therein. Further, it is possible to reuse the factor of the reduced Hessian in (7) to
establish a so-called hot start of the algorithm.

4.4 Proportioning step

If an iteration is not proportional, then we employ the proportioning step

zk+1 = P�(zk − αβ(zk))

with the fixed step-length α ∈ (0, 2‖H‖−1). Hence, all constraint indices indicated as not-optimal
by nonzero component of β(zk) will be removed from the active set. We select to project the
chopped gradient instead of the gradient as in CGNP [32], to disable adding of new constraints
to the active set by the proportioning step. This limits unwanted changes in the active set.

4.5 Gradient updates

The gradient at the minimizer of the face problem (6) has the form

g(z̃k
) = g(zk − pk) = H(zk − pk) + h = g(zk) − Hpk .

From the KKT conditions (5), we have

gi(z̃
k
) = 0 for i ∈ I\A,
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and so

(Hpk)i = gi(zk) for i ∈ I\A.

Hence, only the components of (Hpk)i, i ∈ A with the sparsity pattern of p (7) need to be
evaluated in each step, which requires 2m(n − m) flops.

4.6 Projected line search

In order to expand the active set, the proposed algorithm uses the projected path in a direction pk

evaluated via PLS of [31]. The PLS is used to find the first local minimizer along the path towards
the optimizer of (6). The PLS operation starts by computing first the breakpoints, i.e. the step-
sizes that correspond to the changes of the direction along the projected path. It can be observed
that the resulting search direction dk,j on the jth segment between two consecutive breakpoints
is identical to pk except the components corresponding to the newly activated constraints which
are set to zero. We continue until the local minimizer in the segment, the Cauchy point, is found
or an increase in the cost function q is detected. The search direction differs from the previous
segments typically by one component only. This can be exploited to reduce the computational
complexity of PLS to O(ns) flops, where s is the number of changes in the active set.

Moreover, as PLS gradually moves along the projected path with the updated Hdk,j, it is pos-
sible to avoid the direct computation of the gradient at the Cauchy point and update it in O(ns)
flops. The update is done gradually with 
tk,j > 0 step-size on the jth segments as

g(zk,j) = g(zk,j−1) − 
tk,jHdk,j (10)

for j = 0, . . . , s − 1. The complexity of this step is described in the following lemma.

Lemma 4.1 Let z ∈ R
n, mk = |Ak|, let pk be the solution of (7), and let Hpk be precomputed.

Then the computational complexity of generating the projected path in a direction pk utilizing
the PLS algorithm with updating the gradient is

OPLS(n) = 2(n − mk) +
s∑

i=1

(2nri + 10n),

where s is the number of explored line segments and ri is the number of changes in the active set
on the ith explored line segment.

Proof First observe that pk
Ak = 0, so the computation of the breakpoints can be executed in

2(n − mk) flops. Second, at the ith segment, Hd can be updated in 2nri flops, where ri is the
number of the changes in the active set since ri zeros were created in d. The minimizer along
the ray requires 6n flops, see [31] for details, the move to the end of a line segment requires
zk,j = zk,j−1 + 
tk,jdk,j in 2n flops, and the gradient can be updated (10) in 2n flops. The final
result is the sum of all terms. �

5. Algorithm

In each step, the proposed algorithm tries to reduce effectively the part of the gradient which
dominates the error in the KKT conditions. If it is the free gradient, i.e. if the iterate is
proportional, then the algorithm uses the direction p, otherwise it uses the chopped gradient.
The proportioning strategy has been proposed independently by Friedlander and Martinez [16]
and Dostál [11] for the solvers combining the conjugate gradients and projecting steps. The
proportioning with second-order information (PSOI) algorithm is presented in Algorithm 1.
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Algorithm 1 PSOI Algorithm. Given an SPD matrix H of the order n, n-vectors h, z, z̄, � =
{z : z ≤ z ≤ z̄}, z0 ∈ �, � > 0, α ∈ (0, 2‖H‖−1) and ε > 0.

1: {Initialization}
2: Set k = 0, gk = Hzk + h
3: while ‖ν(zk)‖ ≥ ε do
4: if ‖β(zk)‖ ≤ �‖ϕ(zk)‖ then
5: {Proportional zk}
6: Solve (7) to obtain direction pk .
7: Compute Hpk as described in Section 4.5.
8: αf = max{α : zk − αpk ∈ �}
9: if αf < 1 then

10: {Expansion step}
11: [zk

c , g(zk
c)] = PLS(zk , pk , Hpk , gk)

12: zk+1 = zk
c

13: gk+1 = g(zk
c)

14: else
15: {Full direction pk can be applied to remain feasible}
16: zk+1 = zk − pk

17: gk+1 = gk − Hpk

18: end if
19: else
20: {Proportioning step}
21: zk+1 = P�(zk − αβ(zk))

22: gk+1 = Hzk+1 + h
23: end if
24: k = k + 1
25: end while
26: z∗ = zk

5.1 Computational complexity and memory requirements

The overview of computational complexity of each step of Algorithm 1 shows that the complex-
ity of each iteration is O(n2) flops. The cost of iterates varies, as it depends on the test (9) which
part of the algorithm will be executed. The most computationally expensive part of Algorithm 1 is
the computation of the direction p in (7), since it involves the update of the Cholesky factorization
of the reduced Hessian and two substitutions.

The memory requirements of the proposed algorithm can be divided into two parts. First, the
QP problem data have to be stored in read only memory. In our implementation, we exploit the
symmetry of H, hence only the upper triangular part, 0.5(n2 + n) + n floating-point numbers,
has to be stored. The proposed method has been implemented without any dynamic memory
allocation. This is important for the embedded application, where the dynamic allocation is slow
or prohibited due to the safety reasons. Our implementation involves allocation of six temporary
n-vectors and a matrix with n2 floating numbers. This is used to speed-up the process of the
Cholesky factor update, using the lower triangular part of the matrix as temporary space when a
new constraint is added to the active set. In this case, the column of the factor is removed and
the rest of the factor is moved to fill in the gap in the column. Potential reduction of the memory
requirements to 0.5(n2 + n) + 6n can be achieved by using pointers, so that there is no need to
move the factor columns in the memory.



Optimization Methods & Software 445

6. Convergence

The proof of convergence is based on a simple estimate of the decrease of the cost function q in
the proportioning step.

Lemma 6.1 Let

d = z̄ − z, z ∈ �, β = β(z), α ∈ (0, 2‖H‖−1),

and let β̃ be defined by its components

β̃i =

⎧⎪⎨
⎪⎩

min{βi, di/α} for zi = z̄i,

− min{−βi, di/α} for zi = zi,

0 elsewhere.

(11)

Then there exists μ > 0 independent of z, such that

q(z) − q(P�(z − αβ)) ≥ μ‖β̃‖2. (12)

Proof Let α = δ‖H‖−1, δ ∈ (0, 2). Using the Taylor formula, the observation β̃
T
g = β̃

T
β

(from definitions (5) and (11)), and

αβ̃THβ̃ = δ‖H‖−1β̃THβ̃ ≤ δ‖β̃‖2,

we get

q(z) − q(P�(z − αβ)) = q(z) − q(z − αβ̃)

= αβ̃Tg − α2

2
β̃THβ̃ = αβ̃Tβ − α2

2
β̃THβ̃

≥ α‖β̃‖2 − αδ

2
‖β̃‖2 =

(
δ − δ2

2

)
‖H‖−1‖β̃‖2

= μ‖β̃‖2.

This proves (12) with μ = (δ − δ2/2)‖H‖−1. �

Now we are ready to prove the convergence of the proposed algorithm.

Theorem 6.2 Let {zk} denote the iterates generated by the PSOI algorithm for the solution of
(1) with z0 ∈ �, α ∈ (0, 2‖H‖−1), and � > 0. Then, {zk} converges to the solution z∗ of (1).

Proof First notice that {q(zk)} is decreasing and bounded from below by the unconstrained
minimum of q. Moreover, if {zk} is infinite, then it has an infinite subsequence of disproportional
iterates—there can be at most n consecutive expansion steps since the active set is expanding at
each step by at least one index. Since � is compact, it follows that there is a set of indices K of
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the proportioning steps such that {zk}k∈K converges to ẑ and

q(ẑ) = inf{q(zk)}k∈K.

Using Lemma 6.1, we get μ > 0 such that

q(z0) − q(ẑ) ≥
∑
k∈K

μ‖β̃(zk)‖2,

so ‖β̃(zk)‖ converges to zero. However, after inspecting the definition of β̃, it follows that also
‖β(zk)‖ converges to zero. Since for a given � > 0 the disproportional iterates satisfy

�‖ϕ(zk)‖ ≤ ‖β(zk)‖,

we conclude that also ϕ(zk) converges to zero and so does ν(zk). Thus ν(ẑ) = 0 and, since the
solution is unique, also ẑ = z∗ and {zk} converges to z∗. �

Remark 4 The proportioning step is a simple and efficient way of releasing the indices from
the active set. However, there are some other options. For example, we can try to use (possi-
bly reduced) conjugate gradient step length in the direction β(zk) or the GP step. The latter is
supported by the following theorem which guarantees sufficient decrease in the cost function.

Theorem 6.3 Let z∗ denote the unique solution of (1), let λmin(H) denote the smallest
eigenvalue of H, z ∈ �, g = Hz + h, and α ∈ (0, 2‖H‖−1). Then

q(P�(z − αg)) − q(z∗) ≤ η(α)(q(z) − q(z∗)),

where

η(α) := max{1 − αλmin, 1 − (2‖H‖−1 − α)λmin}.

Proof See Bouchala et al. [6]. �

7. Numerical experiments

In this section, the performance of the proposed method is compared with the state-of-the-art
solvers in several experiments. In particular, we are referring to qpOASES, an ASM implemen-
tation of Ferreau et al. [14] with hot start functionality used in all experiments together with
the option for MPC problems; FiOrdOs [47], FGM with an automatically generated code and
diagonal preconditioner, and FORCES [10] with automatically generated IPM solver for (MPC).
All algorithms use default settings except FiOrdOs, where we set the maximum number of iter-
ations to 200 and stopping condition to reach εFGM-solution with respect to the optimal cost
function value via the so-called gradient map-based stopping condition as proposed in [42]. We
use εFGM = 1e−3, otherwise no effort has been taken to optimize it to the experiments.

The presented algorithm PSOI was implemented in ANSI-C language using the single-
precision floating-point arithmetic (4 bytes per floating-point number) and was, as the other
solvers, called from MATLAB environment via C-MEX interface with � = 1, α = 1.95‖H‖−1,
and ε = 1e−6‖h‖. All numerical experiments were executed on a laptop with Intel i7-4800MQ
2.7 GHz processor. Since in the embedded application, the solution has to be ready before the
next sampling time under all circumstances, we recorded the maximum computation time for
each simulation. To eliminate outliers in execution times, the solvers were called 50 times for
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each QP problem and the minimum time measured was accepted. The reported times are the
results of the max–min operation for each simulation, if not stated otherwise.

All solvers have been using warm-start strategy using a shifted solution from the previous
sample instant, cf. Remark 3. Additionally, PSOI and qpOASES reused the factors from the
previous sample instant.

7.1 Oscillating masses

The set-up of the first experiment is similar to [48]. It consists of a sequence of six masses
connected by spring dampers to each other. The first and the last masses are connected to the
walls. The weight of each mass is 1 kg and spring constant is 1 N/m without damping. The system
state x ∈ R

12 represents the displacement and velocity of an individual mass. There are three
control inputs, i.e. u ∈ R

3, which exert tensions between different masses. We assume control
limits −0.5 ≤ u ≤ 0.5, and the presence of random bounded external disturbance w ∈ R

6 with
a uniform distribution on [−0.5, 0.5] which acts additionally on the displacement state of each
mass, see [48] for more details about the set-up. The control objective is to stabilize each mass
in its origin, i.e. to solve (3) with R = I and Q = P = μI, μ > 0 with sampling time Ts = 0.5 s.
In order to show the dependency of the solver performance on the number of variables, we
perform simulation of the model and controller with the prediction horizon N ∈ {10, 20, . . . 70}.
Furthermore, to test the solver performance for different conditioning of the QP problems, we
choose two different μ: 1) low-conditioned with μ = 1 where κ(H) ≈ 1e2 and 2) moderate-
conditioned with μ = 1e3 with κ(H) ≈ 1e3. Hence, the growth in κ(H) is caused only by the
change of controller tuning. Note that we are referring to the conditioning of the QP problem in
the sense of the spectral condition number of the H. All simulations were carried out for 1000
seconds, i.e. 2000 sampling instants and the computation times during the simulation for a fixed
prediction horizon were saved.

Both Figure 1 and 2 show that all the solvers are several times faster than FORCES, although it
is the only solver in test which has linear computational complexity of each iteration with respect

Figure 1. Maximum computation time of simulation of low-conditioned oscillating masses as a function of prediction
horizon.
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Figure 2. Maximum computation time of simulation of moderate-conditioned oscillating masses as a function of
prediction horizon.

to the prediction horizon. To our understanding, this is because the multiplicative constant of
linear complexity is high; hence on a given prediction horizon range the complexity of each
iteration is actually higher than for other solvers. It is also evident that FiOrdOs is very sensitive
to the problem conditioning, leading to the fact that it is faster than PSOI up to N = 10 for low-
conditioned problems but more than three times slower than PSOI for moderate-conditioned
problems. It should be also noted that FiOrdOs uses automatic diagonal preconditioning of the
problem Hessian off-line to minimize the condition number, hence it solves numerically more
favourable QP problem than other solvers. On the other hand, qpOASES and PSOI indicate small
sensitivity to QP problem conditioning. However, compared to qpOASES, which needs as many
iterations as is the difference in the active set from one sample instant to another, the projection
in PSOI helps to reduce the computation time.

To compare the methods in more detail, we employ the standard Dolan–More performance
profiles presented in [9]. These profiles visualize how many percent of all problem instances
are solved within τ—factor times the time of the fastest solver for this instance. Hence, the
computation times of each QP problem from the simulation with oscillating masses have been
merged for all selection of prediction horizon N separately for each solver. Hence, there were
exactly 2000 · 7 = 14, 000 QP problem instances solved by each solver and the particular choice
of μ. Figure 3 shows that 74.4% of QP problem instances are solved by the PSOI as the fastest
solver and that 96.9% instances are solved by PSOI solver within two times (i.e. τ = 2) the
fastest solver for low-conditioned oscillating masses. The qpOASES solves 73.3% of instances
for τ = 2, while FiOrdOs 60.1% instances for τ = 3. The poor performance of the FORCES
solver is indicated by the fact that it solves only 30.6% instances within 10 times the computation
time of the fastest solver.

The sensitivity of the FiOrdOs to the QP problem conditioning is demonstrated in Figure 4 for
moderate-conditioned oscillating masses as it solves only 5.5% problem instances for τ = 3. On
the other hand, PSOI solves 80.5% of problem instances with the lowest computation time and
97.7 % with τ = 2. The qpOASES then solves 60.5% of problem instances for τ = 2 showing
only small sensitivity to the QP problem conditioning.
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Figure 3. Performance profiles of Dolan and Moré [9] for computation times of solvers in test for low-conditioned
oscillating masses with all settings of prediction horizon.

Figure 4. Performance profiles of Dolan and Moré [9] for computation times of solvers in test for moderate-conditioned
oscillating masses with all settings of prediction horizon.

7.2 Random system

The controlled system is often close to the steady-state conditions where typically no constraints
are activated. This is modified by either change of the setpoints, limits, or the effect of external
disturbances leading to transient operation of the MPC controller which tries to stabilize the
system back. During the transient operation, the constraints are activated as the actuators of the
plant are saturated to speed-up the stabilization process. This leads to the fact that the optimal
active set has to be updated by the QP solver.
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In the following experiment, the proposed method is compared to the state-of-the-art solvers
to investigate how quickly the optimal active set is identified during the MPC controller transient
operation when the external disturbance causes changes in the system state x from the steady state
x = 0. In the previous experiment, it was shown how the proposed method can use a solution
from the previous sample time when there is only slight change in x. Contrarily, the experiment
suggested in this section clarifies the behaviour of the proposed method when the solution from
previous sample time serves as poor initial iteration. The reason for that is a large change of
the system state due to the external disturbance. As such, this experiment serves as a tool for
estimating the worst-case performance of the methods which can be expected during the transient
operation of MPC controller.

To this end, a random linear Schur stable2 discrete-time system with nx = 15 and nu = 5 was
generated by Matlab’s function drss. The control limits were set as −0.1 ≤ u ≤ 0.1 and the
controller was tuned with R = I, Q = 1e3 · I and P as solution of Lyapunov equation, see [2].
The controller has been set with enlarging prediction horizon N ∈ {10, 20, . . . , 70}. The result-
ing QP problem conditioning has been κ(H) ≈ 1e3. For each value of N, there were randomly
generated 1000 current state measurements x where each component has a uniform distribution
on [−10, 10]. The centre of the feasible set has been used as an initial iteration for all generated
x, and all solvers were initialized before running at steady-state condition x = 0. The solution
from the steady-state conditions have been used as an initial iteration for all solvers.

Figure 5 illustrates the maximal computation times for various state measurements x leading to
the same cardinality of optimal active set |A∗|. It is evident that qpOASES needs more than twice
the computation time compared to PSOI for large |A∗| since only one constraint can be added at

(a) (b)

(c) (d)

Figure 5. Comparison of maximal solver times for random system with variable state measurement x leading to various
cardinality of optimal active set |A∗|. (a) PSOI, (b) qpOASES, (c) FiOrdOs, and (d) FORCES.
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one iteration. On the other hand, FiOrdOs shows insensitivity to |A∗| since the maximum number
of iterations is exceeded with maximal relative cost function error of 0.001%.

7.3 Diesel engine tracking

To show practical use of the proposed method, the solvers were used for the solution of MPC
problem arising in the control of the turbo diesel engine. A nonlinear control-oriented model of
turbocharged 2.2 litre diesel engine has been built using OnRAMP Design Suite tool [23]. A
linear model at an engine speed 1500 rpm and an injection quantity of 40 mg/stroke was derived
by linearization inside the tool with resulting 23 states. An exhaust gas recirculation valve (EGR)
and turbo with variable geometry (VGT) were used as actuators. Similarly to [15], the mass air
flow (MAF) and the intake manifold absolute pressure (MAP) were tracked to the references.
Hence, we designed an MPC controller leading to the following optimization problem

f (x)∗ = min
u0,...,uN−1

1

2

N∑
k=1

((yk − rk)
TQy(yk − rk) + 
uk

TR
uk),

s.t. xk+1 = Axk + Buk , k = 0, . . . , N − 1, (13)

yk = Cxk , k = 1, . . . , N ,


uk = uk − uk−1, k = 1, . . . , N ,

uk ∈ �̃, k = 0, . . . , N − 1,

x0 = x,

(a) (b)

Figure 6. Diesel engine tracking problem simulation for Nblock = 100. (a) The MAF and its setpoint are in solid lines,
whereas MAP are in dashed lines. (b) The EGR and its limits are in solid lines, while VGT are in dashed lines.

(a) (b)

Figure 7. Diesel engine tracking problem simulation for Nblock = 100. (a) The number of active constraints is in solid
line and the number of changes in the optimal active set from last sample instant in dashed line. (b) The computation
times during experiment. Markers show three largest computation times for each solver.
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Table 1. Maximal and mean involved solver iterations (in bracket) during the engine tracking problem simulation.

Nblock n κ(H) PSOI (–) qpOASES (–) FiOrdOs (–)

10 20 2.2e4 4 (1.2) 4 (0.2) 63 (9.8)
20 40 3.0e4 5 (1.1) 11 (0.3) 64 (5.8)
30 60 4.3e4 5 (1.1) 17 (0.3) 67 (4.2)
40 80 4.5e4 7 (1.1) 15 (0.3) 69 (3.2)
50 100 3.8e4 9 (1.1) 15 (0.3) 70 (3.0)
60 120 3.1e4 7 (1.0) 16 (0.3) 73 (3.0)
70 140 2.1e4 7 (1.0) 16 (0.3) 78 (3.0)
80 160 9.6e3 7 (0.9) 16 (0.3) 81 (3.0)
90 180 2.4e3 7 (0.7) 16 (0.3) 88 (3.6)
100 200 5.1e3 7 (0.5) 16 (0.3) 128 (10.9)

Table 2. Maximal and mean solver computation times (in bracket) during the engine tracking problem simulation.

Nblock n κ(H) PSOI (ms) qpOASES (ms) FiOrdOs (ms)

10 20 2.2e4 0.010 (0.003) 0.023 (0.006) 0.024 (0.011)
20 40 3.0e4 0.032 (0.006) 0.081 (0.009) 0.071 (0.016)
30 60 4.3e4 0.074 (0.013) 0.174 (0.012) 0.159 (0.022)
40 80 4.5e4 0.146 (0.022) 0.249 (0.017) 0.283 (0.030)
50 100 3.8e4 0.262 (0.033) 0.366 (0.023) 0.466 (0.041)
60 120 3.1e4 0.336 (0.046) 0.543 (0.030) 0.750 (0.058)
70 140 2.1e4 0.471 (0.063) 0.719 (0.039) 1.143 (0.078)
80 160 9.6e3 0.671 (0.086) 1.078 (0.049) 1.552 (0.097)
90 180 2.4e3 0.843 (0.092) 1.196 (0.058) 2.184 (0.137)
100 200 5.1e3 1.049 (0.092) 1.529 (0.071) 3.907 (0.384)

where C ∈ R
nx×ny is the output matrix, yk ∈ R

ny denotes the system output, y = [MAF, MAP]T,
rk ∈ R

ny is the reference vector, Qy ∈ R
ny×ny is the SPS matrix, and 
uk ∈ R

nu is the change
of control input u = [EGR, VGT]T where 
u−1 denotes the last control input from the previous
sample. The form of the problem (13) assures zero tracking error in nominal conditions [28] and
can be formulated as (1), see, e.g. [43] for details. The engine model was discretized with a sam-
pling period 50 ms and the prediction horizon was selected as 5 s. The controller was tuned with
R = diag(0.1, 0.1) and Qy = diag(1, 200). Additionally, to decrease the number of optimization
variables to n = Nblocknu, the input blocking strategy described in [8] was employed. It keeps the
inputs constant over Nblock time-steps, so-called blocks, while having usually a minor effect on
the controller performance.

To benchmark the solvers, practical trajectories of MAF and MAP references were set in
the simulation with number of blocks as Nblock ∈ {10, 20, . . . , 100}. The resulting QP problem
conditioning has been κ(H) ≈ 5e4, see Table 2. The limits for both actuators were selected as
−10% and +5% from the linearization point. Step changes of 5 kg/h in MAF and 0.02 bar in
MAP reference in Figure 6 led to the saturation of actuators, leading to the activation of new
constraints, see Figure 7(a). This results in an increase in the demanded number of iterations
of all solvers, which is evident from the difference of maximal and mean values of iterations in
Table 1 and solution times in Figure 7(b) and in Table 2. While the number of iterations increases
dramatically for solvers in the test, the maximum number of iterations of PSOI remains under
nine in all instances since the fast identification of the optimal active set by projection is used.
As a result, it appears that PSOI is two to three times faster than FiOrdOs and about 50% faster
in the worst solution time than qpOASES for all choices of number of blocks. Since FORCES
package cannot directly solve the problem with the cost function of type (13), it was not involved
in this test.
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8. Conclusion

A new algorithm for a strictly convex box constrained QP problem arising in MPC has been
introduced. The proposed method uses a combination of p direction projection and proportioning.
While the first ingredient allows for quick expansion of the active set, the latter one avoids pre-
mature releasing of the constraints. This enables fast identification of the optimal active set and
reduces the computational complexity of the factor update scheme used in the face problem solu-
tion. The algorithm has been proved to converge, and the experiments show that the performance
of the proposed method is comparable to or better than other state-of-the-art methods.
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Notes

1. Note that problem (1) is not subject to equality constraints, hence the associated Lagrange multiplier is zero. The
condition of the non-negativity of the Lagrange multipliers of the simple constraints is reduced to the first two rows
of (4).

2. Schur stable system is such that all eigenvalues of A are within the open unit disk.
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