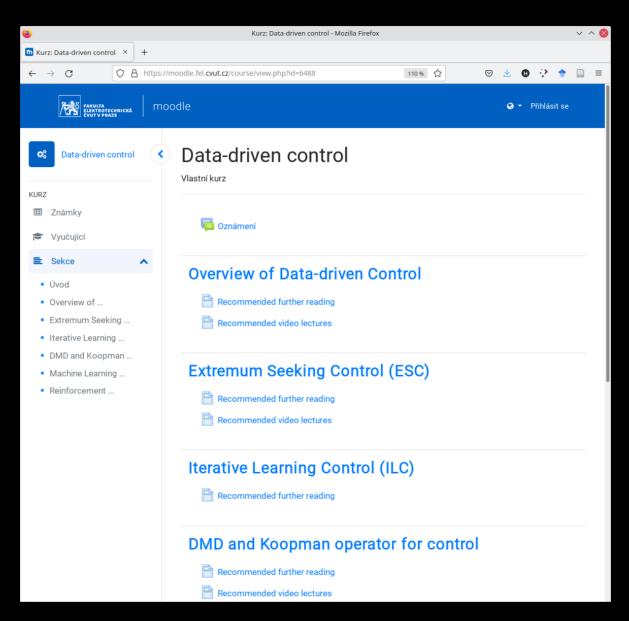
DATA-DRIVEN CONTROL

Overview of basics and latest trends

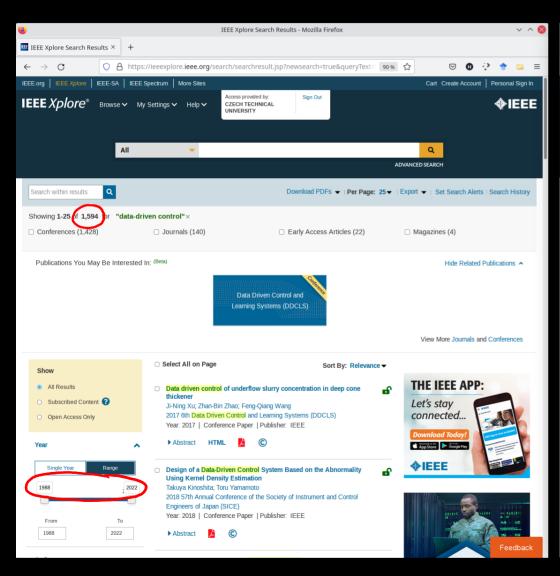
Czech Technical University Prague, Czechia Zdeněk HURÁK hurak@fel.cvut.cz http://aatcc.dce.fel.cvut.cz https://youtube.com/aatcc

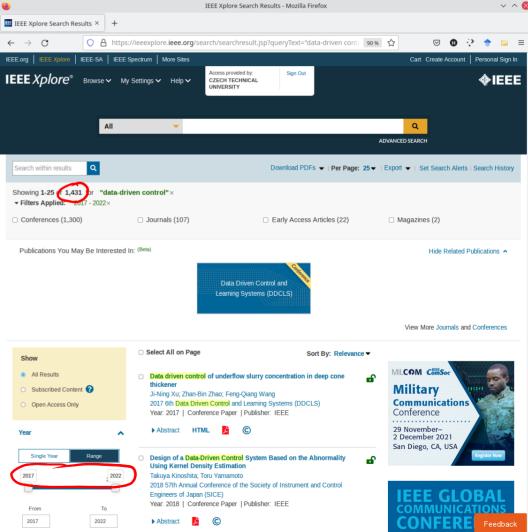
Web page in Moodle (Czech Tech. Uni.)



https://moodle.fel.cvut.cz/course/view.php?id=6488

According to IEEE Xplore





Data-Driven Mod

IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION, ACCEPTED FEE

Data-Driven MPC for

Guillem Torrente*, Elia Kaufmann*, Philipp Föhn

Abstract—Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modeling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-theart linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/FHvDghUUQtc

Code: https://github.com/uzh-rpg/data_driven_mpc

I. INTRODUCTION

Accurate trajectory tracking with quadrotors in high-speed and high-acceleration regimes is still a challenging research problem. While autonomous quadrotors have seen a significant gain in popularity and have been applied in a variety of industries ranging from agriculture to transport, security, infrastructure, entertainment, and search and rescue, they still do not exploit their full maneuverability. The ability to precisely control drones during fast and highly agile maneuvers would allow to not only fly fast in known-free environments, but also close to obstacles, humans, or through openings, where already small deviations from the reference have catastrophic consequences.

Operating, a guadrotor, at high, speeds, and apontrolling it. dealt effectively with the problem of model-free optimal adaptive control.

To address the challenges associated with solving the Bellman and Hamilton-Jacobi-Bellman equations in model-

Fig. 1: Our a pitch angl trajectory in platform rea beyond 4g.

Furthermore the model c scale and co Therefore, it but required accuracy and

Very little work exists on agile control of quadrotors at speeds beyond $5 \,\mathrm{m\,s^{-1}}$ and accelerations above 2g, $[\mathbb{Q} - \mathbb{S}]$. Even though these works show agile control at various levels, none of them accounts for aerodynamic effects. This is not a limiting assumption when the quadrotor is controlled close to hover conditions, but introduces significant errors when tracking fast and agile trajectories. Other approaches use iterative

be implemented in both schemes by applying either leastsquares or neural network approximation methods.

The Linear Programming (LP) approach to ADP is an alternative, model-based optimization paradigm to approxi-

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL

Int. J. Robust Nonlinear Control 2018; 28:3678-3693

Published online 28 July 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/rnc.3612

Data-driven H_{∞} loop-shaping controller design

Y. C. Sung*,[†], S. V. Patil and M. G. Safonov

Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, USA

SUMMARY

We develop a data-driven and real-time test for candidate controllers' ability to meet given McFarlane-Glover loop-shape specifications. The proposed test provides a data-driven method to improve robustness of closed-loop systems by eliminating controllers that past collected data have proved to fail to meet loopshape specifications. The test has an important property that many candidate controllers (not necessarily active ones) can be tested in real time using evolving real-time plant data collected while others are active. It is shown that controller-shaping in the present work plays a role that is dual to the role of plant-shaping in the model-based H_{∞} loop-shaping design procedure. A simulation example is provided. Copyright © 2016 John Wiley & Sons, Ltd.

Received 31 October 2015; Revised 6 June 2016; Accepted 26 June 2016

KEY WORDS: robust control; adaptive control; H_{∞} control

1. INTRODUCTION

Sensitivity and complementary sensitivity are important for specifying robustness and performance of closed-loop systems. Consider the closed-loop system $\Sigma(K, P)$ in Figure 1, where an SISO plant and an SISO controller are denoted by P and K, respectively. The sensitivity is defined as $S \triangleq (1 + PK)^{-1}$, and the complementary sensitivity is defined as $T \triangleq PK(1 + PK)^{-1}$. The size of |S| at each frequency ω is the factor by which disturbances are attenuated, while 1/|T| is the magnitude of the smallest destabilizing multiplicative plant perturbation. However, owing to the identity $S + T \equiv 1$, it is impossible to simultaneously lower both |S| and |T| arbitrarily. These considerations are the basis for the standard mixed-sensitivity formulation of the robust control problem in terms of inequalities to be satisfied by the magnitude Bode plots of S and T [1].

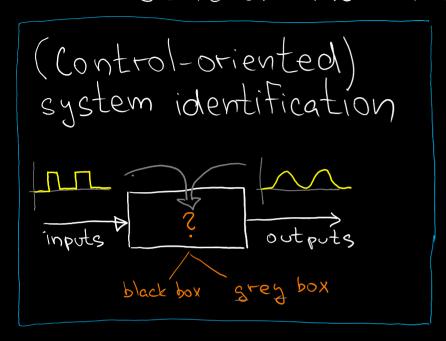
Loop shape L = PK is closely related to |S| and |T| as a consequence of the well-known approximate upper and lower bounds on the loop shape [2–5],

system order, knowledge on the system's structure and on the

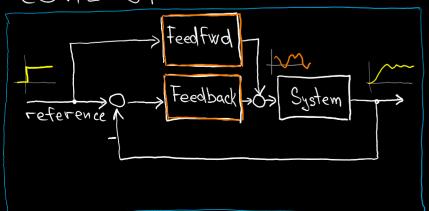
research of direct of derivm physing task. el and its ery basic e closeder family.

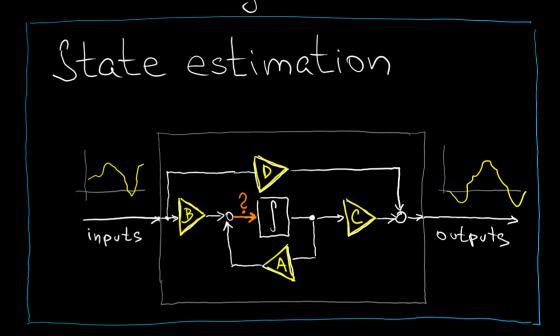
rejection [2], remain no incordutar guarantees on the stability of the resulting closed-loop system, although techniques for data-driven controller certification [7,8,14] have been proposed to address the problem of verifying whether a given controller is stabilizing for an unknown plant on the basis of input-output data collected in open- or closed-loop configuration. Some research work on direct data-driven techniques has accounted for stability requirements within the design procedure (see, e.g., [1,30]). The approach in [30] defines the desired complementary sensitivity in terms of a stable transfer function and aims at designing a controller such that the feedback interconnection with the actual process

Just a buzzword? Or just a hype? Or a trend? Control has always been driven by data:

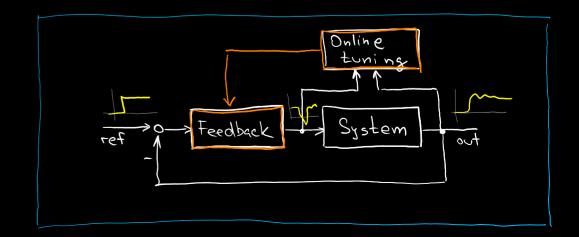


Feedback & feedforward





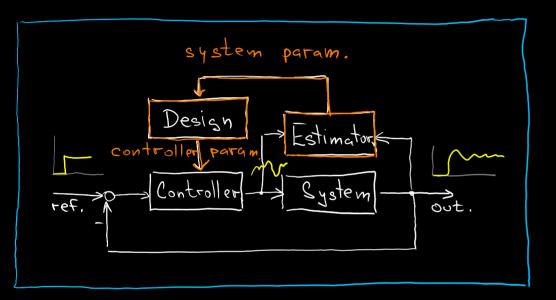
Adaptive control

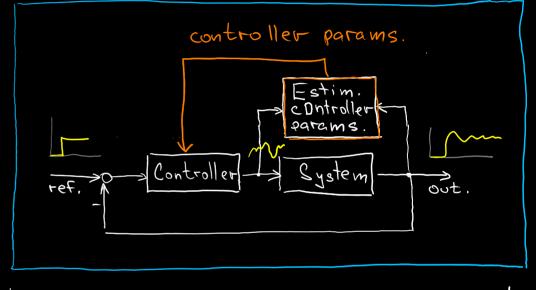


Adaptive control

Indirect adaptive control

Direct adaptive vontrol



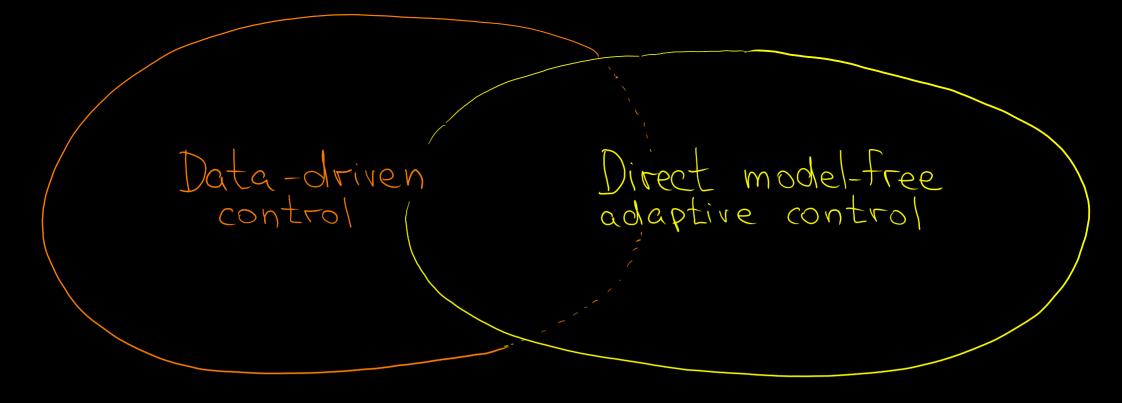


But Model-Free also

Can be model-based model-free

- online

offline using experimental data Lusing simulation data

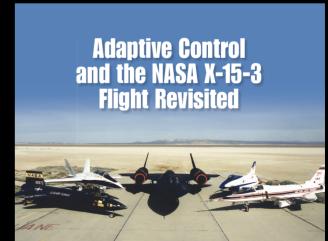


Rise and fall of adaptive control:

Fatal accident of NASA X-15-3 on November 15, 1967

(MH-96 adaptive controller)

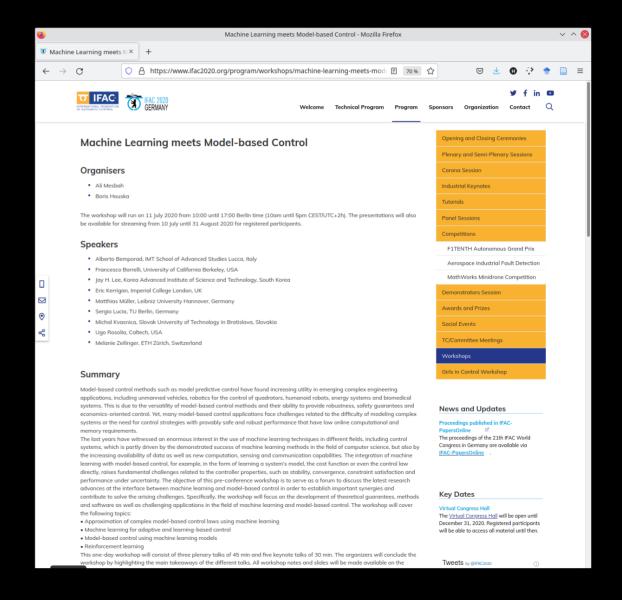
Dydek, Zachary T., Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive Control and the NASA X-15-3 Flight Revisited." IEEE Control Systems Magazine 30, no. 3 (June 2010): 32–48. https://doi.org/10.1109/MCS.2010.936292.

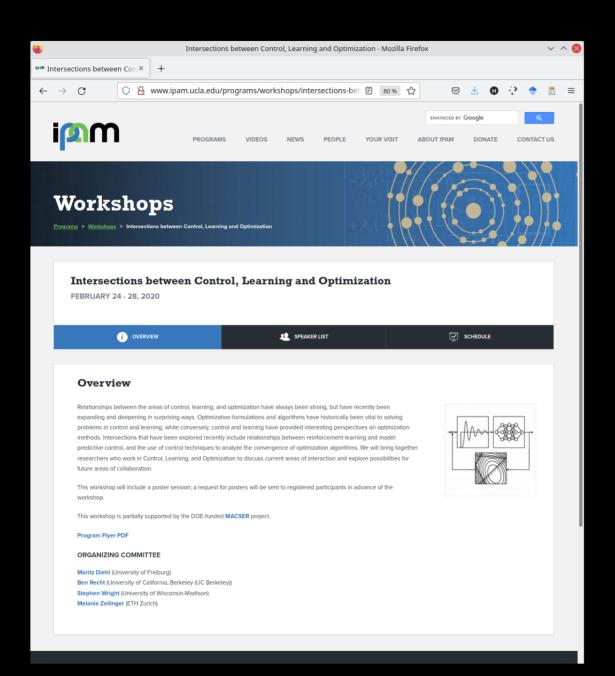


For some Data-driven = machine learning-based (numerical) optimization on data

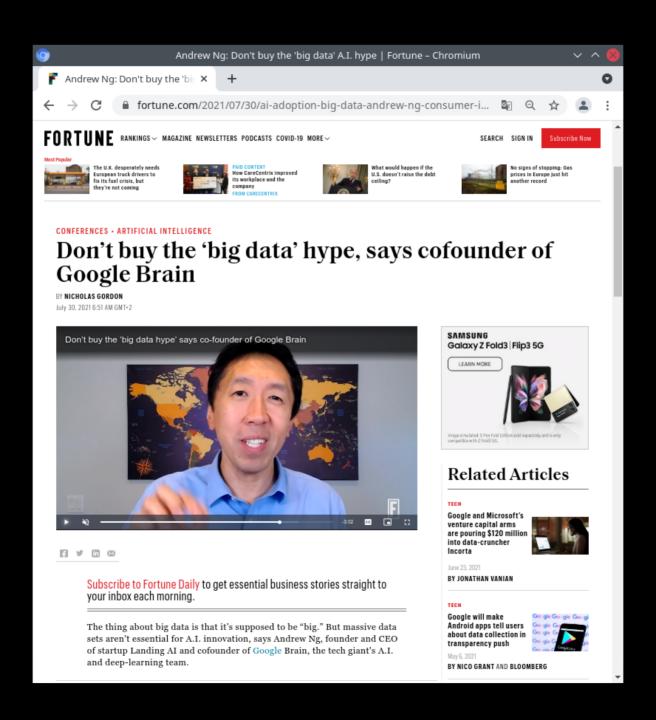
Optimal control

(numerical) optimization
on data AND models

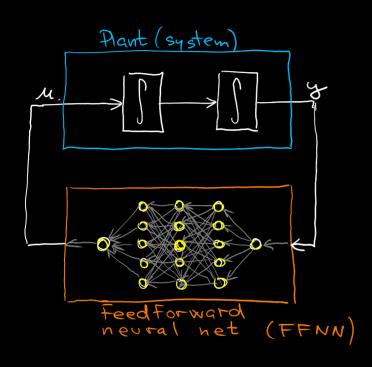




But



Can/shall we relly just on learning (from data)?



- undergrades know that it is impossible to stabilize with a proportional controller

$$M(t) = -K \cdot y(t)$$

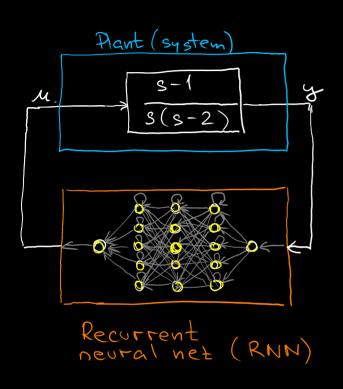
- but from E. Sontag's book we know that even nonlinear

$$M(t) = -f(y(t))$$

doesn't help

Sontag, E. Mathematical Control Theory. 2nd ed.
Texts in Applied Mathematics. New York, NY: Springer, 1998.
http://www.sontaglab.org/FTPDIR/sontag_mathematical_control_theory_springer98.pdf.

Can/shall we relly just on learning (from data)?



- not strongly stabilizable plant
- root locus or LQ/LQG/H2/Ho can give a stabilizing controller
- RNN must be open-loop unstable (how to train?)
- Or RNN must lear periodic jumps (how to implement and train?)
- Reinforcement learning reported to have hard times

Data-driven control & model-free direct adaptive control & machine-learning based control & optimization over data

Selected methods

TODAY (?)

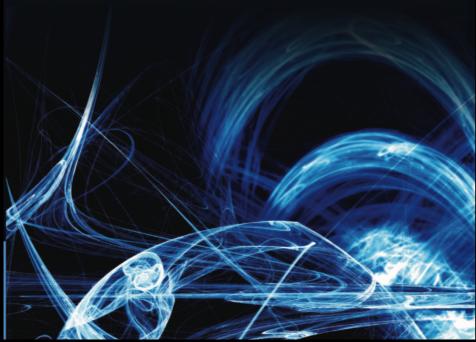
- Extremum seeking control (ESC)
- Iterative learning control (ILC)
- Virtual reference feedback tuning (VRFT)
- Dynamic mode decomposition (DMD) & Koopman operator based approaches
- Unfalsified control
- Iterative feedback tuning
- Machine learning based
- Reinforcement learning (RL)

Major tip on a literature

DATA-DRIVEN SCIENCE AND ENGINEERING

Machine Learning, Dynamical Systems, and Control

Steven L. Brunton · J. Nathan Kutz



http://databookuw.com

