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SUMMARY

We develop a data-driven and real-time test for candidate controllers’ ability to meet given McFarlane—

Abstract—Aerodynamic forces render accurate high-speed tra-
jectory tracking with quadrotors extremely challenging. These
complex aerodynamic effects become a significant disturbance
at high speeds, introducing large positional tracking errors, and
are extremely difficult to model. To fly at high speeds, feedback
control must be able to account for these aerodynamic effects in
real-time. This necessitates a modeling procedure that is both
accurate and efficient to evaluate. Therefore, we present an
approach to model aerodynamic effects using Gaussian Processes,

Glover loop-shape specifications. The proposed test provides a data-driven method to improve robustness
of closed-loop systems by eliminating controllers that past collected data have proved to fail to meet loop-
shape specifications. The test has an important property that many candidate controllers (not necessarily
active ones) can be tested in real time using evolving real-time plant data collected while others are active.
It is shown that controller-shaping in the present work plays arole that is dual to the role of plant-shaping in
the model-based H ., loop-shaping design procedure. A simulation example is provided. Copyright © 2016
John Wiley & Sons, Ltd.

Received 31 October 2015; Revised 6 June 2016; Accepted 26 June 2016

which we incorporate into a Model Predictive Controller to
achieve efficient and precise real-time feedback control, leading to
up to 70% reduction in trajectory tracking error at high speeds.
We verify our method by extensive comparison to a state-of-the-
art linear drag model in synthetic and real-world experiments at
speeds of up to 14m/s and accelerations beyond 4g.

KEY WORDS: robust control: adaptive control: Hae control
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Sensitivity and complementary sensitivity are important for specifying robustness and performance
of closed-loop systems. Consider the closed-loop system X (K. P) in Figure 1, where an SISO
pldlll and an SISO controller are denoted by P and K. respectively. The sensitivity is dehned as
S = (1 + PK)™!, and the complementary sensitivity is defined as T 2 PK(1 + PK)™!'. The
size of | S| at each frequency o is the factor by which disturbances are attenuated, while 1/|7T| is
the magnitude of the smallest destabilizing multiplicative plant perturbation. However, owing to the
identity S + 7 = 1, it is impossible to simultaneously lower both | S| and |7T| arbitrarily. These
considerations are the basis for the standard mixed-sensitivity formulation of the robust control
problem in terms of inequalities to be satisfied by the magnitude Bode plots of S and 7 [1].

Loop shape L = PK is closely related to |S| and |T| as a consequence of the well-known
approximate upper and lower bounds on the loop shape [2-5],

SUPPLEMENTARY MATERIAL

Video: https:/youtu.be/FHvDghUUQt¢
Code: https://github.com/uzh-rpg/data_driven_mpe¢
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Very little work exists on agile control of quadrotors at
speeds beyond 5ms~! and accelerations above 2g, [1-8].
Even though these works show agile control at various levels,
none of them accounts for aerodynamic effects. This is not a

Accurate trajectory tracking with quadrotors in high-speed
and high-acceleration regimes is still a challenging research
problem. While autonomous quadrotors have seen a significant
gain in popularity and have been applied in a variety of
industries ranging from agriculture to transport, security, in-
frastructure, entertainment, and search and rescue, they still do
not exploit their full maneuverability. The ability to precisely
control drones during fast and highly agile maneuvers would
allow to not only fly fast in known-free environments, but
also close to obstacles, humans, or through openings, where
already small deviations from the reference have catastrophic
consequences.
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resulting closed-loop system, although techniques for data-driven
research controller certification [7,8,14] have been proposed to address the
limiting as . ) o S T of direct problem of verifying whether a given controller is stabilizing for
imiting assumption when the quadrotor is controlled close to . . . -

" X o of deriv- an unknown plant on the basis of input-output data collected in
hover conditions, but introduces significant errors when track- ym phys- open- or closed-loop configuration. Some research work on direct
ing fast and agile lrdlulOl'lu Other dPPTO‘KhL* use iterative ing task, data-driven techniques has accounted for stability requirements
2l and its within the design procedure (see, e.g, [1,30]). The approach
2ry basic in [30] defines the desired complementary sensitivity in terms
e closed- of a stable transfer function and aims at designing a controller
The Linear Programming (LP) approach to ADP is an al- 2r family. such that the feedback interconnection with the actual process

ternative, model-based optimization paradigm to approxi-

v:2102.0577

be 11111)1(\111011&\(1 in both schemes by (\1)])]\1110 either loast-
squares or neural network approximation methods.

To address the challenges associated with solving the Bell-
man and Hamilton-Jacobi-Bellman equations in model-
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Dydek, Zachary T., Anuradha M. Annaswamy, and Eugene Lavretsky.
“Adaptive Control and the NASA X-15-3 Flight Revisited.”
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Dynamical systems provide a mathematical framework to describe the world around us, modeling the
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analysis, prediction, and understanding of the behavior of systems of differential equations or iterative
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L mappings that describe the evolution of the state of a system. This formulation is general enough to
Dynamical Systems, st o s g e T

About the Book Chapter 9: Balanced Models for systems, electrical circuits, turbulent fluids, climate science, finance, ecology, social systems,

C I Control neuroscience, epidemiology, and nearly every other system that evolves in time.
a n d o ntro . o This chapter presents a modern perspective on dynamical systems in the context of current goals and
Chapter 10 DalaienLoniyl open Data-driven dynamical systems is a rapidly evolving field, and therefore, we focus on
a mix of established and emerging methods that are driving current developments. In particular, we will
focus on the key of ing ics from data and finding data-driven representations
Steven L. Brunton - J. Nathan Kutz .

that make nonlinear systems amenable to linear analysis.
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