Optimization with inequalities: KKT conditions Graduate course on Optimal and Robust Control (spring'22)

Zdeněk Hurák

Department of Control Engineering Faculty of Electrical Engineering Czech Technical University in Prague

February 23, 2022

Optimization with inequalities

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\operatorname{minimize}} f(\boldsymbol{x})$$

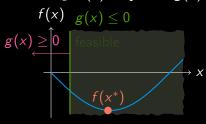
subject to
$$\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$$

Eventually combined with equality constraints

$$\begin{aligned} & \underset{\pmb{x} \in \mathbb{R}^n}{\mathsf{minimize}} \ f(\pmb{x}) \\ & \mathsf{subject to} \ \mathbf{g}(\pmb{x}) \leq \mathbf{0} \\ & & \mathsf{h}(\pmb{x}) = \mathbf{0} \end{aligned}$$

Scalar case first (n = 1)

minimize_{$x \in \mathbb{R}$} f(x) subject to $g(x) \le 0$



$$f(x) g(x) \le 0$$

$$f(x^*) feasible$$

$$\mathrm{d}f = f'(x)\mathrm{d}x \ge 0$$

$$df = f'(x)dx \ge 0$$
$$dg = g'(x)dx \le 0$$

$$sign f'(x) = -sign g'(x)$$

$$f'(x) + \mu g'(x) = 0, \quad \mu \ge 0$$

Necessary conditions of optimality

$$f'(x) + \mu g'(x) = 0$$
$$\mu \ge 0$$
$$g(x) \le 0$$

But more can be said

- Either g(x) = 0,
- or $g(x) < 0 \Longrightarrow \mu = 0$.

As a result: complementary slackness condition

$$\mu g(x) = 0$$

KKT conditions – necessary conditions of optimality

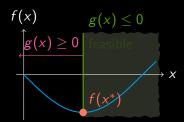
Karush-Kuhn-Tucker

$$f'(x) + \mu g'(x) = 0$$
 stationarity condition $\mu \geq 0$ dual feasibility $g(x) \leq 0$ primal feasibility $\mu g(x) = 0$ complementary slackness

Complementary slackness is not necessarily strict

Generally it is not excluded that both g(x) and μ are zero. But is strict for LP.

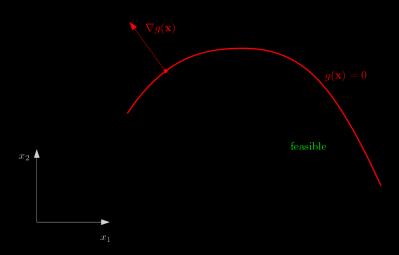
Example:



$$g(x) = 0$$
, $f'(x) = 0$, $g'(x) \neq 0$ ($g(x) = a - x \Rightarrow g'(x) = 1$).

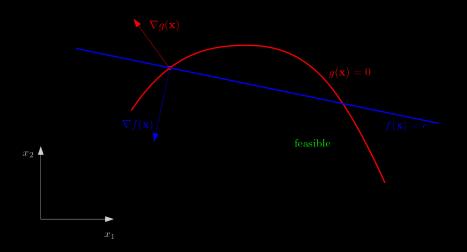
Vector case (several variables): single constraint

 $\mathbf{x} \in \mathbb{R}^n$, say n = 2



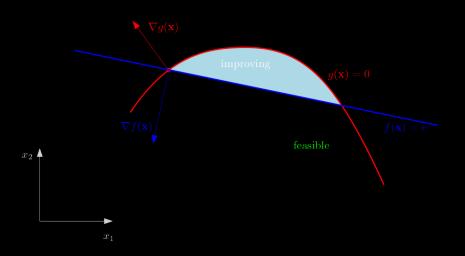
Vector case (several variables): single constraint

$$\mathbf{x} \in \mathbb{R}^n$$
, say $n = 2$



Vector case (several variables): single constraint

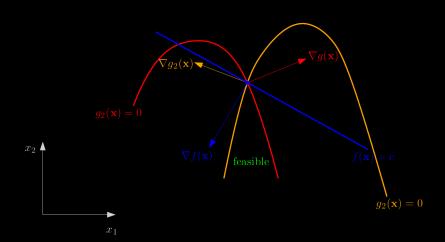
 $\mathbf{x} \in \mathbb{R}^n$, say n = 2



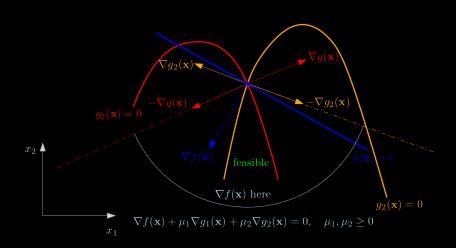
Vector case (several variables): two (and more) constraints



Vector case (several variables): two (and more) constraints



Vector case (several variables): two (and more) constraints



Necessary conditions of optimality for inequalities

$$abla f(oldsymbol{x}) + \sum_{i}^{m} \mu_{i}
abla g_{i}(oldsymbol{x}) = 0$$
 $\mu_{i} \geq 0, \quad i = 1, \dots, m$
 $g_{i}(oldsymbol{x}) \leq 0, \quad i = 1, \dots, m$
 $\mu_{i} g_{i}(oldsymbol{x}) = 0, \quad i = 1, \dots, m$

Constraint qualification needed for active constraints

Inequality constrants active at x are those satisfied with equality

$$g_i(\mathbf{x})=0.$$

Active constraints must satisfy some regularity conditions (also called constraint qualification) for the KKT conditions to be necessary at a given point.

One of several possible constraint qualifications for KKT conditions is Linear Independence Constraint Qualification (LICQ) (= linear independence of gradients of active constraints (as in the equality case).

Constraint qualification for convex optimization

For convex problems (f convex, g_i s convex, h_j s affine), verify the existence of Slater's point:

x such that inequality constraints are satisfied strictly (also called strictly feasible point):

$$g_i(x) < 0 \quad i = 1, \ldots, m$$

KKT conditions – necessary conditions of optimality for inequalities

Assume constraint qualification (existence of Slater's point in the convex case). The necessary conditions are

$$\nabla f(\mathbf{x}) + \sum_{i}^{m} \mu_{i} \nabla g_{i}(\mathbf{x}) = 0$$

$$\mu_{i} \geq 0, \quad i = 1, \dots, m$$

$$g_{i}(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$$

$$\mu_{i} g_{i}(\mathbf{x}) = 0, \quad i = 1, \dots, m$$

KKT conditions in vector format

$$egin{aligned}
abla f(\mathbf{x}) +
abla \mathbf{g}(\mathbf{x}) \mu &= \mathbf{0} \ \mu &\geq \mathbf{0} \ \mathbf{g}(\mathbf{x}) &\leq \mathbf{0} \ \mu^{ op} \mathbf{g}(\mathbf{x}) &= \mathbf{0} \end{aligned}$$

where

$$abla \mathbf{g}(\mathbf{x}) = egin{bmatrix}
abla g_1(\mathbf{x}) &
abla g_2(\mathbf{x}) & \dots &
abla g_m(\mathbf{x}) \end{bmatrix}$$

is a Jacobian (matrix) for the constraints.

KKT conditions as necessary cond's for inequality and equality constraints

$$egin{aligned} & \mathop{\mathsf{minimize}}_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x}) \ & & \mathbf{g}(oldsymbol{x}) \leq \mathbf{0} \ & & \mathbf{h}(oldsymbol{x}) = \mathbf{0} \end{aligned}$$

Assume constraint qualification (Slater's point in convex case)

$$\nabla f(\mathbf{x}) + \sum_{i}^{m} \mu_{i} \nabla g_{i}(\mathbf{x}) + \sum_{i}^{m} \lambda_{i} \nabla h_{i}(\mathbf{x}) = 0$$

$$\mu_{i} \geq 0, \quad i = 1, \dots, m$$

$$g_{i}(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$$

$$h_{i}(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$\mu_{i} g_{i}(\mathbf{x}) = 0, \quad i = 1, \dots, m$$

KKT conditions also sufficient for convex case

Generally some second-order necessary conditions must be developed and satisfied, but for a convex problem just satisfaction of KKT conditions suffices.

But don't forget the assumption of existence of Slater's point.