{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Gradient method" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use here the code for the gradient seaarch one again, in the \"decorated\" version" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "gradient_method_quadratic_exact (generic function with 1 method)" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function gradient_method_quadratic_exact(Q,r,x0,ϵ,N)\n", " x = x0\n", " X = x\n", " f(x) = 1/2*dot(x,Q*x)+dot(x,r)\n", " fx = f(x)\n", " F = [fx,]\n", " g(x) = Q*x+r\n", " gx = g(x)\n", " iter = 0\n", " while (norm(gx) > ϵ) && iter <= (N-1)\n", " iter = iter+1\n", " α = dot(gx,gx)/dot(gx,Q*gx)\n", " x = x - α*gx\n", " fx = f(x)\n", " gx = g(x)\n", " @printf(\"iter = %3d ||∇f(x)|| = %4.2e f(x) = %4.2e α = %4.2e\\n\",iter,norm(gx),fx,α)\n", " X = hcat(X,x)\n", " push!(F,fx)\n", " end\n", " return F,X\n", "end" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Gradient method for ill-conditioned problems" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The zig-zag convergence of gradient method(s) is getting worse for certain data. Consider, for example, the cost function given by " ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "$$f(\\mathbf x) = 1000x_1^2 + 40x_1x_2 + x_2^2,$$" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "which can be written as a quadratic matrix form with the coefficient matrix $Q$ given by" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2×2 Array{Int64,2}:\n", " 1000 20\n", " 20 1" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Q = [1000 20; 20 1]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The other coefficients in the general prescription of a quadratic matrix function are zero, that is" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2-element Array{Int64,1}:\n", " 0\n", " 0" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c = [0, 0]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We set the initial estimate, say, as" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2-element Array{Int64,1}:\n", " 1\n", " 1000" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x0 = [1,1000]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Now we call our solver and what strikes us immediately is the number of iterations. We were used to some ten or twenty." ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "iter = 1 ||∇f(x)|| = 6.00e+02 f(x) = 2.99e+05 α = 1.00e-03\n", "iter = 2 ||∇f(x)|| = 1.21e+04 f(x) = 1.72e+05 α = 7.08e-01\n", "iter = 3 ||∇f(x)|| = 3.45e+02 f(x) = 9.91e+04 α = 1.00e-03\n", "iter = 4 ||∇f(x)|| = 6.96e+03 f(x) = 5.70e+04 α = 7.08e-01\n", "iter = 5 ||∇f(x)|| = 1.98e+02 f(x) = 3.28e+04 α = 1.00e-03\n", "iter = 6 ||∇f(x)|| = 4.00e+03 f(x) = 1.88e+04 α = 7.08e-01\n", "iter = 7 ||∇f(x)|| = 1.14e+02 f(x) = 1.08e+04 α = 1.00e-03\n", "iter = 8 ||∇f(x)|| = 2.30e+03 f(x) = 6.24e+03 α = 7.08e-01\n", "iter = 9 ||∇f(x)|| = 6.56e+01 f(x) = 3.59e+03 α = 1.00e-03\n", "iter = 10 ||∇f(x)|| = 1.32e+03 f(x) = 2.06e+03 α = 7.08e-01\n", "iter = 11 ||∇f(x)|| = 3.77e+01 f(x) = 1.19e+03 α = 1.00e-03\n", "iter = 12 ||∇f(x)|| = 7.61e+02 f(x) = 6.83e+02 α = 7.08e-01\n", "iter = 13 ||∇f(x)|| = 2.17e+01 f(x) = 3.93e+02 α = 1.00e-03\n", "iter = 14 ||∇f(x)|| = 4.38e+02 f(x) = 2.26e+02 α = 7.08e-01\n", "iter = 15 ||∇f(x)|| = 1.25e+01 f(x) = 1.30e+02 α = 1.00e-03\n", "iter = 16 ||∇f(x)|| = 2.52e+02 f(x) = 7.47e+01 α = 7.08e-01\n", "iter = 17 ||∇f(x)|| = 7.18e+00 f(x) = 4.30e+01 α = 1.00e-03\n", "iter = 18 ||∇f(x)|| = 1.45e+02 f(x) = 2.47e+01 α = 7.08e-01\n", "iter = 19 ||∇f(x)|| = 4.13e+00 f(x) = 1.42e+01 α = 1.00e-03\n", "iter = 20 ||∇f(x)|| = 8.33e+01 f(x) = 8.18e+00 α = 7.08e-01\n", "iter = 21 ||∇f(x)|| = 2.38e+00 f(x) = 4.70e+00 α = 1.00e-03\n", "iter = 22 ||∇f(x)|| = 4.79e+01 f(x) = 2.71e+00 α = 7.08e-01\n", "iter = 23 ||∇f(x)|| = 1.37e+00 f(x) = 1.56e+00 α = 1.00e-03\n", "iter = 24 ||∇f(x)|| = 2.76e+01 f(x) = 8.95e-01 α = 7.08e-01\n", "iter = 25 ||∇f(x)|| = 7.86e-01 f(x) = 5.15e-01 α = 1.00e-03\n", "iter = 26 ||∇f(x)|| = 1.59e+01 f(x) = 2.96e-01 α = 7.08e-01\n", "iter = 27 ||∇f(x)|| = 4.52e-01 f(x) = 1.70e-01 α = 1.00e-03\n", "iter = 28 ||∇f(x)|| = 9.12e+00 f(x) = 9.80e-02 α = 7.08e-01\n", "iter = 29 ||∇f(x)|| = 2.60e-01 f(x) = 5.64e-02 α = 1.00e-03\n", "iter = 30 ||∇f(x)|| = 5.25e+00 f(x) = 3.24e-02 α = 7.08e-01\n", "iter = 31 ||∇f(x)|| = 1.50e-01 f(x) = 1.86e-02 α = 1.00e-03\n", "iter = 32 ||∇f(x)|| = 3.02e+00 f(x) = 1.07e-02 α = 7.08e-01\n", "iter = 33 ||∇f(x)|| = 8.61e-02 f(x) = 6.17e-03 α = 1.00e-03\n", "iter = 34 ||∇f(x)|| = 1.74e+00 f(x) = 3.55e-03 α = 7.08e-01\n", "iter = 35 ||∇f(x)|| = 4.95e-02 f(x) = 2.04e-03 α = 1.00e-03\n", "iter = 36 ||∇f(x)|| = 9.99e-01 f(x) = 1.17e-03 α = 7.08e-01\n", "iter = 37 ||∇f(x)|| = 2.85e-02 f(x) = 6.75e-04 α = 1.00e-03\n", "iter = 38 ||∇f(x)|| = 5.74e-01 f(x) = 3.88e-04 α = 7.08e-01\n", "iter = 39 ||∇f(x)|| = 1.64e-02 f(x) = 2.23e-04 α = 1.00e-03\n", "iter = 40 ||∇f(x)|| = 3.30e-01 f(x) = 1.29e-04 α = 7.08e-01\n", "iter = 41 ||∇f(x)|| = 9.42e-03 f(x) = 7.39e-05 α = 1.00e-03\n", "iter = 42 ||∇f(x)|| = 1.90e-01 f(x) = 4.25e-05 α = 7.08e-01\n", "iter = 43 ||∇f(x)|| = 5.42e-03 f(x) = 2.45e-05 α = 1.00e-03\n", "iter = 44 ||∇f(x)|| = 1.09e-01 f(x) = 1.41e-05 α = 7.08e-01\n", "iter = 45 ||∇f(x)|| = 3.12e-03 f(x) = 8.09e-06 α = 1.00e-03\n", "iter = 46 ||∇f(x)|| = 6.29e-02 f(x) = 4.65e-06 α = 7.08e-01\n", "iter = 47 ||∇f(x)|| = 1.79e-03 f(x) = 2.68e-06 α = 1.00e-03\n", "iter = 48 ||∇f(x)|| = 3.62e-02 f(x) = 1.54e-06 α = 7.08e-01\n", "iter = 49 ||∇f(x)|| = 1.03e-03 f(x) = 8.86e-07 α = 1.00e-03\n", "iter = 50 ||∇f(x)|| = 2.08e-02 f(x) = 5.09e-07 α = 7.08e-01\n", "iter = 51 ||∇f(x)|| = 5.93e-04 f(x) = 2.93e-07 α = 1.00e-03\n", "iter = 52 ||∇f(x)|| = 1.20e-02 f(x) = 1.69e-07 α = 7.08e-01\n", "iter = 53 ||∇f(x)|| = 3.41e-04 f(x) = 9.70e-08 α = 1.00e-03\n", "iter = 54 ||∇f(x)|| = 6.88e-03 f(x) = 5.58e-08 α = 7.08e-01\n", "iter = 55 ||∇f(x)|| = 1.96e-04 f(x) = 3.21e-08 α = 1.00e-03\n", "iter = 56 ||∇f(x)|| = 3.96e-03 f(x) = 1.85e-08 α = 7.08e-01\n", "iter = 57 ||∇f(x)|| = 1.13e-04 f(x) = 1.06e-08 α = 1.00e-03\n", "iter = 58 ||∇f(x)|| = 2.28e-03 f(x) = 6.10e-09 α = 7.08e-01\n", "iter = 59 ||∇f(x)|| = 6.49e-05 f(x) = 3.51e-09 α = 1.00e-03\n", "iter = 60 ||∇f(x)|| = 1.31e-03 f(x) = 2.02e-09 α = 7.08e-01\n", "iter = 61 ||∇f(x)|| = 3.73e-05 f(x) = 1.16e-09 α = 1.00e-03\n", "iter = 62 ||∇f(x)|| = 7.53e-04 f(x) = 6.68e-10 α = 7.08e-01\n", "iter = 63 ||∇f(x)|| = 2.15e-05 f(x) = 3.84e-10 α = 1.00e-03\n", "iter = 64 ||∇f(x)|| = 4.33e-04 f(x) = 2.21e-10 α = 7.08e-01\n", "iter = 65 ||∇f(x)|| = 1.24e-05 f(x) = 1.27e-10 α = 1.00e-03\n", "iter = 66 ||∇f(x)|| = 2.49e-04 f(x) = 7.31e-11 α = 7.08e-01\n", "iter = 67 ||∇f(x)|| = 7.11e-06 f(x) = 4.21e-11 α = 1.00e-03\n" ] }, { "data": { "text/plain": [ "([520500.0, 299388.4824865043, 172206.46195116927, 99052.12549075358, 56974.189313605355, 32771.21244859667, 18849.80511858812, 10842.295004070444, 6236.423146856451, 3587.1532412690867 … 6.104545437522206e-9, 3.5112979727352285e-9, 2.019677563140525e-9, 1.16170643754159e-9, 6.682065848803761e-10, 3.8434842542697904e-10, 2.2107491226625e-10, 1.2716096541630184e-10, 7.314222568199967e-11, 4.207097012988499e-11], [1.0 -20.008676436739314 … 1.1854240086947368e-8 -2.37187654299357e-7; 1000.0 998.9795785730727 … 1.1854240086757595e-5 1.1842143766173123e-5])" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "F,X = gradient_method_quadratic_exact(Q,c,x0,ϵ,N)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The reason for this high number of iterations is bad conditioning of the original problem. In particular, the matrix $\\mathbf Q$." ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "using LinearAlgebra" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "1668.0010671466664" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cond(Q)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Let's examine the behavior of the algorithm visually" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2-element Array{Float64,1}:\n", " -0.0\n", " -0.0" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x1_data = -40:1:10;\n", "x2_data = -100:10:1200;\n", "f(x) = 1/2*dot(x,Q*x)+dot(x,c)\n", "z_data = [f([x1,x2]) for x2=x2_data, x1=x1_data];\n", "\n", "xs = -Q\\c" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "hidden": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXQUSdeHn5m4uxA3khCChuBuwd1dFnd3W1jc3X1xWFwXdwkaIBAgBEKAuHumvz+ym+9lFxYbC/RzzpwkUzN1f1Pp6b5ddeteiSAIAiIiIiIiIiIiInJDqmoBIiIiIiIiIiI/GqKDJSIiIiIiIiIiZzRVLUCZpKamEhwcjLe3N/r6+qqWIyIiIiIi8i9evXpFdHS0XPu0tLTEyclJrn2K/Dc/lYMVHByMn58fgYGBlCxZ8rOvT0hIwMTERAnKfjzEsfs2xHH7dsSx+zbEcft2FDF2r169olAhL1JT0+Xar76+Po8fPxadLCXyUzlYX0tOTo6qJeRbxLH7NsRx+3bEsfs2xHH7dhQxdtHR0aSmprNl60oKFfKUS5+PHz+lY4feREdHiw6WEhEdLBERERERETXDp5D/F620fAkSxBlKVSAGuYuIiIiIiIiIyBlxBktERERE5JtQRDB2fuJTMVhiQLkIiA6WiIiIiMg3kBuMXYjU1FRVS1E7xIByERAdLBERERGRbyA3GDuVrVu3UqhQIVXLURseP35Mhw4dxIByEdHBEhERERH5dgoVKiS3YGwRkR8JMchdRERERERERETOiA7WD0p2Wjqhu04iyGSqliLyg5MUGkHwqr0khUaoWso3k3jzFkm376haBkJWJimndiBkZSrNpvTJUYSUnzdQXUREUYgO1g9I5JX7nG0xkocLtpH49JWq5Yj84CS9COfF78c422IEFzpNIHTnSTLiklQt66uIOXGKZyPHEDJsJMlBD1WmI/PJbRJ/n0PU2Bak37ukcHtCRjJa56eTtrQy2Q8PKdzef/Ho0SMePXqkUg0iIvJEdLB+ILJT07k3fR3XBszCwLkA1XbNwsTbRdWyRH5w7GqUJuDUckrNHoSupRlB87Zysk4/bgxbwNszN5FlZata4mdxGTcat18nkZ2URMjgYTwbM57UJ0+VrkPHtyyW03aiYW5D3Lz+xC4YRPb71wqzJ9ExJKP9fjScy5C5szsZO39BSI5SmL1P8ejRI6pVq0a1atVEJ0vkh0EMcv9BiAt6TuC4ZWTExFN0TFecm9dAIpGoWpbIT4KGjjZ2NUpjV6M0GXGJvDlxlfAjl7g5YiFaJobY1yqLQ4OKmPl6qOVxKZFIMClfDuOyZYi/cIm3m7fwpN9ATMqXw7ZzR/Td3ZSmRcvBA/PRq0m/eYrEbfOJGtscw/pdMWzQDYm2jvwNGlii3Xo9OUEHyDwymrSlldGuPwMN38ZK+V/97VxFRkYCUK1aNc6ePYuPj4/CbYuIKBLRwcrnCDkyQjYd4snKvZh4u1B26UgMHW1VLUvkJ0bHzBi3NgG4tQkg6UU4r49cIvzYZV7u+RMjdwecm1TDoX5FtE0MVS31X0ikUsyqVsa0UgXizpzl7ZbfedKrL6aVK1GgW2d0HRyUo0MiQa90bXSKVSL54FqSD60j7epRTDqNQadIeYXY0yzSBA3X8mQeGUPm7p5oBO1Hu8EsJEY2crf3N//rXFnqaQMQGRkpOlkiPwTiEmE+Ju19DFf6TCd4+W48ujSg4rqJonMlolYYuTngM6ANtQ4touySURi62PFw4TZO1ulP4NilRN14qJYbMSQaGpjXqonP+jU4DRtMSvATHnfryasFi8iKjlGaDqmOHsYtB2A5bRcaZtbEzulL3NKR5MRFKsSexNAandbr0G69jpxXN3Jjs+7tQRAEudv6p3O1s7k/O5v7Y6mnnedkicuFIvkZ0cHKp0Reucf5duNICX9P+VXjKNS3FVItcUJSRD2RaEixLl8U/9mDqH18Cd59WhIf/JKrfaZzuskwnq7bT3pUnKpl/guJpiYWdevgs3Et9j27E3/hEg87d+PNmvVkJykvkF/L3g3zMWsx6TWNzMc3iRrVlJTjWxFyFBPfplm4IXr9L6LhUY3MvX3J3NldrjsNP+ZceVoY4mlhKDpZIj8MooOVzxAEgZANB7k2cA6mhd2p8vt0LP3ELMoi+QcdcxM8OtWn+t45VFg7EYsSXoSsP8ip+gO5OXIR0bceKWTG5HuQamtj3aI5hbdsxLpFM6IPHOBRx66837ELWXq6UjRIJBL0KzTAavYB9CrUJ3H7PKIntiMz5K5i7BlYoNNyZe5s1ssrubNZj499d7+fcq7+Rt5OVnBwMA4ODrx48QKAOXPmUK9ePbU7xkR+PEQHKx8hy8rm7pTVPF66E89fmlBm4TB0zIxULUtE5JuQSCRYlPCixJTe1D6+FN9hHUl6Ec6VXr9xtuVIQneeJCtJvercaRgaYNe1Mz5bNmJWozpvN27mYeduRB86gpCToxQNUgNjTDqPxWLSFiSamsRM7ULChqnIUhIVYk+zcEP0+p1Hw8GPzO2dydjXHyEt4Yvfn5MQQ+brEDJfh3Dv9DGqVan8Sefqb/7lZFWpzL3Tx/L6yXwdQk7Cly3Vent7M2fOHFq1asW5c+dYvnw5mzdvVsvNFiI/FuKaUj4hKymVmyMXEnvnCSWn9sWhXgVVSxIRkRtaRvq4tq6NS6taRN98xMs9fxI0byuPluzAoW4FXFrUwMTLRdUy89AyM8NxQF+smzfl7abNvF60hKg/DmDXszvGZUor5eKt7eaLxaQtpJ7ZTdKuJaTfPo9xx5Ho+teSu32JkQ3a7TaTc3cnmUfHkf7iIjkefb7ovclXjpJ04ncAYmKSkaV8/dKqLCWJmI2/Efk/zphRQHtM6nb8ove3bduWs2fPEhAQwOnTp7G0tASgdevWbN68GR0dBezOFPnpER2sfEDauxiuDZxNemQsZZeNFpcERX5YJBIJVqULY1W6MOlRcYT9cZawP84Qtu8M5sU8cWtfF9sqfkg1NVQtFQAduwK4jBmFdYtmvFm1lhfjJ2FYvBj2vX5Bv2BBhduXSDUwqNkG3ZLVSNgyi/ilI9EpXhmTTmPQsCwgX1sSCZol2iB1q0Tm/sFkHhnzRe8zLF8PPd+yAFgDf3Z5Ru02HYmMjqH13psfncV6GpNM6703iU7LxNrSgpM7tlDI0+OD12gYm3+x9uzsbIKCgjA3N+fNmzd5zwuCQGRkJFOnTqVXr174+fl9cZ8iIp9DdLDUnKTQCK71mwkSqLhhMkau9qqW9NMgCAJCjgxZdg6y7BxysnIQcmRIpFI0tDXR0NZEqqUhLjUoCF0rM7x6NqNgt8a8u3Cb0O3HuTVyEXoFLHFtVRvnplXRMjJQtUwA9AsWxGPOTBKv3yBi9Tqe9BmAWc3q2HXtjLaN4tIc/I2GuQ3mg+aTHniGhM0ziRrTDMNmfTGo3RaJhnxP81ITe3Q67UJLOgXWTvm8NhMLNEws8v4u5liQs+cv5MVh/dPJ+sC5sraWS7qG0aNH4+XlxaZNm6hWrRp+fn7IZDLCwsKYP38+8+fPx9BQ/dKGiORvRAdLjYl/9IJrA2ajY25M2WWj0bP+8js2kf9HEATS41NIehND4psYUqMSSY9PIT0hhfT4VDISUkhPSCU9PoWMhBSy07PIycp1qvhcIKxEgoaWRp7DpaGjhY6xPrqmBrk/Tf763cQg93czAwxtzTC0MUPfyhiphhgG+TmkmhrYVffHrro/CcEvebH9OMHLd/Fk9V4cG1TCrU0Ahi52qpaZm6y0bBmM/UsRc+wEbzdt4dH5i1g1bYxN29ZoGik+XlLXrzraPqVJ2ruMpB3zSbtyBJOuE9B2KyxXOxKJBM3CjYDPO1gfw8fHh7Nnz/7LyQLk7lwdPnyY48ePc+PGDfT19Zk7dy4tW7akZ8+e1KxZk4SEBAwM1MNRF/mxEB0sNSU68DHXB8/F2N2BMotGqGVSRnUjLS6ZqEeviXv+loTX0SSGx5D4OprENzFkpWTkvU6qpYGuqQG6JgbomOija2qImZtN3t9aetpINTVyH1oaaGhp/v/fmlJk2TJyMrPIycz+/0fWXz8zsshITPvLeUsh5n086QkpZCSkkp6Q+oHDJtGQYmBtkutw2ZphaGuKhqkudj4umLnaYGRnrjZLYeqCibcLJab0ptCANrzce5qXe/7k5e4/sa5QDOtGlTCrUVblM4oSDQ0sG9TDrEY1InfvJXLXHmKOn6RA545YNqiHREOx/1OpniEmHUahV74+CeunEjOlIwYB7TFq3heJjp5CbX8NH3OyALk6VwANGjSgQYMGeX+3adOGNm3a0LNnT2bMmMHVq1cZNWoUs2fP/m5bIiL/i+hgqSExd4K5PmA2ZsUKUnr+UDT1dFUtSa0QBIHkt3FEPXqd+3ic+zP5bW4eJQ1tTYwdLDF2tMTOvyDeTcth7GCOsb0FRvYW6JoaqOQiLMhkpCekkvwunuR3cbmPt3/9fBdPdPBrEt/EEpiZm9tIqqWBiaMVpq7WmLpYY+psjZm7LZbeDugYqc+FUhXoWpri3as5Bbs24s3xK7zYcYKgUUt57X0Yj84NKFC9tMqdUw09PQp06oBl/bpErN9E+NLlRB86gn2fnhj7lVS4fW03Xyyn/E7K8S0k7VtJ+u2zmHSbiI5PaYXb/lL+6WQBcnWu/ovVq1cD/3bAfjaOHz/O+PHjyczMRF9fn1WrVlGsWDEEQWDKlCls27YNbW1tLC0tOXfuHACpqal0796dmzdvIpVKmTlzJs2aNQNAJpMxaNAgjh49ikQiYejQofTt2zfP3rRp09iwYQMA7dq1Y+rUqXlt69atY+bMmchkMmrUqMHy5cvR1My/bkr+Vf6DEv84lOuD5mBWxIMyC4ajoautakkqRxAEYp5GEH41mPDrT3kb+Jz0+BQAdM0MsfJxxLOBP1Y+jlj5OGLqbIVEqn5LbxKpFD0zQ/TMDLEq9PGSKzHR0WhlSIh/GfnX4z3xoZG8OHWPxPBoBFnuDJixgwUWXg5Yettj6e2AVSEHjB0s1PJzKxINbS2cGlXBsWFlQk9f5f2+8wSOWYq+vRXu7evh2Kiyym9QtCwscB4xFKvGDQlfvpLno8ZiXK4M9r16ouug2JhKiYYmhvW7outXnYR1vxI7syd6VZpi3GYIUgNjhdr+Uv7XyQLEEjlKJC4ujg4dOnDx4kUKFSrE+fPnad++PUFBQSxevJgHDx4QFBSEtrY2b9++zXvf3Llz0dHR4dmzZ4SGhlKuXDmqVauGmZkZW7du5dGjRzx9+pSEhARKlixJ9erV8fb25sKFC2zfvp379++jqalJhQoVqFixIgEBAYSGhjJhwgTu3LmDtbU1jRs3Zt26dfTq1UuFI/R9iA6WGpEc9pZr/Wdh5GpP6flDf2rnKvldHK+vBOc9UqMT0dDWxLaEG0U7VMXa1wkrH0cMbExVviQkTyRSKcb2ubNtThU+3C2ak5lFXGgk0cHhRD8OJzo4nKDtF0iLTQZAy0AHq0KO2BRzwba4K7bFXDG0NVPFx1A6EokE05LeuNUsT0LwS55tPsyDuZt5smovLi1r4dq6FjrmJirVqO9ZkIIL5hJ//iIRa9YS/EsvLBs3xLZDO4XHZ2naOmM+Zg2p5/aRtGMBGfcuYdJpDLqlqivU7pfyt5P19+8iyuH58+dYW1tTqFDuuaZKlSqEhYVx+/Zt5syZw7lz59DWzr0OFSjw/7tSd+7cycaNGwFwdXWlcuXKHDhwgC5durBz50569+6NhoYG5ubmtGrVih07djB58mR27txJly5d8mLeunXrxvbt2wkICGDPnj00bdoUm782hfTu3ZvZs2eLDpbI95MeFce1/rPQNjOizKIRaBr8XEtAgiAQHfyGZ8cDeX7yLnHP34FEgpWPA95Ny+JY3hs7P3c0f2KnU0NbC0sveyy97KFxGSB33FKjEol+8obo4HAig8IIORrInXV/AmBgY4rtXw6XTTFXbIo4//BjaOLtgt/0/hTq35rnvx/j+dajPNtyGKfGVfHo1AD9ApYq0yaRSDCrWhmTcmWI3PsH77fvJPbUaaXEZ0mkUgyqt0C3eCUSNk0nbvFQdP1rIjTsDeaq30AjOlYfkpP9npzscLn19TEKFixIVFQU165do2zZsvzxxx8kJycTFBREVFQUf/zxB3v37gVgyJAhtG7dGoBXr17h7Oyc14+LiwuvXr36ZNutW7fy2qpUqfJB2549ez7bZ35FdLDUgOyUNK4NmoMsO5vyq8ejbfrzZGePfxnJk4M3eHrkFvGh79Ex0cetRjHKDGiAQ1kv9MzF4P7/QiKRYGBtgoG1Cc6V/v8Clfw+nvf3XvLuXijv74VyY+lRslIzkGppYlvcFfvSBbEvXZACJdx+WIdL386KIiM64dWzGaG7TvFi+3HC9p7BsUFFPLo0wtBJdYXRpTo62LZrg0Wd2kSs20j4kmXEHD2OQ/8+GBbxVahtDXMbzAYvJP3GSRK3zEIW1IXUjqPQq9Dgh5oNzu+kpe0gJfmsnPr6uINlYmLC3r17GT16NElJSVSsWBEfHx8EQSAzM5O0tDSuXbvGq1evKFeuHIULF8bXN/f4/N9j5Z9lhxTRlh8RHSwVI8vO4daYpaSGR1Jx3USV3l0ri5SoBEKOBvLk4A0iH4ShZaCLe+3iVBrbAsdy3mhoi4fl92JoY4ph7eK41y4O5B5nMU8jiLgVQvi1pzz4/Tw3lx1FqqWJTVFnHMp4Yl/akwJ+7mjqaKlWvJzRNjHEq0dT3NvX5eWe0zzfepRXhy5gX6ssHl0bYVLQSWXatMzNcR4xFMsG9QhfsoyQIcMxq1kd+x7d0bKw+HwH34hEIkGvTAA6PmWIWj+NhNUTSL9xCpOu49Ews1aYXZEvR0+vDQaGReTU1wNg80fbKleunBe8npGRga2tLRUqVMDQ0JAOHToA4OTkRIUKFbh16xa+vr44OTnx8uVLrKysAAgLC6NevXp5r3358iX+/v55bU5OTh+0/c2XtuVbhJ+IwMBAARACAwO/6PUxMTEK1SOTyYR7MzcIB/07CO+v3FOoLWXzz7GTyWTCm5shwtGBq4Ul3n2FpT79hEO9VwhPj94SstIyVKRS/VD0Mfc3spwcISo4XLi76YxwpN9KYXXp4cLigr2F5UUGCAe6LxHubDwtxD5/K8hkMqXokQdfOnbZ6RnCi12nhJP1BwoHSrYTrg2eK8Tcf6pgdZ9HlpMjRB89Jtxv3kq426CJ8G7HLiEnM1PhdmNiYoS0W2eEd/1rCG97VRRSLh78ov/7155Pfxa+d1wUMa7/1WdERETe7+PGjROaNWsmCIIg9OjRQ1i2bJkgCIIQGxsrODs7571/0qRJQufOnQVBEIQXL14I1tbWed+/DRs2CDVq1BCys7OFmJgYwcnJSXj06JEgCIJw9uxZoXDhwkJycrKQnp4u+Pn5CceOHRMEQRCeP38uFChQQHj37p0gk8mEhg0bCitWrJDbGKgCcapAhbzcc5qXu05RdGw3rMsVVbUchSDLzuHZiTvcWfcnkUFhmLpaU2lMC7walUbXVEzupyokUmlePFexTtUQZDJiQt7y6tJjXl18yOXZf3Dxt90Y2ZvjVNEHp4o+OJb3/iHSQ2joaOPasibOTary5sRVQjYc5FKXyViVK4p3r+aYFfH4fCcKQCKVYlG3DiaVKvJu0xYi1m0g5thxHPr2wbh0KYXa1vWrhrZXSRK3zs6dzbp+Mnc2y1zxWej/RiaTkZqair6+PtKfbDesKpkwYQKXLl0iOzubcuXKsW7dOgCmT59O165dWb58OQBjxoyhZMnc9CIjRoygW7dueHh4IJVKWbZsGeZ/xfF17NiRmzdv4unpmffav4Poq1atSqtWrShSJHdmrk2bNtSpUwcANzc3pkyZQoUKFZDJZFSvXp3u3bsrbyAUgEQQfoCFzi/k9u3b+Pn5ERgYmHeg/BexsbF5B428iQ58zNU+M3BpWZMiIzopxIYqef/6LW9PP+LupjMkvYnFoawXJbrVxLmyz0+XSuBrUOQx9zVkpWbw5kYIry49IuziI+JD3yPRkGLvXxC3mkVxrVEMY3vFLWF9C986dkKOjIjTN3i6Zh9JL95gXaEYXr2aY1bYXQEqv5y0F6GEL19J8t17mFQoj0Pf3mjbyH/57p/jln7nPAkbpiFkpmHcdjh6lRt/NDbra8+nn+Lu3bssWLCA3bt3k5aWhp6eHi1btmTIkCEUL178m/tVFd87LvIaV0X3KfJ5xBksFZAeHc+t0YuxKOFF4cHtVC1HrmQkphK45iT3fz9PTnomBeuVosSymlj5OKpamshXoKWvg0tVX1yq5ga0JobHEHYhiBen73Np1j4uTNuNpbcDrjWK4lazGFY+jvk2QFqiIcW+dlnsapQm4s/rPFm9j4udJmJTsThevZpj6uOmEl16bq54zJlJ/LkLhK9cxePuPbDt2AGrZk2QaikuTk63RBW0PUuQuG0uCesmk37zFCbdJipkNmvbtm107tyZ7OzsvOfS0tLYvHkz27ZtY/PmzbRt21budkVElIHoYCkZQSbjzqSVSCRS/Gb0R6r1Y/wLcjKzebD9AjeXHSU7I4uCzUpTtle9nyYP04+OsYMFRdpVoUi7KmQmpxF24REvTt/j/paz3Fx2FENbM1yrF8Gjrh92pTzyZY1FiYYU+4By2NUsw5uTV3m65g8udJygUkdLIpFgVq0KxqVL8favZcPYk6dwGNgfo2KKCyuQGhhj2uNXdEvXImHdr0SNbZGbN6tcXbk50nfv3s1zrvTtjXCo746hswnJYQmEH3lO6pskOnXqRKFChfLlTJaIyI9xdc9HvNh2nKhrDyi7bLTKEx/KA0EQeHb8NlfnHSAxPJpCzctTZmADMrVkGJqLztWPiLahHgXr+VGwnh85WTlE3Aoh9Mx9Xpy6x4NtF9C3MsYjoCQedUti5+ee75aEJRpSHOpWwL52uQ8cLdtqpSjUtyVGbh/Pwq9INAwMcOjbG/OA2oQvXsqzYSNzdxv2/AUtBS4p6xarhPb0PSRsnkH8yrHoBp7BuPNYNIy/3+aCBQvynKsSUyqhoZt7OTJ0NsGqtB13Jl4gNSKZhQsX5iW1/BaCg4OpWbMmFy5cwM3NjTlz5nD27FmOHDmSb2ddRfIHooOlRBJCXvFoyQ7cO9bHuqx8tt+qkqhHrzk/dSdvA5/jXMWX+st7YeGZW/ojNjZWxepElIGGlgaO5bxxLOdNpbEteX8vlJCjtwk5Fsj9recwsDbBPaAEBev6UaCkW75ytv7X0Qo/fpknK/dyttVoHOpVwKtncwwclJ/OQN/djYIL5hJ74hQRa9fz6Mo17Lp2xrJRA4UlKZUammDWdyZppaqTsHE60WNbYNJ1PEhMv7lPmUzG7t27AXCo757nXP2Nhq4mDvU9eLrmLrt27WL9+vXfHPju7e3NnDlzaNWqFXPnzmX58uXcvHlTdK5EFI7oYCkJWVY2dyauwNDFDu++LVUt57tIi03m2sKDBO28hLmHLY03DPxXWReRnw+JRIJtcTdsi7tRcXQz3t4J5dnxQJ4du839LecwsDHFq1FpvBuXznPE8wMSDSmO9SthX7scYX+c5em6/bw5fhWnJlXx/KUJetbK3ZSQu9swAJMK5YlYv4Hw5SuJPfUnjkMGoV9QcTsg9UrXRtuzJAkbphG3aChJjn7f3FdqaippaWlA7ozVxzB0yX0+LS2NtLS0vPIq30Lbtm05e/YsAQEBnD59GktLSzIyMujVqxfGxsbk5OSwbNmyb+5fRORj5J/byXzO0zV/kPT8DSV/7Y2Gdv5N5BhyLJCtdafw9MgtKo9rQZv940TnSuRfSKRS7PzcqTyuFV0vTKf59uG41SjKo92X2dZgGjuaTOfOhtOkRCWoWuoXI9XSxLVVLWrsn0+h/q2I+PM6p5sMJWj+VjLiEpWuR9PYCKfBA/FcNA9ZZhZP+g3kzao15KSlK8ymhqklZoMXYNLjVzKCA7+5H319ffT0clN+JId9/BhIfpn7vJ6eXt5rv5Xs7GyCgoIwNzfnzZs3AOzbt48qVaqwePFizMzMuHr16nfZEBH5J6KDpQQSnrwkZONBPH9pgomXi6rlfBMZSWmcHLGR44PWYu/vQccTkynWqToaWoqrnSbyY/C3s1V1clu6XZpJ/eW9MXaw4Mrc/WyoNIYD3ZcQfOA6WakZqpb6RWjq6eDRqQE1DyzAo3NDwv44y+nGQ3i6/gDZacr/DAY+PnivXEqBrp2JOnCI4F96knD9hsLsSSQS9Cs1wqzf7G/uQyqV0rJl7kx++JHn5KRnf9Cek55N+JFnALRq1eq782KNHj0aLy8vLly4wLBhw3j27BlhYWG4uLgAuTmYwsLCvsuGiMg/EZcIFYwsO4e7v67B0NWegl0bqVrON/HmZginRm4kPT6VWrO74NW4tBi/IPJNaGhr4lazGG41i5GekMKzY7d5cvAGp0Zs5JyBLp4NSlG4ZQWsizir/TGmZaSPd6/muLaqTcj6/TxZtZeXu07h3acFjg0qI1HiTkqJpia2bVtjVqUSrxct5cW4iZhWroRD395oWSomX5mG6feV9RoyZAjbtm0j9U0SdyZewKG+B4YuJiS/TCD8yDNSI5LR1NRk8ODB32Xn8OHDHD9+nBs3bqCvr8/cuXNp2bIlw4cPz3OqXr58mZfwUkREXogOloJ5sf04CU/CqLRxSr5LySDLzuHG0iPcXHEcOz93mm0ZirGDeiWXFMm/6JoY4NumEr5tKpHwOprgP67xaO8VHu68hIWXPT4tyuPVqDR6Zupd8FvHzAjfYR1xbR1A8PJd3P11Dc9/P0ah/q2xqVRCqY6ijp0d7jN/I+7sOd4sX8Wjbj2w694Vy4b11W6DQfHixdm0aROdO3cmNSKZp2vuftCuqanJ5s2bvztFQ4MGDWjQoEHe323atKFNmzakp6fTu3dv7t+/T1paGuXLl/8uOyIi/yR/XfHzGWnvY3iyai+urWph5qvarNBfS/K7eE4MW8/b288pO7ghfj0D8mVuI5H8gYmjJWUGNsC/Xz1eXXrEoz1XuDx7H5dn/4FbzWIUblkex/Leauck/C8GDtb4Te+PW/u6PF68gxtD5mFR0ptCA9tgXqSg0nRIJBLMq1fD2L8UEWvWE75kGXFnzuI0bAi6TuqV8Lddu3b4+PiwcOFCdu3alZfJvVWrVgwePFih+a90dXW/K/2DiMjnEB0sBRI0byua+np498lfuwZfXX7MiaHr0dDWpNmWIdiVUk1tNpGfD6mGFJcqvrhU8SUtNong/dd5tOcKB7ot+SvZaWUKNS+v1rNaZoXdKbdyLFFX7/No8Q4udZlMgRql8RnYVqmpHTSNjHAaOgizGtV4PX8hwb36YtuxPTatWiDRVJ9Tf/Hixdm4cSPr16/Pc7DEWoQiPwLiUawgom4E8fb0DQoPboeWkb6q5XwxQTsucvCXpVj7OtH2wDjRuRJRGXrmRpToVpN2RybQYucICpR05+qCQ2yoNIZTIzfy7u4L1LWUqkQiwbp8Mar8/hslpvQm7kEIZ1uM4OGibWQlpSpVi1GxonivXoFVsya83biZJ/0GkvrkqVI1fAlSqRQDAwPRuRL5YVCf25gfCEEm4+H83zEv5ol93fyxri/IZFxdcJDAVSco0r4Klce3EpcERdQCiURCgRJuFCjhRqWxLXi05wpBOy4SvP86Vj6OFGlXGc8G/qqW+VEkGlIcG1SiQA1/nm85yrNNh3l96CLevZvj1KQaUk3l7MKV6uhg36M7ZlUq82reAp4MGIx186YU6NxRKfZFRH5GxCuoAgg/foXEkFf4DG6n9juhILeO4KmRmwhcdYIKo5pTZWJr0bkSUUv0zI3w6xlAx1O/0nB1PwxsTDkzYRvrK40hcOFREsNjVC3xo2jq6eLVsxnV/5iLTYVi3J+xgfNtxxB55Z5Sdeh7FsRr2eLclA77D/K4Zx/Sgh4qVYOIyM+COIMlZ2RZ2TxZtQ/bKiUxL6q8wNZvJSstk2MDVvP66hPqLPqFgnW/PTuziIiykGpIcanqi0tVXxLDY3iw/QJBOy/yZNcV3GoVp3iXGrmledTsBkfP2pwSU3rj2iaAh/O3cm3AbKzKFqHw0A4YuyunxuHfKR1MK1Xg9fxFRP76G7IG9bHr2R0N/fwTziAiou6I0xRy5vWRS6SGv8erdwtVS/ksGYmpHOi6mIhbz2i4uq/oXInkS4wdLKgwoilND4ykysTWxDx9w962c9nVYhZPDt0gJytH1RL/hWkhV8qvHo//3CGkvonkfNsxBM3dQlZSitI06Do44DF3FubduxL752mCe/Qm6c5dpdn/JzKZjOTkZGQymco0iIjIE9HBkiOyrGxC1u2nQI3SmHg6q1rOf5IWl8y+jguIff6WJpsGieVuRPI9mnraFGlXhQ7HJtFgVV90jPQ4OWwDm6qP5+aKY6THK895+RIkEgkFqpWi6q5ZePdtRdj+s5xuOpywP84i5CjHyZBIpRgF1MJ79Qq0bW15NmI0rxYuJidFeWN19+5dOnfujKGhIUZGRhgaGtK5c2fu3r2rNA0iIopAdLDkyJsTV0mNiMKzR1NVS/lP0mKT+KPTQlLex9Ns61Bsi7mqWpKIiNyQSKW4VitCk42DaHtoPM6VC3Nz+TE2Vh3Hxel7SHobq2qJH6ChrUXBLg2p8cc8rMsX5d60tVzoNIGYu0+UpkHHrgAec2biMKAfcX+e4XGPPiTe+vZag1/Ktm3b8Pf3Z/PmzXnFn9PS0ti8eTP+/v5s375d4RpERBSF6GDJCSFHRsj6A9hWKYlJQSdVy/kkmclpHOi2hLSYJJptHYqll72qJYmIKAxLL3tq/NaBLuemUbxLdR7vu8LmGhM4NWoTMU/fqFreB+hamVHy1z5U3DAZJBIud/+VwPHLSYtUjkMokUqxatwQ7zUr0bG34/nocbyat5CcZMXMZv09c5WdnY2LuTtjak9lfftdjKk9FRdzd7Kzs+nUqZM4kyWSbxEdLDnx7sJtksPe4qHG9QZzMrM52n81Ca+jabx+AOYeBVQtSUREKehbGFN2cCO6nJtO+eFNeX0lmG0NpnGo5zLe3AxRq3xa5kULUnnzrxSb0IOoaw8402w4IRsPIcvK/vyb5YBOAVs8Zs/AcfAA4s5f4HGP3iTdviN3OwsWLMhzrla1/Z16hRtT0NqbeoUbs6rt7zibu5Gdnc3ChQu/y05wcDAODg68ePECgDlz5lCvXj21+p+L/JiIuwjlxLMthzEv4aXUkhhfgyAInB63lTc3n9F4XX8svZWzY+lHRxAEUuJSSHyXQMK7BBIjE8lITiczJZOM1AwyUjLITMkgIyWTzNQMstKzAJBIJX89pEilEiSS3L9zhByMzI3RM9ZF10gPHSNd9Ixyf9c11sXAzABjGxOMrIzEVBrfgLahLiW61aRoh6o8PXKL22tPsq/9fGyKueDfpy4u1Yqoxc5DiVSKc5Oq2NUozZPVewlevovXhy9QdHRXLEv5KN6+RIJlg/oY+5cibO4Cno0cg1WTRtj90g2pru539y+Tydi9ezcAbUt1QV/7w92L+tr6tC3VhZknJ7Jr1y7Wr1//zQlIvb29mTNnDq1atWLu3LksX76cmzdvqsX/WeTHRnSw5EDsgxDi7oVQev5QVUv5JDeWHOHJgesEzO+GQ1kvVcvJV+Rk5xD1Ioq3jyN49+Qtca9jiX8bT8LbeOLfJZD9l9P0N9p62mgbaKNjoIO2vk7uTwMddAy00TfLvZAIMuHDhyAgkwlkJWcQHRpFenI66YlppCelk5Gc8a+7bYlUgpG1MSa2JhjbmGBia4KJjQlmjuZYuVph6WqFvqm45f5TaGhrUqhpWbyblCHs/ENurTrO4d4rsCzkgH/furjXKq4WdQ+1jPTxHdYRx0ZVeDBjA1d6/YZ9nfIUHtwOXSszhdvXtrHBY9Z0og4cJGLNehJvBeI8cjgGPt+3KSY1NTUv5qqg1cfPR55W3kBuTFZaWhoGBgbfbK9t27acPXuWgIAATp8+jaWl5Re/99y5c1y6dInx48d/s/1vQZYWiixFT259iSgf0cGSA6HbT6DvYINNpRKqlvJRQo4GcmPpEcoOaaS2Ga/VhaSoRN4EveFtcARvH0XwNvgt75+9Iyczd6u/sa0JFk4WmBQwxbGYEyYFTDAtYIqJrSnGtiYYWxujofXt2bljY2MxNzf/4DmZTEZmSiZpiWm5s2Vv40l4l0DC+79mzd4nEHrjBQnvEkiN+/94GQNzAyxdrbBys85zumy9C2DlZoWGkjKIqzsSiQSXqr44VynMmxsh3Fx2lGMD1mDuUYBSfepQsF4ptZgpNCnoRIW1E3h9+CKPFu/gTPPhePVqgWvr2grPBi+RSrFu2gRjPz/CZs/l6eBh2LRphazwtztZ+vr66OnpkZaWRkjUEwpae//rNU+jggHQ09NDT+/7HI3s7GyCgoIwNzfnzZvc2LuwsDBGjx6NjY0NUqmU+fPnc+7cOaZMmULjxo25f/8+kydP5syZM1y6dAltbW1Gjhz5XTq+hpzn48nWks9NUs5z5ZZnEslFdLC+k/SoOCL+vIHP4LZqccf7TyKDwjg1ahOeDf0p1buOquWoHUlRiTy78oxnl0N4fu0ZUc8jAdAx0MHWqwBOJZwo3bYsdoXssPUqgIH5t99FfytSqRRdI110jXQxszcD308v76YnpRP9MoqoF1FEv4giKjSKyGfveXQqiNT43JOspq4WBbxssSvsgJ2PHXY+9hQoZIeesXzulvMjEokEhzKeOJTx5O3t59xccZyTwzZwY8kR/HoF4NWozHc5znLRKJXi1KgKtlVLEbx8Fw8X/M6rg+cpOroLFiX+7aDIG10nRzwXzef9jl282/I7YfrfvlQolUpp2bIlmzdvZvutjVQtWOuDZcLUzFS239oIQKtWrb67PuHo0aPx8vJi06ZNVKtWDT8/P1atWsXQoUPx9/enX79+PHr0CMgtPj148GBu3brFihUrCAgIULpzBaDhPg3NwvJZDtbIegSof27GHw3RwfpOwvafQ6qliVPDyqqW8i/SYpM40m9V7k6q6R3FmAMgPTmd51eeEXLpKSGXn/Iu+C0ANgVt8ChfkIBhdXEq7oSZo3m+LDqra6SLQxFHHIo4/qstJTaFt8ERRDx8Q8SjN7y++4pbu/8/Eae5kwWOxZxw8XPB2c8Fe18HNLV/vlNEgZLuNFrTj8igMG4uP8bpMVu4sfQI/n3r4d2krModLW1jA4qO7opT46rcn7GBy79MxalxFXwGtUPbxFDu9lJTU9H/K8O7REMD2/ZtMS5Tmucjvs/hGDJkCNu2beNl7HN6bm9H21Jd8LTy5mlUMNtvbSQs9gWampoMHjz4u+wcPnyY48ePc+PGDfT19Zk7dy4tW7akZs2aH/2OZ2Zm5v2USCQqOw9I9VyRGsgnP6FUL00u/Yh8HT/f2VOOCDkyXv1xFvuAcmgZKX9m47+QZedwfPA6cjKyqLe0J5o6WqqWpDIyUjJ49OdD7h26w+Mzj8jOyMbM3gyPip5U71eTghUKYmxjomqZQO7F7J9LhPLCwNwAj/IF8Sj//xsxsjOziXoeScSjN7wJCifsThhHZhwiOyMbTR1NHIo44lzSGWc/V1xKuWJiqx7jpAysfZ2pv7w3MU/fcGPZUc6M20rg6hOU7l8fzwb+Kl86NC3kSqWNkwn74yyPFu/g3YU7FB7aHoe6FeR2M7Vs2TIGDRrEokWL6NevX97z+h7uOI8eCfv3fXPfxYsXZ9OmTXTu3Jmw2BfMPDnxg3ZNTU02b95M8eLFv9kGQIMGDWjQoEHe323atKFNmza8fPmScePGYWtri5aWFj4+PkRGRhIcHMzYsWN58uQJCxYsQFdXl9mzZzN16lQmTJjwXVpEfi6U6mANHDiQgwcPEhYWxoMHD/D19c1rCwkJoXPnzkRHR2NqasrGjRvx8fH5rjZFE3ntPmnvY3BuXl0p9r6GawsP8ebGU5psHIShreKDYdWNnKwcnpx7TOC+Wzw8GURWehZOJZypO7I+vgFFsHCxVLsZvU9dzBSJprYmBQrZUaCQHX7Nc+PzsjOziXj4hpeBoYQFvuT+kXucX30OAEtXKwpWKIhHBU/cy3tgZGmkFJ2qxMLTnrqLehDV6zXXlxzm1IiN3FpxnNID6lOwbkmVhgZIpFJcmtfAtoofQfO2cGfCCl4fvkjRMV0xdLT9rr579OjB2vXrkAL9Bw7g7t27rFmzJq9dqvX9N23t2rXDx8eHhQsXsmvXLtLS0tDT06NVq1YMHjz4u52r/8LFxYXff//9X89Xq1btXwHthw8fVpgOkR8YQYmcP39eeP36teDs7Cw8ePDgg7Zq1aoJGzZsEARBEHbv3i2ULVv2u9v+SWBgoAAIgYGBX6Q3JibmP9tvjFgonGk1SpDJZF/Un7IIu/RIWFywt3Br1XGVafjc2CmK8Aevhb1jdwsTfMcIQ+0GCrOrzxD+XHJSiA6LVomeL2Xp0qUCIPhaGQuAsHTpUlVL+oD4t/HC3YO3hT2jdwozKk0ThtoNFIbaDRTm1Jgh/DFhr/DgxH0hNT5FpRqVdcy9uxcqHOi+RFhcsLewtd4UIeR4oCDLyVGK7c/x7tId4VSDQcKhsp2F4NX7hOyMzM++52Pj9ssvvwiAYOZrJbi1KyyY+VoJgPDLL7/kveZrz6efIycnR0hOThZy1GQsv5XvHRd5j6ui+hT5PEqdwapc+eNxSpGRkdy+fZuTJ08C0Lx5c/r378/Lly/R19f/pjYXFxeFfpbM+CTeX7hNoQFt1GomJCMxlT9Hb8axvDclf6mlajlKQSaT8ejUQy6sOcfzq88wsTXBv3UZ/JqVws5H/TPVL1u2jP79+/NLCWcmVvLi14tP6N+/P7LUZPr26I7AXykaPsjU8Pdz//j5wUv+97l/9yH8s4//6Ecf8PE3x8e/DAwqQ1JkIq/uhvHqThivLlzj0e6TSDUk2BW2x62MO25l3LB0toS/vxt5/X7e1keE/tX0333kJCaSkWD8n3187L3CF49d7k8THag9ojyxTV0J3n+NwCmLCNlghU+zclgXcUaS18Wn+/i8rY+1/7sP4R+vMTKAshMaEXH6Bu/3bSfh/FGcm1bDyNX+n+/Ie092cjKphoZ5z63atZ+169dh5muF76iySCQS7Ou6ETTzKuvWr6N48eIKmWGVSqXflYpBRETdUIsYrNevX2NnZ4emZq4ciUSCk5MTr169wsDA4Jva/svB6t+/PyYmJjRr1ozmzZt/8nVxcXGfbHt76CKyHBkGZQsRG6s+tc2u/baPzOQ0/EY1JC4+XmU6/mvs5EVOVg5Bh+9zdcMVYkKjcSjuSLN5LfGq7o1UM3fZRp3+Nx9j7dq1jBo1Ks+5kkgkTKyUmxdo4MjRJBzdRJdi6ll6yfKvR8ni//tsKLy6hOwVRKpAU5SS7XkagGdpgPdwJYiYK0oW8An0AVcvgESyLm4m9uJ/v/7vb0laVg4jVpxGKgGzotZ5N48SiQSzYjYkPI5h0KBBNG7cmISEBAV+gvxPQkLCB+cfRcVWiqgvauFgAf+aBfrfu79vbfsUS5cupWTJkl+k61NfiseXH2BVxhdbd5cv6kcZvLr8mOeHAqk+rT2OhdxULUdhJ5SMlAyu/X6F86vPkfA2nsK1fWm7oAOu/vmraHVqaipjx47F18o4z7kC8pysa+GxTL74hL7zVqOv948t8f973H9sBjXvuf9+Xd7354M2yQc/PtfHP23lZGYT/jCcsFuhvLgZSkJEPBramjgUdcSjfG7slr6J/if6+F/7/9QBkn+2/Q8JiYmYmJjwwZv+U+///y750MhX9yEIAuHXnnJ79QniXrzHqVJhSvaohZmLzcff88/nvnL8/1Pv/7xOEAReHzxP8Mo9aOrrUXhoh3/k65MQFxeL2f98Vxd6rmLA0CHE3Y/Evq4bkr8+X9y998iApYsW4eDgQGSkKlzo/IOJiYnoVP3kqIWD5ejoSHh4ONnZ2WhqauaeFF6/xsnJCX19/W9qUyTp0fHE3A6m+IRfFGrna8hKzeDshN9xKOuJT8sKqpajELIzs7m0/gJ/LjlFRnI6JZuWolrfGth6fl8wr6rQ19dn0aJF9O/fn18vPslzsgRB4NeLTwiKSmL+6MGYl6yoaqlfjaenL55Ncy/w0S+ieHT6IQ9PBnFz6kXgIu5lPShSvxhFAopgUsBULjalOrFoqfCC5lrPBueACjw9dJNriw7ytM0yCjUrR+n+9TGyU50ulzb1salalnvT13Nz1DLsapXBd0RndC1ynVGJti5S7f934PsPGsS9oCDWrl1L0MyrmBWzIe7ee+IeRtOjRw+lbcAQEcnvqIWDZW1tTYkSJdi6dStdunRh7969uLi45C3zfWubonh34TYSqQTbKn4KtfM13FxxjJTIBBpvGKhWMWHy4vHphxyYvJ/ol1GU61Ce6v1rYmaf/+8O/75Y9e/fHyAvBmvtnTBmta9Py7THxGyagWmLfmgYGKtS6jchkUiwcremirs1VXpWIyk6iaDjD7h/9B4HJu3jj3F7cC7pQpF6RSlarxgWzl9ewkQdkWpI8W5ShoL1SvJg+0VurThG8IEbFO1QBf++ddE1UU2MkZ6tBWUWDefN8SsEzd3C2RYjKDykPY6fyN/3927BdevXkfA4BoHcXYWrV69WomoRkXyOMiPq+/btK9jb2wsaGhqCjY2N4O7untcWHBwslC1bVihYsKDg5+cnBAUFfXfbP5HXLsKrA2YJl3tO+6I+lEFMSISw1KefcH3JYVVLyUNeO7oin70X1nRYKQy1Gygsb7FEiHj0Ri79qhsf20Uok8mElFtnhPAxzYU349sIqfevqFqmXEmNTxFu7bkhbOi+VhjlNkwYajdQWNRwvnBxwwUhKTrpq/tT1c7V/yIjKU24vuSwsKLYIGG1/zDhzsbTQnZGlko1pccmCoHjlwkHSrYTLveZLrwJevLJ1y5dulTQ0ND46K5WcWfaxxF3EYr8jUQQviBo6Qfh9u3b+Pn5ERgY+EUxWB+rC5edms7x6r3wGdgWt3aqLz0jCAL7uywiKSKWdocnqE1C0Y+N3deQlZ7FmWV/cnrpKUxsTGg4sQlF6hb9IWfn/uZTebByEmKI27WY9IfX0S9VA9NmvZHq/1j5pzJSM3h4Mojb+27x5HxuDTqvyt6UaFKSwgFF0DX8fFmW7z3mFElKZALXFx/m0Z7LGDtaUn54E9xrl1Dp8Rx55R73fltHRnwSPgPa4Nqq1kdzev1vJvf/5WvPpz8L3zsuihhX8X+lGtRiiTA/EXUjCFlWNtaViqtaCgChp+8TfvUJDVb1VRvn6nsJufSUPaN3ERceS7U+Nag5sBZaetqqlqVw+vXrR+PGjXFw+LDWoIaJBRa/TCb15p/E71tJeshdzFoPRs/nxyncraOvQ8kmfpRs4kdyTDL3D9/l9v5Atg3cipauFoVr++LX3B+vqt75slC1gbUJ1ae1p1inqlye/QfHBqyhQEk3KoxqToESqtmQYl2+GNV2z+bO7I0EzdnM2zM3KT6xJwYO1h+87mPOlYiIyOcRHayvJPLyPQycC3x3lmR5kJOZzaVZe3GqWAiXqr6ff4Oak52RzaFpB7i0/gJuZdzpuv6XfBvA/q186mImkUgwKF0LHc/ixO1YSMzqCeiXDcC0cU+kej9W7iBDC0PKd65I+c4ViQ2P5e6B2wTuu8W6zqsxtjXBv4U//q3LYOVm/fnO1AwLT3sare3Pq8uPuTxrH3taz8GjbknKD2+KiaPy48809XVxH9gKl3qVuDd1Dedaj8ZnYBtcWtZUy+L1IiL5CdHB+goEQSDyyj1sq5ZStRQAgnZcJPF1NPWX9cr3S2cxYdFs7r2Rt8ERNJ3WnPKdK+bLYsuKRtPUCste00i5dpyE/avJCL6NWdsh6Hr9mNP+5g7mVO9Xk2p9axD+IJwb269yefNlTi/9E9fSbpRuU4ZiDUqgY6CjaqlfhVOFQjj8MYYnB65zdcFBfq87hRLdauLXKwBtg88vh8obq9KFqbpjBo8W7+DB7E1E/Hk9dzbL0ebzbxYREfkoooP1FaS8ekfauxisyxZRtRQyk9O4sewohZqVw8JT/bOV/xcPjt1jx9DtGJjpM/DgEByKOKpaklojkUgwLFcXXa+SxG1fQPSKsRiUr49J41+Q6uipWp5CkEgkOBZ1xLGoI40mNuHBiQfc2HGNXcN28Mf4vRRrWILCDX0xq2qWb242pBpSCjUrh0edkgSuOcntNSd5vO8qFUY2w7Ohv9I/h6aBHkXHdMWuZmnu/jWbVah/a1zb1P7P2azHjx8rUaX6I46HyN+IDtZXEHU9CImGBhYlvVUthTvrT5OVmkHpAfVVLeWbkeXIODrrMGeXnaZIvaK0ntcOPeMf00FQBJrmNlj2mU7K5cMkHFpHevAtzNoORbdgMVVLUyhaetp58Vqx4bHc2n2Dmzuvc3Pndex9HSjfqQIlmvqho58/ZrW09HUoO6ghPs3Lc2nWXk4O38D9reeoNK4VtsVclK7H0r8wVXfM5PHSnQTN20LE6RuUmNL7X7FZlpaW6Ovr06FDB6VrVHf09fWxtMzfKUdEvh/RwfoKYgIfY+rrhqaBap2A9IQU7m48TZF2lTEqoJ67pj5HWkIqW/tv5sm5YBpMaEzVXtXyzcyDOiGRSjGs1AjdQqWI3Taf6GWjMKzcGOMGXT9IHvmjYu5gTu0hdag5qDa3Dt7kwR/32DNqF4emHsCvhT/lO1XMN3F8xg4W1FvSk/BrT7jw2252t5yFV+MylB/WBENbU6Vq0dTXpcjIzhSoUZq7k1dxru0YfId2wKlJ1bzvqZOTE48fPyY6OlpudmUZGbzfvZeES1cw8i+Jbbu2aOjJ93ybHRdJ0rb5ZMe8xajxL+gWq/TNfSUkJPxP9YD/x9LSUuEJr0XUH9HB+kIEQSA68DHOTaupWgr3t54nJysn3xZzfv/sPeu7rCElLoUeW3vjVUX1M4L5HU1LO6z6zyb5wgESjmwg/dFNzNoNQ8etsKqlKQWpVIpH5YKUblKG2PBYrm29wvXtV7m84SLu5Two17ECReoWRVNb/U95DmW9aLN/LI92X+bqgoM8P3kH/771KNG1BhpK1m/pV4iqO2YQNH8r96at5d25WxQb/wu6VmZArpMld0eiXDnizp7n1YJFaK5ci+vEsegXLChXE0KlqiRsmEba2Q0Y6GRj1HoQEo2vH1t1Tg0ionrEKOIvJPnlWzLjElW+PJidkcX9LWfxaV4OA6t/3zmpO2GBL1nSaAEaWhoMPjJMdK7kiEQqxahqU2yGL0NqYEzUkuHEH1iDkJmhamlKxdzBnHqjGzDh5hQ6LO+MIAhs7buJ38r9yuklp0iJTVG1xM8i1ZDi26YSnU5Nwbd1Ja4tPMi2htN4fSVY6Vo0DfQoPqEHpRcMI/5xKGdbj+bNyWsKtWlWrQreK5eiYWTI04FDiT585IvqzH4pEm1dTHpOxbj9CFJObiN2bj9kSfFy619EBEQH64uJvfcUpBLMinioVMeTgzdIi0uheJcaKtXxLTy/+oxVbZdTwNuOAQcGY+kixigoAi0bR6wGzcOkQTeSLxzk/dz+ZIY9UbUspaOprUmJxiXpt3cgw0+PwrtaIU4uOM5U/0nsGbWT98/eq1riZ9Ex1qfS2Ba02T8WfQsj9ndZxLFBa0l+F690LbaVS1J15yys/AsTOGYJgWOXkhmfpDB7OnZ2eC6ch0WdAF4vXELYjNnkpKXJrX+JRIJBQHvMR64gK+wJ0ZPbk/U6RG79i4iIDtYXEnf/KcYejmgZqi7pniAI3Nt0BtfqRTF1yV85gEIuPWVNh5U4+7nwy9ZeYjC7gpFINTCq0RKbEUuR6OgSuXAICUc2ImRnqlqaSijgbUfruW0Zf2MyNfrXIujEA2ZXmc6ajit5cj5YrrMjisDSy55mvw+l1pwuRNwMYWudyQSuOUlOZrZSdeiYGeE3cwAlf+tH5NX7nG01mveX7yrMnlRbG8dB/XEeM4qEK1d50m8gaS9fytWGjk9pLKf8jkTXgJhfO5F245Rc+xf5eREdrC8kLug5ZkXkGwfwtUTcDCHmaQTFOlZVqY6v5fnVZ6zrvBq3su5029Aj3+zu+hHQsnXGevACjOt2IOnMHt7PG0jmT3yXbmRpRK0hAYy/Ppk2C9qT+D6R1e1WMKfaDG7svE62kh2Wr0EikeDduAwdTkzGp2V5rs4/wLaG03h1WblpASQSCQ51ylNt1yxMvJy4PnAOD2ZvIiddcc67eY1qeC1fgkQq5Um/QcSclK8TpGllj8XETegUr0z80hEk7l6MIMuRqw2Rnw/RwfoCslPSSHrxBjNfd5XquP/7eczcbHEo56VSHV9D6M0XrO20Chd/V7qu7Y6W7o9Rzic/IdHQxLh2O6yHLkYikRK5YDAJx7YgZGepWprK0NTRxL9VaYaeGEHfvQOwdLVi59BtTC8/lfOrz5KRor5xazpGelQe1yp32dDSmANdF3N8yDpSohKUqkPXyowyi0dSZGRnwvaf5ULH8SQ8DVOcPSdHvJYuwqxqFV7NnkfY3PnI0tPl1r9URw/TvjMxaj2IlMMbiZs/EFlKotz6V1dOnDiBn58fJUqUwNfXl02bNgEQGRlJnTp1KFiwIL6+vly6dCnvPampqbRt2xYPDw88PT3Zt29fXptMJmPAgAG4u7vj4eHB8uXLP7A3bdo03N3dcXd3Z8KECR+0rVu3joIFC+Lu7k7Pnj3JzlbfG54vQmVlplXA11YUj4mJEQRBEKIDHwkHSrYTEp6GKVLef5ISlSAsLdRXuLvptMo0fA0xMTHCm6BwYazXSGFZ88VCRmqGqiXlC/4+5hSFLCtTiD+6WXg9pK7wbnZfIfPNC4XaUybfO3ZvgyOEbQO3CMOdBgvjfEYLR2cdFhKjEuWkTjHIZDLh8R/XhNWlhwsrSw4R7m87L8hycr6qD3kccwnPXgtn24wWDpXpJIRsOvzVGr6W6OMnhDv1GgmPfuklpL0Ol3v/6fcvC297VxLej2gkZEWEfvJ1ivi+fu116nv6lMlkgrm5uXDv3j1BEAQhNDRU0NHRERITE4WuXbsKkyZNEgRBEG7cuCE4OTkJWVlZgiAIwpQpU4TOnTsLgiAIL168EGxsbITY2FhBEARh06ZNQvXq1YXs7GwhJiZGcHZ2Fh4/fiwIgiCcP39e8PHxEZKTk4X09HTBz89POH78eF4/BQoUEN69eyfIZDKhYcOGwsqVK+U2BqpAnMH6AuKDXyLV0cLQVXUZ04P3X0MileLVuIzKNHwNca9jWd1+BZYulnTb0APtn6BYc35AoqmFSd2OWA9ZhJCTzft5A0g8tQMhR1wOsfUqQNtFHRh7ZQL+Lfy5sOYc08pMYe+YXUS/lF+uJ3kikUjwblKGDscn4RFQgnOTtrOn7Tyin7xRqg5jdwcqbfoV1zYBPFq8nat9ZpD2LkZh9iwCauO1dBFCVhZP+g4g/vJVufavU6Q8lpO3IpFqED2lAxkPrsi1f3UjPj4egMTERCwsLNDR0WHXrl3069cPAH9/f2xsbPJmsXbu3JnX5urqSuXKlTlw4EBeW+/evdHQ0MDc3JxWrVqxY8eOvLYuXbpgYGCAjo4O3bp1Y/v27QDs2bOHpk2bYmNjg0QioXfv3nlt+RXRwfoCEoJfYuzhhFRTQyX2BUHg4e4ruAeUQNdE/Qv7JkUnsa3nVnQMdflla290jX78hJf5DW3HgtgMX4JR1WYkHt1M5KIhZL17pWpZaoGZvTmNpzRjwo3J1BxQi/tH7jGr8m9sH7SVqOeRqpb3UfTMDKkxvSPNfh9KRmIqO5pM5/LsfWSlKm+pU0Nbi8KD21Fu+RiSX7/jbOvRhB9XnGOi5+qC17LFGJUsTuikKUSsXS/XGwVNGycsJm5C26MYsXP7k3Lid6VuhhDigxFi7sjnEf/x9B4SiYRdu3bRrFkznJ2dqVixIps2bSIpKQmZTIaVlVXea11cXHj1Kvcc8erVK5ydnZXWll9R/6x7akBiyCtMfdxUZv/9/TDiQ99TZWJrlWn4UrIzstnQbS1ZaZn02zMAI0sjVUsS+QQSTW1MGnZDt0g54rbN4/3cfpjU64Rh1WZIpKq5mVAn9M0MqDU4gKq9qnFt21XOLD9N4L5blGhSkpoDa2NTUP0yxNv7F6TtgXHcXneKm8uPEXI0kCoTW+NavajSNOQWjp7Jg5kbuD1uGZFX7lF0VBeFVMDQMDDAddIEInftIWLdBlKePMVl7Gi0zEzl0r9U3wizoYtJ2rmIxN/nkBX+DJNOY5BoKX5GXnapK7Jw+cyByF7KPvp8dnY2M2bM4MCBA1SoUIGbN2/SpEkT7t+//6/KGv90Lv+3XRlt+RHRwfoMsuwckkMjcGpURWUanhy4joG1CQ5l1T+4ff+kfYQ/eE3HjV0xd7RQtRyRL0DHpRA2w5eRcHQTCYfWk/bgKmbthqFllb+LiMsLLT1tKnWvQtn25bmx4xqnl/7JnT9mUqxhcWoOqk0BbztVS/wADW1N/PvUxbN+Kc5N2cHh3ivwqOtHlYmt0LcwVooGbWMD/Kb3x7pice7P2EDc/RD8pvdXyI2qRCLBpnVL9L08eTltBk/69Md14jgMfArJp3+pBsZth6Lp4EHChqlkR4RiNmg+GsaKzeAurbgBaTH5fAbpvcdA+389f/fuXSIiIqhQoQKQuxRoZ2fH/fv3AYiKisqbxQoLC8vL2u/k5MTLly8/aKtXr94Hbf7+/p983998aVu+RYXxX0rnW4LcE1+8EQ6UbCdEXg9SsLqPk5OVLawpM1y4OGOPSux/DYH7bgpD7QYKV7deVniw9o+Kqsct/fkDIWJqFyF8eCMh8dwfCg9WlifKGrus9CzhyuZLwlT/ScJQu4HChu5rhfAHr5Vi+2uRyWTCk0M3hNWlhwur/YcJj/ZdFWQy2QevUfS4Jb16K5zvMF44WLqjwgPgM6KihCcDBgt3AuoLkfsP/Ouzfnf/IfeEd/1rCO8H1xEyXz7O90Hu7969E4yMjITg4GBBEAQhJCREMDMzE8LDw4XOnTt/EOTu6OiYF+Q+adKkD4Lcra2t88Ziw4YNQo0aNfKC3J2cnIRHjx4JgiAIZ8+eFQoXLvxBkPuxY8cEQRCE58+f/yvIfcWKFXIbA1UgxmB9huSXEQAYuanmbj78+lPSYpPxbFBKJfa/lKgXkewZtYuSzfwo066cquWIfCM6br7YjFiBftkAEv5YSdSyUWRHv1W1LLVCU0eTch0rMPrSeFrNbUPEozfMD5jD5l4b1C47vEQiwbOBPx2OTcS5cmH+HLWJg92XkBiuuAD0f2LoaEvF9ZNwa1eHR4u2cW3AbNKj4xViS9vSEo95s7Fs1IDwJcsJmzlbrqkctD2KYjnld6RGZsSvnoAg+/jSW37BxsaGVatW0aJFC4oVK0azZs1Yvnw59vb2zJo1iytXrlCwYEG6dOnCli1b0NTMXfQaMWIEaWlpeHh4EBAQwLJly/JqMnbs2BEvLy88PT3x9/dnxIgRFCqUOxNXtWpVWrVqRZEiRShUqBC1a9emTp06ALi5uTFlyhQqVKiAu7s71tbWdO/eXTUDIyckgvADLHR+Ibdv38bPz4/AwEBKliz52dfHxsYSc+ASIRsPUffc6n+tSSuDM+N/5/XVYDr9+atK7H8J2ZnZLGm0gPTkDIYcH46uoa5YBPUbUadxSw+5R9z2+ciSEzBp9AsG5eshkarvPZmqxi4nO4dbu29wcv5xEt4lUKqFP7WG1MHCSf2WyF+eC+LspG2kx6dQbkgjinasRnxCvNLGLfLKfe5MXokgCJSc0hvr8sUUZivu7HlezZuPjr0DrpMnoFNAfjFzQkYaOYmxJGroyX3svvY6pao+RT6P+p4t1YTkV+8wdLZViXMjy5Hx4s+7eNQpqbbOFcDJecd4G/yWjis6o2so7hhUBtlZOaQkpBH7LoF3odGEPYogJPAlT2+95MW914Q9iiDiWSSRYTHEvk0gMSaZ1MQ0ZF9xx61bsBg2I1egX6o68XuWEr1yLNlx6rmLTpVoaGpQpm05xlyaQOPJTQk++5iZlaaxZ/Qu4iPiVS3vA1yq+tL+yER8mpfn4oy97Gk9h7iQd0qzb12+KFW2z8DU24VrA2YTNH8rOZmKSXhrVq0KnosXkJOSwpO+A0gMvC23viU6emiKMYoin0EMcv8MKa/fYeComt1C7+68IC02GfdairvL+15Cb4ZyZvlp6oyoh0MRR1XLydfIZDLi3iUS/SKRmDfxxETEExuR+zP3kUBSbDIZqZnkZH/b0oRUKsHQzAAjCwOMLQwwsjDE2NwAYwtDjC0NsXQww8bZAmtnCwzN9JHq6mPWaiB6RSsQt2MB72f2xrRpT/TLBKi1068KNHU0qdS9CqXbluXyxkucXfYnN3ddp1yHCtQYUBMjK+UEmH8ObUNdqkxsjWeDUpwet5VjXZZRun99/HoGoKGl+N2juhYmlFk0ghc7TvB48Q5ibgdTauZADBzkX19Vz80Nr+VLePnbDJ6PGY/dL92wbtlcPHZFlILoYH2G1PBILP18VGL7xel76FsZY1PURSX2P0dWWiY7Bm/Fqbgz1frWULWcfEVWZjbhwe8IfRBO6P3cx8ugN6Qm/n+8iLauFuYFTLCwN8XSwQxPf1eMLQ3R1ddGR18bHT1ttPW10NHL/VtbVwuJVEJ2Zg7ZWdnkZOXk/Z6dmUNWRjYpCWkkxiSTFJuS+zMmhZdBb0iKSSEhOon0lP+vJ6dvrIv1X86WjbMFBRw7UjD9CnE7FpJ27zJmrQehYWqpiuFTa3T0dajetwblO1bg4trznFt1hhs7rlG1T3Wq9KyGjoF61OIsUNKdtgfGcn7uPm4sPcKLP+9Sc2ZnLL0UPzMjkUpxb1cXixLe3Bq1mPPtxlJ8Uk/sapSWuy1NYyPcp0/l7YZNRKxeS+rTEJyGDUFDT5xtF1EsooP1H8gys0iPikPf3urzL1YAYecf4lLFV23jXk7MP07823i6b+qJhoqSsOYX4iMTuXf2CUEXQ3hx7zWvg9/lFRYu4G6Fa1EHmtb0wdzJCBdvRyztzTA001fqnbYgCCTHpfIuNJrIsBjeh8UQGRZD5KtYAk88JPJVLNmZ2RR2KEDb9LskPOxCiG5FtItWwbmwPQ7etuiIGfvz0DXSpdaQACp0qcjppX/y5+KTXNl8mYBhdSndpoxafGc0tLUo3rsWhRuW5c/Rm9jZbAal+9WjZA/lzGaZFnKlyu+/cW/aWm6NXIRLq1oUHtwODR35HkcSDQ3sfumGnmdBXs2ex9MBg3GbMhEde/VKsSHyYyE6WP9BRmQcAPoFlH+XnvgmhthnbykzqIHSbX8J4Q9ec37VWeqMqIe1h42q5agd2Vk5PLn+gsCTj7h75jEvH+SWLnEubIdHCSdqdCyLaxEHXHzt0fufTPeqDHKXSCQYmRtgZG5AQT/nf7XnZOfw9nkUYQ8jCAp6gW3ECXyl53iw7ya/DrcmJVMbF197vEq74OnvimcpF2zdLH/65Rh9MwMaTmhMhS4VOT77KHtG7eTCmnPUG9MA34AiajE+NkWcafPHGG4sPcr1JUd4fuouNWd0wtLbQeG2tYz08Zs5AIvdhXg4fytx90LwmzkAQyf5h2aYVa6ErpMjoZOm8qTfQJzHjsKktL/c7YiIgOhg/Sd/O1h6tsp3sF5deoxEQ4pjefkkmpMnshwZe0bvwsbTlqq9q6tajtqQlpzBjSP3uXnsAXfPBJOakIaptRHFaxSi8cAaFKvqham1esThfAsamho4eNni4GULzUoCLUi7f5miOxfj6xFJuE1tbobocfdMMMfWXATAyNwAT38XPP1d8C7tilcZN7R1tVT7QVSEuaMF7ZZ0pHKvahyedoCN3dfhUsqVBuMb4eqvukoRf6OhrUW5oY1xq1U8dzar+Uz8+9TFr1cdhc9mSSQSXFvVwrxoQW6NXsyFDuMoNu4X7APkn/JFz8UFz2WLCJs5hxfjJubGZbVqoRaOrsiPhehg/QcZf+Vq0bU2U7rt11eCsSnijI6R/MtLfC/Xt13l9d1X9N8/SCnLCOqMIAg8uRHK6S3XuPzHbdKTM3Av4UTDvlXxq+2LW3EHpGq6xCsP9IpWwNbNl/g9S3G8+weeZSpiOncgqZlaubsab77k6a0wDi45w/aENLR0NPEu40aRKp4UreqFe3FHtVgqUyYOvg703tGPJxeCOfLbIZY2WUSRukVpML4xli6qj2nLm81adpQby47y4s971JrTBYuCil9OM/F2ofLWadyfvp7AsUuJvvUI32Ed0dCV75KhpqEhbr9O4u3GzUSsWUdaaChOQwcj1RaXuEXkh+hg/QeZ0fFomxjKPR7gcwgyGeHXnuDbpqJS7X4J6UnpHJt9hFItS6vFXbeqSElI49yOG5xcf4nXwe+wdjKnycAaVG1bBmsn9chjpSw0DE2w6DKO1DsXiN+zlPcze2HWcgAla1WkZK3CQO4OyVeP3vLgwlMenH/KHwv/ZNvUw+gb6+JTwYMilQpStJo3ToUK/DQzCV6VvSlY0ZM7fwRyZMZhZlebTqXuVag5sDZ6xqq9sdLQ1qLckMa41yrOqZGb2Nl0BmWHNKZE1+oKjwnVMtSn5G/9sCzty4PZG4l7+Bz/WYMwcJRvKIJEKsWuWxf0XF0ImzOfjNfhuE6ZiLal6p1ckR8D0cH6DzLjktCxNFW63bgX70mPS8a+tKfSbX+OC2vPkZGSQd2R9VUtRSWEPgjn+JqLXNh9i+zMbErXL0q3mc0pUsXzh56p+hL0S1RGx6MIcbuWELNhGnolq2LWvB9SAyOkUikuvva4+NrTsG81srNyeH7nFffPPyHoQghbpxwia+wfWDuZ41fHl1IBvvhW8kBL58deTpRKpfg196dIvWKcXXGac8vPcGvXDeqMqEeZduWQaqj2mLL2dab1vtFcnX+Qy7P38fLsfWrO7Iyxg2KTqEokEpybVMXUx5WbIxZxvsN4SkzpRYGq8q9oYVatKjr29ryYNIUn/QbiNmmC3OoYivzciA7Wf5AVm6gSB+vt7edIpBJsi7kq3fZ/kRKbwrmVZ6jQuSKmdqaqlqNUwh5GsP23w9w48gBzO1OaDqlFzU7lMLc1UbU0tULDyAyLbhNICzxL3N7lvJvVE7PWg9ErXOaD12lqaeBV2hWv0q60HFGHzPQsgi6FEHg8iJvHHnBs9QV0DbQpVs2bUnWLULKWD2Y2+Td+7XNo62kTMLQuZduW4+jMw+wZvYvLmy7SaGJTPCurtsi7pq42lca2wLVGUf4ctYltDadReXxLCjUrp/DZRhNPZ6psncadyau4OWwBHp0b4N23FVI5LyvrexbEa/kSQidPJWTYSBwHD8AioLZcbYj8fIgO1n+QGZeEkb38k999jnd3Q7HwtEdbzbKin199FkEmUL1/LVVLURpRr2PZMf0I57bfxNrZggErO1C5ZamfLm7oa5BIJOiXqo5OwWLE7VxIzJpJ6PvXxLRpb6T6hh99j7auFiVr+lCypg+/zGnJq0dvuXU8iFvHg1jefxuCIOBV2pXyTUtQrnFxLO2VHxepDEwKmNJ2UQcqdK3Egcl/sKrtcnxqFqbRxCZYuSv/XPS/OJTxpO2h8Vz8bTenx2zhxZ/3qPZrOwysFHuToWWkj//cwTzfcpTHS3cQ9+AZftP7o2sl32NAy8wMjzkzCV+ynFdz5pP2/AX2vXog0RC/6yLfxs+9pvEZspNS0DFT/l3z+wdhapdcNDU+lUsbLlC+c0UMLT5+kfyRSI5LZfPEA/T3m0rgyUf8MqcFS26Np1pb9chflB/QMLHAosevmLUdStqDK7yf1Zv0x7c++z6JRIJzYTuaD6vNjFNDWf/sNwas7ICxpSFbJh2kp89ExtSez+EV54hRs1I08sKpuDP9/xhEp5VdeBv8ljk1Z3J0xiEyUjNUqkvHSI+aMztRf3lv3t0NZVv9qTw7cUfhdiUSCR6d6lN+1TiSX73jfPtxRN98KHc7Um1tHIcOwmFAX6L2H+T5mPFkJyfL3Y7Iz4HoYP0HWQnJaJko15nISs0gNiQCm6L/zkOkSi5vuEhOtowqPaupWopCycnO4ciq8/QtPoVjay7QdHBNVtydRN0eldH8yXdMfgsSiQSDMrWxGbUSTVsnoleNJ27nImTpKV/ch4mlEdXalmHM9p5seDadgas6YmRmwOYJ++lRaAJjAxZweMU54iOTFPhJlI9EIqFYwxKMOjeG6v1qcn7NOWZXmc69Q3cQBEGl2txqFqP9kQnY+Rfk2IDVnB67hcyU9M+/8TuxKOFN1e3TMXJ34ErfGTxdfwDhK+prfgkSiQSrxo3wmDWd1JAQng4YTMabCLnaEPk5EB2sTyAIAtnJaWibGCjVbvSTNwgyAWtf9XGwstIyubThAqVbl8E4H+dx+hwvg94wvMps1o/aS9lGxVh2ZyJtxtb/IBGoyLehaWaNZe/fMG05gNTAs7yf1Yf0p3e/uh8DEz2qtinN2J292PBsOgNWdMDQVJ/NEw8wotw8prVYwaW9gWSmK6aAsCrQ0tOmzvB6jDw7BrvCDmzuvZGVrZfx7slblerSMzei3tKeVJ/WnqdHbrGz6QzePwhTuF0dcxPKLR2NZ7cmBC/bxc3hC8lKSpW7HaMSxfFcsggEgSf9B5F0957cbYj82IgO1ieQZWQhZGWjZahkB+vxa6RaGph7FFCq3f/i1t5bpMSmUKVHVVVLUQg5OTL2LTjFyKpzQIDZZ4fTd0k7MYBdzkgkEgwr1M+dzbKwJXr5aOL2LEOWkfZN/RmY6lOtXRnG7uzF+qe/0WFqfVIS0pjfbSPdPMexYtAOHl97ofLZHnlh4WxJ9409+GVLL+Ij4plXazYHJu0jLfHbxk8eSCQSCreqSJv9Y9E21GNP69ncWnUCWY58Z5X+ZVdDinefFpReMIzowMdc6DyRpBfhcrej62CP55KF6Bf04NmosUQfOSZ3GyI/LqKD9QmyknKXMDQNlZuPJjr4DWZutmhoq8f+A0EQuLj2HL51imDpqpqajIok9l0CvzZZxu9TDtGgbzVmnx2OewknVcv6odG0sMWy70xMm/Uh9fpJ3s/uS8bzoO/q09BMnyrt/JlxaihLAydQr0dl7px+xLiABfQr8Ss7Zx4l6nWsnD6BailU3YcRp0dTd1R9rm27ysxK0wjce1OljqSZqw0tdgynRPdaXJ1/gP2dF5IUofjxtq1ckspbpiLV1OBCp4lE/Hld7jY0jXKLRVvWr8vrBYsIX74KISdH7nZEfjxEB+sTZKflBpNqGijXwYp5GqGUavZfyrPLIbwPeU+l7lVULUXu3D39mGEVZ/H6yTsmH+hHp18b//B5l9QFiVSKYeXG2IxcgYaxGVFLRxD/xypkmd8fx2PnYU27CQ1YeX8yUw4NwKeCBweWnKFP0clMb72KW8eDyFHwDIui0dTRpHq/moy+MA73cgXZNnArq9osJ+pFpMo0aWhrUn5YE5ptGUzC62i2NZzGk0M3FG7X0MmWSpumYFu5JLdGLebhom3IsuXrAEk0NXEc2P+v4PcDPB8/iZzkL48jFPk5ER2sT5CTmnui19RXXvyNIAjEhESo1fLg5Y0XsfWyxa2su6qlyI2cHBnbph7m12bLcS1iz/zLoylSRbW5hn5WNK3ssBowB5NGv5B8+TCRc/qREfpILn1LpVKKVPak/7L2rHvyG70WtCb2bQLTW6+iT9HJ7Jp1LN/vQjQpYEqnlV3osbU3Ma9imFtzFicXHCc7I1tlmuxLe9Lu0HhcqhTm5LANnByxkcxkxQbAa+rpUvK3fhQe2oEXvx/jWv9ZZMQmyN2OVeNGuM+YRurjYJ6NHC33AHuRHwvRwfoE2em5M1jyroH1X6RGJZKZlKY2DlZiZCIPTwZRrlPFH6Z8SXJcKtNbrWTf/JO0n9iQ8Xv7YGplpGpZPzUSqQZG1ZpjM2I5Ej1DohYPJ/7gOoSsTLnZ0DPUoVaXCsy9MJLZZ0dQrJo3+xf9Sa/CE5nRdjW3TgQhy8cXS+9qhRhxZjSVe1Tl1MITzKkxk6cXnqhMj46xPgHzu1NrThde/HmXnc1mEPXotUJtSiQS3NvXpdyKsSQ+f835DuOJe/BM7naM/UriuXQhtp07KrxskEj+Rjw6PoEsI3cXkjLrEMaFvgfA1FW+Nbe+lVu7byDV0sCvqZ+qpciFqNexjKk1j5BbYYzf04fmw2r/9OVt1AktG0esB83HuH5nks/v5/28/mS+eip3Ox4lnei3tB1rg6fRY24rol/HMb3VKgb4TePo6vOkJas219S3oq2nTf0xDRl2ciTGNsasarucrf02kRiZqDJN3o3L0HrfGLT0ddjVcjb3Np9VeKyYpV8hqvz+G3o2FlzuMZVXB8/L3YaugwMmZUrLvV+RHwvx6vIJcjJy756l2sqLyYkPfY9EKsHEUfXFRgVB4MaO6xStVxQ9E31Vy/lu3j6PYlydhWRlZDPzzDCK1xBrjakjEg0NjGu2xmb4EiSa2kQuHEzC0U0I2fJPu6BvrEdA94rMvTiSGX8Oxa24I+tH76OHzwQ2jNvHu9BoudtUBrZeBei7ZwBtFrTn6YUnzKr8G9d+v6KyIHgzVxta7hpBkbaVuDBtF0f6riQtTrHJO/WszSm/ahyODSpxd8pqHszehCxLdcumIj8n6rFVTQ35O0hSqqW8IUp4HY2Rnbla7CB8fe8VUS8iafpbc1VL+W7ehLxnUsMl6BnqMPngACx+sjqK+RGtAi5YD1lI0qmdJJ7cRnrQNczaDUfbQf6xgBKJBC9/V7w2uBIdHsfxtRc5ufEyh5edw7+eL/V7VcG3sme+WiaXSCT4typN4VqFOTTtALtH7uTO/tu0nN1aJbuBNbS1qDy+FQ7lvDg9ZgvbG/1GwLyuCi1or6GtRdFx3TH2dCZo7haSnofjN3MgOmb5IyRAFhWCLEI+1wJZVIhc+hH5OlR/JVdThOzcux15FxX9LxJfR2OsBrNXALf33cLI2piCFRR3AlQG4U/eMbHBYozMDZh8cMAPXTD4R0OioYlxnfbo+pYlbttcIucPxDigHUY1WyPRUMypy9LBjA6TG9FyZB0u7L7FkZXnmNRoKc6F7WgyuCYVm5XMV6WS9M0MaD2vHSUa+7F71E7m1JxFneF1qdyjqko+h1uNYlgfdObkiA3s67gQ/751Kd2vnsLOsxKJBNdWtTD2cODmyMVc7DQB/3lDMPFUn0TOnyJjT2/SL8tnBSXj7Y+TeDc/ITpYn0DI/ivgVYkxOonh0Vh6OyjN3qeQyWTcPXSX4g1LINXIv6vI715EManREkysjJh8sD8mlvnjzlXkQ7Qd3LEeupjEk9tIPPE7aUHXMG83DK0CLgqzqaOvTa3O5anZqRxBF55yYMkZFvXYzLaph2nUvzo1O5ZDR1958Znfi2dlL4afHsXx2Uc5Mv0Qdw/cpuWcNjgUcVS6FkNbU5psHETgquNcX3KEiJshBMzvjoG14hL7WpQsROUtU7k5bAGXukym+OSe2NcupzB78kCnxUp0i8gnlEHnwWNY20YufYl8OaKD9QkEIdfBkkiVtyyQ9DYO1xrFlGbvU7y8FUpSZCLFGhZXtZRvJjo8jkmNl6JnqMuk/f1E5yqfI9HUwqReZ/R8yxL7+zzezx2Acd0OGFVrgURDcTMxEomEIlW8KFLFi9AH4exfdJoNY/axe9Zx6vWqTN0elTEyV261h29FR1+HxpObUqJJSXYN38Gi+vOp3LMqpbuWVboWqYYU/771sPMvyIkh69je+DcC5nfDsZy3wmzqF7CkwrqJ3Ju2lsAxS0kIDqNQv1ZI1PQmUmpVEKldUfn09U6MP1MF6nlkqQESTU0MCjqCkvyr7Iws0mKSMCpgphyD/8GDI/cwtjXB2c9F1VK+iaTYFKY0XQbA5AP9Mf2B6yf+bGg7eWEzfCmGVZqQeGQTUYuHkfVesdv//8a1iAND1nZm2e0JVGhWgn3zT9HLdyLrRu8l8lX+yRLvVNyZIceGU2dEPS6tv8Ca5it4cf25SrTY+xekzYGxWHrZc6DrYm4sPaLQMjuaejqUnNYXn8HteLblMNeHzFVIHUMRERAdrE8iZGWTEvIaZXlYKZG5SfEMbEyVYu+/eHzmMT41CufLFAYZaZlMb7OKpJgUJu3vh6WD6h1WEfki0dLGtFF3rAbORZaaxPu5/Ug6u1dpSR9tXCzpMbcVqx5OoWG/6pzffoN+JaawYtCOfONoaWhpUGNALYafGoWBpSHLmy/hwKR9ZKbJL/fYl6JvYUyjdQPw71eP60uOcLD7ElJjFJdaQiKR4NGxPmUXjyT2XggXu04i5fV7hdkT+XnJf1dQZfH30qBMOVubU6P+crAUGIfwJcSERRP1IhLv6vkvjYEgCCwfsJ3Q++GM3dULO3drVUsSUSA6rj5Yj1iGYfn6JBxcS8amqWRHRSjNvomlEW3H1WfVw19pP7Eh1w/d+39HKyxGaTq+Byt3azpu6ELDCY25svUK82rNJvTmC6XrkGpIKTOgAU02DCT6yRt2NJ7Omxvyz4H2v1iXK0qljVMQsnO40Hki0bfkU0FARORvRAfrE/y9JfvvWCxFk/KXg6VvqdrlrCfng5FqSvPl7sGTGy5zcfct+i9tj2cpF1XLEVECUm1dTJv2wqr/bITkON7P7kPyhQNKLWGiZ6hDk0E1WflgMu0nNeL64Xv0K/kry/pv492LKKXp+FakGlKq9KrGsBMjMDAzYFnTxRyY/IdKZrMcy3vT9sA4TF1t+KPTQm6uOKbQ/6WRqx2VNv2KiaczV/vO5OW+MwqzJfLzITpYn0CqmRv/L8i5aOinSItNRqIhRVfFST2fXQ7BqbgzukbKq8EoD8IeRrBhzD4CulWkYosfI/O8yJej414E3V4z0S9Ti/h9K4heMYbsmHdK1aBroEOTgTVYeX8yHac0JvBEEP1LTWNJny28fa7+jpa1hw399w+i/vhGXNlymXk1Z6kkNsvA2oQmGwdRqk9dri08xOHeK0hPUFxhZW0TQ8ouGYlzs2rc/21dblJSJZ33RX5sRAfrE0j+ysuirC9aelwyuqYGKq1tJZPJeHYlBI8KBVWm4VvISMtkXtcNFPCwosv0pqqWI6IiJNq6mLXoj2XfGWRHv82dzbpyVOkZzHUNdGjUvzor7k+m6/Sm3Dv7hAH+01gxaIfaF5eWakip1rs6w06MwNDSKC82K0vJs1lSDSllBzWk4eq+vL3zgp3NZiq0lqFUS5Oio7tSZFQXXu75k+sDZ5OZqDinTuTnQHSwPoGGTm6CN2WVV0iPT0HXVLXbvSOfRZISm4J7WQ+V6vhafv/1EO9fRjN0XRd09PJPbiIRxaDrWQKbUSvQL1mV+F2LiV45juw45c8g6ehpU793VZbdmUjHKY24dvAu/Ur8yqbx+0mKVe+Lt7WHDf32DcyNzdpymQX15hEeFK50HS5VfGm9bww6xnrsbj2Hx/uuKtSea6talF06mvjHoVzsMonkl8qL6RP58RAdrE/wdw3Cv4s+K5r0hFSVLw+G3niBVEOar9IzPLjwlMPLz9FhUkMcvQuoWo6ImiDVNcCs9SAse00j+90r3s/qRcr1kyqpx6ejp03jATVYcW8STQbV4MSGS/QpNplds4+TlpSudD1fyt+xWUOODUdDS4PFDeZzeskphaZR+Bgmjpa02DECr4b+/Dl6M2cnbiMnU3HnZavSham0+VckUgkXu04Wg99FvhnRwfoE0r9msHLSM5RiLyMxDW0j1TpYL2++wK6wPToGOirV8aWkp2SwvP82Clf0oH6fqqqWI6KG6BYqhc2olegVKU/c9vnErJlEToJqdvjpG+vRZmx9VtybRPUOZdkz5wR9ik/h0LIzZKarbykTW68CDDo8lKq9qnFs1hGWNVtMdKhyZwQ1dbSoMb0j1X/rwON9V9nTZh6JbxT3fzR0tKXShsmYeLtwtd9MXh08rzBbIj8uooP1CTR0c52MnHTlxB5kpaShbajawPJXd1/hVEL9a3T9za6Zx4h7n0jfxe3yZc4uEeUg1TfEvP1wLH6ZRGZ4CO9m9SL11hmVzGZBbnqHbjOas+z2BErXK8KmCQcY4D+Ni3tuqUzT59DU1qTemIb03TeApKhE5tWezdUtl5Wut3DLCrTYOYL0+GR2Np1B2IWHCrOlZWRA2cUjcWxQibtTVvN42S6l7k4Vyf+IV6VPoPmXg5Wdppwp/MzkDLQNVOdgpSWmEfnsPc75xMEKvR/OwWVnaTmyDgXcrVQtRyQfoOdbDptRq9At5E/s1tnEbJhKTlKcyvRYOZrTd0k7Ft8Yh2tRBxZ038ToGvN4fFU1WdW/BLfS7gw7NYqSTUuxZ/Qu1nZaRcK7BKVqsC7sROt9Y7At7srBHstyUzkoyNGTamlSbPwv+AxqS8iGgwSOWaq0m26R/I9aOFjx8fEUL1487+Hp6YmmpiaxsblZkV1cXPD29s5r37lzZ957Q0JCKF++PJ6enpQuXZpHj+SzXq75l7OTnaocBysrLQMtFRaPffNXAKtDUeUXf/1aBEFg7cjd2Be0pvHAGqqWI5KP0DAwxqLjKMy7jifzxUPez+xF6p0LKtVk52HN6N97MPXIQGQ5MsbVWcjM9muIeBapUl2fQsdAh5azW9N9U0/eBL1hbs1ZBJ18oFQNuqYGNFjZB/++dbm24CDHBq4hM0Ux52qJRIJHpwb4zx7E+4t3uNxzGunR8QqxJfJjoRYOlqmpKXfv3s179OzZk7p162Jubp73mj179uS1t27dOu/5Xr160bNnT54+fcrIkSPp3r27XDRpGugBkJ2SJpf+PkdORlbezkVVEPHwDZq6Wljlg+znl/YG8vjqC7rNbI6mluIK/Yr8uOgXq4jN6FXoeBQldtN0YjZOJydZuTMx/6RwxYLMOjucwWs78+LeawaV+Y01w3eREJ2kUl2fwqdmYYafHoVLKVc2dF3L3rG7lZrOQSLNTeVQb1kvXl16xJ7Wc0h4pbjYsALV/amwbiJp72O42HkiCSGvFGZL5MdALRysf7Jhw4YvcpQiIyO5ffs2HTp0AKB58+aEhoby8uXL79agoaONREuT7GTlOFjZ6Vlo6qpwBuvhGwp42aKhqd4OS0ZaJpsnHqBMg6IUq+atajki+RgNQ1PMu4zDvNNoMp7e4f3MXqTdv6JSTVKplMotS7H01gTaT2zI+V236Fv8V/Yv+pOsTOWkjPkaDM0N6bbhF5r91oIbO6+zsP483j5WbmoD91rFabV7FNkZWexspti4LNNCrlTe/CtaJobcHrdMjMkS+U80VS3gn1y9epWYmBgaNGjwwfPt27dHJpNRpkwZZsyYgZWVFa9fv8bOzg7Nv7KuSyQSnJycePXqFS4uLp+00b9/f0xMTGjWrBnNmzf/5Ouk+jokvI/OW6pUJNmZWWRkZSrF1scIf/gaa08budmPi1NMbMuJNZeJf59Io2FVVTZWikRR4/Yz8M1j51IUnd6zyDy8jpj1v6JRpCLadToh0TOUr8CvpHLHkpRs4M3BRefYOuUQJzdeps3EuvhWkW+eOnkcc4UaFcbSx4r9I/eyoN5cagytRal2pfNKjikccx1qr+3F5Um7ONhjGcV616Jwp8qKsa8lofCcAWTGJBCfkPDFyaH/d0VG5OdA7Rys9evX06lTpzynCeDChQs4OTmRlZXF+PHj6dy5M0ePHgX41xfoS4Idly5dSsmSJT/7Om1jAzSzZUr5Ygg5MgxNjFTyJZTJZMSGxuDfvLRc7cv7s2SkZXJq7VWqti1DoZL5K9v81yCeiL+dbx47c3OEPtNIvXWa+L0ryAh7hFnrQegVLiNfgV8ty5z+izvQsFd11o3aw8IuW/CvV4SuvzXF1k1+mzvkccyZlzZn6PGRHJl+iJMzj/PqRhht5rfDyEpJ9VXNodn6QVxfcoSby46S/CKKmjM6KW53tn0BYmNjxe+ryCdRqyXClJQUdu7cSbdu3T543snJCQAtLS0GDx7MxYsXAXB0dCQ8PJzs7Nypc0EQeP36dd7rvxdNIwMy45Pl0tfnkGXLkGoo6W7vH8RHxJOZlolNQRuV2P9Szv5+ncToZJoPraVqKSI/IBKJBAP/mtiOXoWWnRsxayYRu20+sjTVZ113LmzHlEMDGL6xG6H3wxlYZjpbJx9Uu0SlWrpaNPm1Gb9s6UX4/dfMrTGLx2eUl6jzw7isx+xuPVuhcVkiIv+FWjlYu3fvpmjRonh7/39sTUpKCvHx8Xl/b9++nRIlSgBgbW1NiRIl2Lp1KwB79+7FxcXlP5cHvwYtE0OyEpQTYCrIBJXVIYx+kXsCsnJXXwcrJ0fGwaVnKNuouFzv3EW+nKysbLKyssnJkaltviZ5oGFqiWWvqZi1GUzavUu8n9Wb9Ce3VS0LiURC+aYlWHJzPM2G1uLwinP0LzWVs9uvI1OzWKBC1X0Yfno0DsUcWdtxFYenHyQnS3kFlHPjskaSk5nNrhazCL/+VGm2RUT+Rq2WCNetW/ev4Pb379/TvHlzcnJyEAQBNzc3Nm/enNe+atUqunTpwvTp0zE2NmbTpk1y06NpbEBGuLLufgRQVrzCP4gOjUKqKcXMwUwl9r+Em0cf8C40miHruqhayg+FIAi8fxPLi8dvCH0aQUxkAolxKcTHJpMQk0xCXDIJsbmP9I/sEJNKJUilUiRSCZpaGpiaG2JqYYSphREm5oaYWRr99bchljamOLha4+hmg76Kk+p+DolEgkHZOuh4liBuxwKiV4zFoHw9TBr9glRXtRUXdPS1aTOmHjU6lGXzxAMs6b2VPzddoef81jj72KlU2/9iZGlE9009Ob/qLEdnHObFted0XNEZM3vlLKmZexSg1e5RHBu0hgNdF1FlYht821RSim0REVAzB+vvpb//xc3NjTt37nzyPV5eXly9qpgCoNqmhiQHKSvpn2qcK4CYVzGYOZir9Q7Co6vO41XGlYJ++SMRqjryPiKWp/df8fxxOC+C3/AiOIIXwW9ITc5dZtLR1cLCxhRTc0OMzQywsDbGrZA9JmYGmJgbYmisj0QCMpmAIAjk5MhAEBCE3Di+zIxsEuOSiY9JJi4miej38Tx7+Jr4mCTiY5LJzv7/GQxzK2Mc3W1wdLXBwS3X6XLzssPdxwFtFaYr+Sea5jZY9plByuUjJBxcS3pwIGZth6JbsJiqpWHlaM6wDV2p3bUCq4fuZHilWTTsV51Wo+qgqyblrqRSKdX61MDV342tfTcxr/Yc2sxvh29AEaXY1zU1oNHaAVyasYezE7cR/eQNlca2RENM7yKiBNTKwVI3tMyMyIhJVIotiVSCIFPNskvs61jMHdU3UPN18FuCLoYwZF1nVUvJV6QkpXH93EOunn7AjXMPCQt5B4CegQ5u3va4edtTo7E/7j72uHvbU8DJUmElhwRBIC46ifDQSF4/f8fr0EjCX0Ty6sV7rvx5n9io3O+ZppYGHj4OFCrugndxF7yLueDp64ieCqscSCQSDCs2QNfbj9jt84leNgrDSo0wbtANqY7qZ+KKVPZk/uXRHFh8hj1zT3BpXyC/zG5J6XrKcWK+BJdSrgw9MYKdw7ezodtaKnWvQoNxjdDUUfwlSENLgyoTW2Phacf5X3cQ9/wddRb9gp6ZaneJqgsZGRkMGzaMEydOoK2t/UHYDcCmTZvo0qULhw4dytvdn5qaSvfu3bl58yZSqZSZM2fSrFkzIPdma9CgQRw9ehSJRMLQoUPp27dvXn/Tpk1jw4YNALRr146pU6fmta1bt46ZM2cik8moUaMGy5cv/2DDW34j/ypXAtpmxuSkZ5CdkpaXeFRRSKQShBzlxSj8L3FvYingXUAltr+EkxuvYGJlRNlGxVUtRa0RBIHnj8K5dPIel0/e587VJ2Rn5eDobkPZar70n9SKwn5u2DqYK712o0QiwdzKGHMrY4qW/neageTEVF4ER/D4biiP77zk0Z2XHPr9EtnZOUilElw8C1DE34OSFbwpVckbO2cr5aUA+AtNywJY9ZtF8sWDJB7eQPrjW5i1G4aOW2Gl6vgYWjpatBgRQMUWfqwdsZuZbVdTqq4v3Wc2x8bFUtXyANA3M6DL2u5c2nCRQ7/uJ/TGczqu6IKlq3JiKn3bVMLMzYaj/Vezq8UsGqzsg0VB9VlSVRWjR49GKpXy9OlTJBIJb9++zWsLDw9n1apVlC1b9oP3zJ07Fx0dHZ49e0ZoaCjlypWjWrVqmJmZsXXrVh49esTTp09JSEigZMmSVK9eHW9vby5cuMD27du5f/8+mpqaVKhQgYoVKxIQEEBoaCgTJkzgzp07WFtb07hxY9atW0evXr2UPSRyQ3Sw/gMtCxMA0qPjMVSwgyXV1ECWrRoHK+FtPIWq+6jE9ufIysji/I4b1OhQDi1t8XD9GDHvEzj4+0X2bTzL6+fv0dXTplTlQgyf2Z4KtYvh6Ka+mxf+xtBYn6KlPT5wvjIzsnj+KJzg+2E8vvuSu1efcnDrRQRBwNbBgpIVvPCrVIhSFb1x8rBVik6JVIpRlSboFipF3LZ5RC0ZjmHVZpjU7YREW/XLcraulozb3Zvrh+6xbvReBpWZTovhATQeVEMtvj8SiYRK3SrjUsqVrX02Mj9gDq3mtqV4oxJKsW9f2pNWe0dzpO9KdreaTcC8brhWL6oU2+pISkoKGzZsIDw8PO+GpUCB/7/Z7tmzJwsWLGDUqFEfvG/nzp1s3LgRAFdXVypXrsyBAwfo0qULO3fupHfv3mhoaGBubk6rVq3YsWMHkydPZufOnXTp0gUDAwMAunXrxvbt2wkICGDPnj00bdoUG5vc81Xv3r2ZPXu26GD9qOj87WBFxWHorNgZHqmmhlJ32fxNTnYOSVFJmNiaKN32l3DzaBDJcanU6Fj28y/+iRAEgXvXQ9i+4iSn999EqiGlZhN/Rs/thF+lQujqqa4qgLzQ1tGiUAlXCpVwpelfq8OJcSncufqEwIvB3Lr0mOO7ryKTCVjamFCioic1G5WhXM0iGJsaKFSblrUDVgPnknzuDxKObiL94Y3c2SwX1VcXkEgklG1UnGLVC7F71jF2zDjKpX2B9F3SDs9SLqqWB4BjUUeGnBjB7pE72dJnIy9vvaDB+MZoKsEJNHG0pMWO4ZwasZHDfVZScXRzineprvQZ0c+RHRFKlrl8buyzI0I/+vzz58+xsLBg2rRp/Pnnn+jp6TF58mRq1KjBihUrKFy4MGXK/DsX3KtXr3B2/v94WBcXF169evXJtlu3buW1ValS5YO2PXv2fLbP/IroYP0H2v/jYCkaTR0tclRQCiM5OhlBJmBsraRkgF/Jhd03cS/hhIOXcmYo1J2szGxO7r3G78tP8Oh2KI7uNgz+rS0N21XExPzHjykxNjOgSr2SVKmXmyg4OTGVe9dCuHnhMReO3ebU3qVoaEgpXs6TigHFqVSnOO6F7BVy8ZRINTCq3gJdH39it80jatFQjKq3wLhuBySaqndw9Qx16DS1CZValmJZ/22MqTmf+n2q0G58A7UIgtc11KXDsk64+rtycMp+Xt19RaeVXTG1M1W4bW0DXeot7cmVeQe4NGMP8aHvqTyhtVoFv8etGEO0hXx2rMbFpH70+aysLF68eIGPjw8zZ87k3r171KxZk6NHj7JmzRouX778yT7/9zv1z7QtimjLj4gO1n+goaeDlpE+aZGKL8miqatFTkaWwu38k+S/CskaWhop3fbnSI5L5fapx3Sc0kjVUlROZkYW21ecZMvio0S/T6BsdV8W7x1GxdrFlB5PpU4YGutToXYxKtQuRqehtclIkXHpxD0uHr/Lqun7WDRhBwWcLKlUpzi1mpSmZEVvNDTkO15ats5YD1pA0pndJB7fStrD65i3H462o3pUG3At6sCsM8M4tPwcO6Yf4cbh+/Re2IbiNQqpWhoSiYSKXSvjWMyJzb02MD9gNu2XdcKrsuJnAiVSKRVGNMXUxZpzk7aR8Dqauot+QcdYtWk4/saszwwsfeUTumEW9AiOtvjX887OzkilUtq3bw9AsWLFcHV1JSQkhIiICAoVyj1G3r17R/fu3Zk2bRo9evTAycmJly9fYmWVGz8XFhZGvXr1APLa/P3989r+Tv79d9vffGlbvkX4iQgMDBQAITAw8IteHxMTI5xpOVK4N3ODYoUJgvB7g6nC2cnbFW7nnwSfeywMtRsoxLyKlmu/MTEx393H6a1XhWYmA4SYiHg5KMoffGzcLh6/KzQoMlQoadRRmNx3jfDsUbgKlKk//xy7tNQM4eLxu8KMoRuFOl4DhWL67YXqLn2F6UM2CrcuPhays3PkriHjzXPh3ey+wushdYX4o5sFWVam3G18D2+fRwoTGywWmhr3Fxb22CTERyXK5bsqD5JikoRV7ZYLw+wHCcfnHRVyFPD/+RSvrjwWVvkNEbbUmSzEh0V+8fsUMXZfe5363j5r1aolHDlyRBAEQXj58qVgaWkpREREfPCaKlWqCIcOHcr7e9KkSULnzp0FQRCEFy9eCNbW1nljsWHDBqFGjRpCdna2EBMTIzg5OQmPHj0SBEEQzp49KxQuXFhITk4W0tPTBT8/P+HYsWOCIAjC8+fPhQIFCgjv3r0TZDKZ0LBhQ2HFihVyGwNV8PPe+n4heraWpL2LUbgdbQMdsj+SyFHRpMbnTh3rmyk2ZuVbuH74Pp6lXTAvoJ7xYYrmzctIBrdeQP9mc7C1t2DntelMWvYL7oXsVS0tX6Crp03FgGKMnteZo48XsuXcZOq1Ls+5w4F0D5hGHc+BzBq+mTtXnsgtE7q2nRvWQxdhVKstSad2ELlgMJkRL+TStzywdbNi8sH+9FvWnsATDxno/xtX991Ti+UYQ3NDftnci9rD6nBq/gnWdFxFcoxySpU5lvOm5a6RyLJz2NVyNhG3ninFrjqwcuVKZs+eTZEiRWjcuDGrV6/+IND9Y4wYMYK0tDQ8PDwICAhg2bJleTUZO3bsiJeXF56envj7+zNixIi8mbCqVavSqlUrihQpQqFChahduzZ16tQBcnNeTpkyhQoVKuDu7o61tfW/Eo/nNySCOnyzlMTt27fx8/MjMDDwi4o9x8bGEr7qALH3nlJ1xwyFajvQbTFaBrrUW9JToXb+yeWNF9k/aR+zX86Xa5zK9xZBTU/JoLPraNqOb0CTgTXkpkvdiY2NxcjImI0LjrB21n5MzA0ZNrM9tZuVUbsgXHXjS485mUzG/RvPOLn3Oqf+uEHU2zhs7M1p0K4ijTtWxsldPvF+ma9DiN02j+zIcIwD2mNUoxUSDfWJ8YmPTGT96L1c2nsb/3pF6L2wDWY26hGL+fTCE37vvxkNLQ06r+mGc0kXpdhNi0vm2IDVvL0TSo3fOuDd5L+LfSui2PPXXqdU1afI5xFnsD6Dnp0lqRFRCr/D0zLQJStF+YVb05PS0TXSU7uL9/3zT8nKyFarZInKICToNR0qT2LltL206V2b/XfmENC8rNr9f/IzUqmU4mU9GTmnIyeeLmLDqQlUqlOcnav/pFHR4XSrPZX9m8/nZbj/VrQdC2IzbDFG1ZqTeGwLkQsHk/UuTE6f4vsxtTZm6Pqu9FvVhqc3XzKozG9c3HNLLWazPCt7MfTECEztzVjWfDHXtimmWsc/0TMzpPH6gXg18ufUyI1cW3hQLcZDJH8iOlifwcDOmuyUNLISUxRqR8dIj4zENIXa+BjpyenoGas+G/U/uXPqEbaulth5WKtailIQBIH1cw/Sp8E8BJnAlvNTGPJbW7Wv2ZffkUqllCjvxfjF3fjz+VKmr++LlrYWU/qupYZbPyb2WkXgpeBvvshKNLUxadAV68ELEDLSeT+3P0lndiPIVJPz7mOUqF2IRdfHUry6Nwu6b2JOx3XERymnyP1/YVLAlL67B1C6VRl2j9jB7pE7yc5Q/E5rDW1NakzvSLlhTbi5/BinRm5SyQ5vkfyP6GB9Bn2H3At86ptIhdrRNtIjI0n5DlZGcgba+qrfsv1P7vz5iBK11DP5qbzJSM9kTJdlLJ60i7Z9avL7xV/xKeGqalk/Hbp62tRrXZ5Vh0dz9PECug5twO3LT+geMI1GxYazZckxEuO+7UZL29kLm+FLMazUiIRD64laPJysyHA5f4Jvx9jCkKHruzJ8UzceXXnOoNK/cWlvoMpnbzR1NGkxqzUt57Th5u7rLG+xhIS38Qq3K5FIKNUrgID53Qg5GsjBX5aQkfjxVAciIp9CdLA+g759roOVEv5eoXZ0TQ1U8gXOTMtEW82SUr5/GU3kq1iKVfVStRSFExuVSI96Mzh7OJA5WwfSfVQDtci4/bNTwNGSnqObcvD+XNYeH4evnzuLJuygtudApg5Yx9MHX58AUaKtg2njHlgNmIssOYH3c/qSdO4PBDkF2MuD8k1KsPD62Nz6ht025s5mRSqnHut/UbZdOfrtHUh8RBwL6s7lxfXnSrHr2cCfJhsHEvU4nD1t55IUofiUPSI/DqKD9Rm0jQ3QNjEk5bWCHSwTfTISUpR+x5iVnoWWrpZSbX6OBxdCkEolFK7w75p1PxIvn0bQseok3oRGsvbEeGo1La1qSSL/QCqVUqpSIWZs6Mvx4EV0G9aAC8fu0qrsWLoHTOPE3mtkZX3d8pGOW2GsRy7HsFxdEvavImrpSLKjIxT0Cb4eUysjhm/qxvCN3Xh09TmDy87gxtEHqpaFc0kXhhwfjrWHDStaLeXiuvNKOV/a+xekxY4RZKdlsqvlLCIf5u/s4iLKQ3SwvgADRxuSw94p1IauqSGybBmZSl4mzM7IQlNXvWZMHl15hksRBwxM1SPhnyIIvvuSrrWmoaOnzZbzUyhSyl3VkkQ+g6WtKT1HN+Xo4wXM3jIAgFGdllLXaxArp+8jLvrL45ak2rqYNuuDVf/Z5CRE8352X5IvHVKv2aymJVh0fSxeZVyZ2XY1ywdsIy05Q6WajKyM6bWjLxW7Vmb/xH1sG7iFLCWktzF3t6XlrpEY2pqxr/18Qs+q3uEUUX9EB+sLMHC2I+W1Yh0sPYvcTOppscrJ+/I3smwZGprqs3Uc4Mn1ULzLuqlahsK4c/Upv9Sbjp2zJetPjMfOyVLVkkS+Ai0tTWo3K8O6E+P5P/bOOjyKc4vD7+zG3UOQJCSQECBAcHe34u5QNBTXAgUKxZ1gxQvF3d3d3S0ECXH3zP2DJjelSJKd3U1g3ufZ5152Zn/f2elm57ffd75ztl6eQrXGJVk9Zx/1Cgxg6pA1vHmZ/nxN/XxFsB++GKOSNQjd6kPgktEkBqt3tjwjmNuYMvLvn+kzrw1nt11jSMWpPLr8+b52mkKpo+Sn8U3psKgzd/bfxqf5fI3kZRnZmNFs3WBylyvAvj6Lub3+lNrHlMneyAYrHZg45SDy1Tu1Tkcb/tNHLjpIs7t3khKTspTBCguM4N3zANxLO2s7FLVw5fR9+jSaSoGiTizbNwoL66zXokgm/eQrlIdf53blwIO5dB3SiENbL9LIcwgjOi/k3vX0FRhV6Bti2ao/Nn3+IPHDG/yn9SHqwgGtJ5inIAgCtbpUYNaZkZham/BrnTlsmLyPRC00p0+L10/F8d45gPAPEcypP4tX11+qfUxdQz3qL+xJ0U7VeHHsFslJWWfGUSbrIRusdGDinJOEsEjiQ9VnfoxsPhb4iw7UbEKpmCwiKLJOjaXnNz/urMpf3OkbZ2Y/7lx5Sv/msyhWzo2F24dhbGqo7ZBkJMLSxpReo5qy/8Fchs/sxL1rz2lfaRw96k3m9MEb6aoUb+BeHPsRSzD0qkTIpnkELh1LYmiABqJPHw6utvxxaCCtRtZj26zDjKo5C79H6p3Z/xa5PfMw6MAQrB2tWdRiAVe3XFb7mAqlgkqjW9JwSV8UEve1lPm+kD8d6cDEOScAkS/eqG0MAwtjFLpKjRssALJQEcsXd/wwMjPAztla26FIylvfQAa0nE2Bok7M3TwYgyy2c1NGGgyN9GnTqxa7bs1k5vpfiIuJ55fms2hd9leO7Lj8TaOlMDTGqs0grHtOJOHdC/yn9ibq8tEsM5ul1FHSakQ9ph4dQmx0PEMrT+fAn6e1Gp+prRl9NntTvFlJNgxcz+4JO0hKVP/smlLe7SvzDWSDlQ5MHHMgKBVEPFefwRIEASMbM6I+hKptjC+SRb68AV7de4tjwZwoFN/PRzMuNp6h7eZhYKTP7A0DZXP1A6BUKqjZpDRrT4xn5eExWNmZM6zDfFqVGc3h7Ze+abQMC5Ymx4glGBYuS8jfMwlaPp6k8KxTIiBfcUdmnh5OjU7l+HPoFqa2+5OIYPUWY/4aOvo6tJrRhiYTm3FmxWmWd1qW2mdVRkZbfD93MTWi0NXBOE8OtRosABN7C6L8w9Q6xqcolArJGt1Kgd/D9+Qp8PVGo9mNqUPW8uyBH7P/HoCVbdbo9SajGQRBoHiFAizdO5LVx8Zh62DJ8I4LaFl6NIe2XiTpKzk8CiNTrDoMw7r7b8S/eoT/1F5EXzuRZWaz9A31+HlGS0Zt7MnDi88ZVGEq984+0Vo8giBQqXsVfl7fm9e3fJnXYBbvH2t3CVPmx0Y2WOnE1DUXEc/UW3nZ2N6CyPchah3jUwSFQHJS1vjCTk5O5s0Tf3K722s7FMnY9ddpdqw+yei5XSlQzFnb4chokWJl3Vi8ewRrjv+GfS5LRnReSMvSI9m38RyJX1nSMvQsh/3Ipei7Fyf4r2kEr55MUkSo5gL/BqXqeTL73EgcXGz4rdECNkzep5Elui/hVsmdgfuGoGOgy4LGc3h48oHWYpH5sZENVjoxdc1DuJoNlqmDJZHvQ9U6xqfo6OmQlMFCieoi6E0o8bEJ5Mr/ffQf9H32nqlD1vBTx8r81LGytsORySIULZOfRbtG8NfJ8eRytuPX7otpVWYUJ/Z+uTWN0sQc686jsOoymrind/Cf1ovoW2c1HPmXsc5pwfjd/Wk1qj7bZh1mTP15fHgVpLV4bJxt6L9rIHlLubCi0zLOrT6jtVhkflxkg5VOzPLlIT4knNgg9S3hmThYEfEuWKNLAEo9HY00UE0P759/3DGVI6+tliNRnYSEREZ3W4yNvTkjZnbSdjgyWRDPUvlYsG0o689MxDaHJYNaz6FLzYlcP/fwi68xKlYZ+5FL0HMpRPCqSQStnUpSlPZb2cDHvLNWw+sy6cAAgt+FMbjSNM5uu6a1eAxMDOi6qgcVulRk+69b2Tlum1xWQUajyAYrnZjldwQg/In62iSY5rQkMSae2BDNFRvV1dchITZBY+N9jfcvAhEEAVtHK22HojJr5u7jwY0X/LGyL0YmBtoORyYLU6i4C0v3jWLx7hHExybQrfYk+jWdwcNbrz57vtLUEuuuY7HqOILYh1fxn9qLmLsXNBz1lylQxoXZZ0bgVcOD2d1Ws6j/38RpoNr651DqKGkysTnNJrfg3OqzrOzyJ7ERsVqJRebHQzZY6cQ4tx1KQ33CH6vPYJnl/ljRO9xPc1PruoZ6JMRkDYMV4BeCpYN5tm92/OLRW5b+sYNOA+rjWer77qcoIx3laniy/sxEpq315vVzf9qU/5URnRfy6ul/E7UFQcCoRDVyjFiKnqMbQcsnELx+JsnRmu0E8SWMLYwYvLILfRe04/Tmq4yuNYd3z7RX06tCl0r0+KsXL648Z0GTuQS/1t7ypcyPg2yw0omgUGCWLw9hjz//q1IKzHJ9rP2kSYOlZ6RHfLR2+4ulEOgXgm1uS22HoRKiKDLRezkOjjb0Gt1M2+HIZDMUCgV1mpdl29WpjF3YnRvnH9Gs+HCmDF5D6Ge6PCjNrbHuMR7LdkOIuXMB/2m9iX1wVQuR/xdBEKjZqRxTjg4mNjqOoVWmc37nDa3F416lAP13DyIhJp55DWbz4op2W/7IfP/IBisDmLs7E65Gg6VvboSeqSFhrwPVNsanGBgbEBetnen7Twl+G4qVg7m2w1CJfRvOceP8Y8bM6yrXu5LJNLq6OjTvWo09d2bRf0Ir9m04S6MiQ1jvc5CETzalCIKAcela2I9cgk4ORwKXjiFk41ySY7VXlyoteT1zM+PkMLxqeDCz80qWD99KQpx2Zs1zuOXgl72Dsctnz+JWC7i+I2uYUZnvE9lgZQDzAs5EvHhDYox6ZnwEQcDCyZawV+lvFqsq+qb6xGWRnISQDxFY5si+Bis6Mpa5YzZQq1lpSlctpO1wZL4D9A306DKoIbtvzaR2szLMGrmelqVHcfrgjf9shtGxsMWm92QsWg8g+sYp/Kf1Ifax9maM0mJkZsiQ1V35eWZLDq86x+jac3j/QnM/JNNiYmVCrw198WpcnPXef3F0/uEsU1tM5vtCNlgZwLyAMySLhD9VXx6WuaMtYb6ay1UwMDUgPiaeJC03bgUI9Q/Hwi77Nj/euOQwYSFRDJzUVtuhyHxnWNmZM3ZBdzacm4RtDkt+aT6LPo2n8eTu63+dJwgCJuXqYT98MTo2DgQuGkXIloUkx8VoKfJ/x1bv58pMOTyIyNAYhlaZzsXdN7USi46+Dm3mtqf2kLocmLaPrSM2abV2l8z3SfbOJtYwpq65UejqEPbgBVae+dUyhkVee95efaoW7c9hZGEMQHRYNKY22jM3SUnJRIZEY25jorUYVCEmOo6/Fhzkp46VyeWU/ctMyGRN3Is4sWz/KE7uu86cXzfQutxomnSuivdvLf/VJUDHOgc2faYQdW4vYXtWEPvwGlbtBqPv6qnF6D/i6vWxzY6P999M77iCxt7V6TihMUodpUbjEASBOoPrYZnLii3DNxL6NpSOS7pgkEV2/cb4+hJtKs13coyv+iYFZL6MbLAygFJPF9N8eQi991xtY1g42xH1IYz4yFj0NPCHbmRpBEB0qHYNVnRYDKIoYmplrLUYVGHnmlOEh0TSZVBDbYci850jCALVGpagYu2ibFl+jMWTt3F052V+mdCKZl2rpfbxFBQKTCo1xqBASYI3zCJg4XBMKv2EWcMuKPS0ayKMzQ0ZtrYbexefZM2YnTy/9ZrBq7piYav576DSrctg4WDB6p9X4NNsPj3W9sI8C6QqvPpjOkZm0rTWehWeNWql/WjIBiuDWBTMS/DNx+rTd/7YJib01QfsCjmqbZwUjC0/Gpqo4EhAey1qIkM+NmY1tjDSWgyZJSkpmfU+B6nVrAy5834fVehlsj66ejq061uHui3KMmfMRib9sooda04xem4XChV3ST1PxzYntt7TiTy9i7B9q4l9cAXLdkPQz1tQi9F/NIqN+lbDpWgeZnVZybAq0xm2tjtuJZ01HotbZXf67xzInx2XMq/hbH7+qxcOHjk1HkdanEYPx72QNLmc0ffuQdOmkmjJpB85ByuDWBZyJeL5GxKj1JPTYOX60eSEPNNMk1Jj649LclFB2q2fE/1Por2RmaFW48gMZw/dxO/FB9p719V2KDI/IFZ25vy+rBerjowlIS6RDpV/Y/KAVYQF//9vWlAoMa3aDPuhPiiMTAmYP5TQ3csREz6/gzg6OlpT4VOoQj5mnBqOTS5LxtSbx6GVZ7WSdO7gkZMBewZhbGXMgiZzeXTqyxX1NYGhoyNG+fNL8jB0VP+PdZn/IhusDGJRyBVEkdAH6qmhomdiiLGdOcHP3qlF/1OMLIwQFAKRgdo1WDH/GCxDU32txpEZNiw+TOGSrniWdNV2KN8VmrzJfw94lXfn73O/M3Rae/ZvOkcTr2FsX32C5OT/t4fRtc+D7YBZmDfsSuSpXfjP9CbpzbN/6fj4+GBmZoaPj4/GYrfOacHEfb9Qq3M5lg7ahI+3dqq/mztY0G/7L7iUdmV5x6Vc3nRR4zHIfD/IBiuDmObNhdLIgJC7z759ciaxyudA8BPNGCyFQoGJjSnhAdpdo4/9p9ipgVH2MlhvXgVw8fhdWvaooe1Qviu0cZP/HtDRUdK+X1123phB+ZpFmNhvBZ2rT+Dxnf8nOQsKJaY1WmI/dAGCnj5xK38jbN9qxMR4fHx88Pb2xsPKGG9vb41ef109HX6e2Yr+Szpwdus1rZVySOlhWLpNWTYN3iCXcZDJNLLByiCCUoFlIVdC7qhvp59VfgeCn2rGYAGY2ZkR8eG/VaI1Sfw/7Xr0DHS1GkdG2fXXaYxNDajdrLS2Q/lu0OZN/nvB1sGSySv6sPLwGKIiY2lXcSwLJ2whLvb/s0K6Ds7YDZyDbpXmRBzfytQW1fH29qaHlxP725alh5eTVq5/tbZlmHJ0MNHhsQyvOoObxzW/VKfUUdJiWqvUMg47x22XG0XLZBg5yT0TWHrmw3fXSURRRBAEyfWt8+fk1tqTJMbGo2Og/mrgZvZmhL0PU/s4XyMh/mN1al2D7PORFEWRfRvOUrt5WQyNs8bW7uxOirnq4eXEuEruTDzzCG9vb5Ljoun7889pzvxnRiHNzIIYEUKSMs1MQ9pjqeenHe2/Gnw6U/Gvf/9XQ0yPxr+e+8z56Y03gxogUjiPwF8bO7Fn/Rl2/bWDJ0dP0G1oYwoUdUo9X5G3EJtPX2X0rn2p110QBMZVcgfA29sbgH79+v13PDWRUv19To/VTGq+iM6Tm9KwT1W1fN9+iZQyDma2ZmwbvYWID+G0m98RHf3s8x0lo12++UlJSEhg/vz5vHr1ioYNG1K7du3UYyNGjGDatGlqDTArYumZjycrdxH9NgDjXNLvGrN2zwWiSPDTd9gVdpJc/1MsHCx4fUu7dVJSCp3q6Gq2Fo4q3L36jDcvA6jfqry2Q/ku+NRcpb3J/zJkOGF7VtGl6NeTdbVfTjNrUhGo2BAgGE7MJeDE/4/FJCQxfPExCtuapl53IPX6X/QLYcCAAXTt2hUjI83t8jWxNGL05t6s+203q0Zt59W9t/Sa3Qpdfc3OcpfrWAETW1PW9V3DsvaL6bqyB4bZcDOOjOb5psHq168fkZGRlCxZkqFDh1KrVi1mzZoFwJEjR35Ig2VV5GOR0eBbj9VjsPLnBEEg8OEbjRgscwcL7hy4rfZxvkZS4sfpd4Uy+6xaH9xyEdscFhSvWEDboWR7oqOjGTBgAIVtzb5wkw9m/OlH9Jnug5FhymzhP7MZ/5wbGRGJianJv55LPecfrf8gCJ+c/5ljaTQ+d57wH4205//n/6R7rP/rZl6DTzTEZJEjOy6zbuFB9A106Ta0MQVLOjE71y4G/PobE888Sr3+oigy8cwj7gaEs3DhQo2aqxSUSgWdJzXBqXBOFv+ygTeP/Rn2V3esNFynyrNuEXpt7MvKLn/i02w+P6/rnSVqZclkbb5psC5dusStW7cA6Nu3L126dKFz586sWrXqh03807MwxcQ5J8E3H5OnfkXJ9XWN9LFwtiPgwetvnywBFjktiQyKJCEmHl1tNSj+57OkySUAVRBFkeN7rlK1UQmU2cgUZlWMjIyYN28e3t7eX7jJRzBvymSsS1X7okZMcDCGVlYajDp70rC/K6Wa12Hq4DUM6L2ZcjULM3FJf5Tm1qnLgSnLs8tvvGLhwoUaXR78HFXblCZXfjumtV/O8KozGLG+B/lLOGs0BpfSrnjvGMCy9ktY0HgOP6/vja613NBd5st8886QkPD/rucGBgZs2LABY2NjmjZtSny85rfRZhWsirkRfPOR2vRtC+Yh4J5mDJZlbksAQt6EaGS874End1/zzjeQag1KaDuU74Z+/fqxcOFClt94xcQzj1LN1fIbr5jcsAzNgy4ReXoXYrKcbKwq9jmtmLNxELM3DODhrVc0LzUSF1svFixYwPIbr6i/4WKWMVcp5C/hzPSTw7DJ/bFe1om/L2k8hhzuDvyyexD6pgas7rFSTnyX+SrfNFjOzs6cPXs29d+CILBo0SLc3d15+FC7hdi0ibVXASKe+REfqp7dd3aF8hD40E8jf8BWeT7+6g9+Haz2sb7IPzNX2WVW9PTBGxiZGFCysoe2Q/muSGuy0t7kR249iVGZ2oRuX0zgopEkBmmmEO/3TvXGpVh5dBRlqxdmVNdFvLyQxLQpM3gQHJWlzFUKVjnM+X3fL1RuWZIFfdaxctQ2kjRscixyWuC9/Rc6Lu6crVIaZDTPZz8daQvTrVu3jkKfKdc/ffp07ty5o77IsjjWJT7m3QTdUM8sll1hJxKi4wh5rv4bibmDBQodBcG+QWof60sodT5+FFNysbI6F4/fpVRlD/Q0nHD7I5BistLe5BX6Bli26IdN36kkBr3Hf3ofIs/tyzaGPCtjbmXC9LX9mbbWm6tnHnBg8TN2rDue5cxVCrr6uvRd2I4eM1qwf+lpprRZmlqoWFMYmhuRs2AujY4pk/34rMFq1KhRahVlKysrLC0tP/viggW128tKmxg52GKU05bAq/fVom9X+ONuqQ93XqlFPy1KHSWWua0IfKX5on6pMfyzezBlN2FWJiYqlpsXHlO2uqe2Q/lu6devH+Hh4f+5yRu4FcN+xGKMilcldMsCApf8SmJIgJai/L6o07ws265Mw6u8O2O7L2N4pwWEBGq3Pt6XEASB+j2r8Ovm3jy8+JzRdeYQoM0ZeBmZz/BZg/X48WMqV66Mv7//f44lJCSwcOFCtQeWHbAuWVBtBkvPxBBLlxz4336pFv1PsXayIUiLBktX7+N+i4S4RK3FkF7uXHlGYkISpeTlQbXypV1rCgNjLFsPwKbXJBLf++I/rRdRl+Rq21JgbW/OrL8HMGVVXy6duEezEiM4vvuKtsP6Il41Pfjj8GBiImIZUX0mj6++1HZIMjKpfNZgXbp0CUNDQ0qXLs39+x8NRFJSEn/++Seurq4MHjxYo0FmVWxKehDx9DVxIeppM2NfxEljBsvWxZaA59qbCdAz/LjUFh+b8I0ztc+NC48xszTGxUNeItAmBh4lsR+xBMMiFQjZMJu4jTNJCtPeMvf3giAI1GtVnm1XplK0bH4Gt53HhH7LiY7U7DJcenH0cGDq8aHYO9swrsF8zm2/ru2QZGSALxgsKysrjh07RsWKFalQoQKTJ0/G3d2dvn37Uq1aNe7du6fpOLMkNqU+5qYFXlHPLJZ90bwEPvQjMVb9uzVt89oS+DJAa7ti9P8pDxEXnfV3pt66+JiiZfKjUMgJrtpGYWSCVbshWPcYT/K7F7yf2ouoq8fk2SwJsMlhwZyNAxnn050Dmy/QpsIY7l5TXw9WVbCwNWXCnv6UaVSUWV1XsXn6QfkzIKN1vniH0NPTo0mTJiQkJDBu3DisrKx4+PAha9asIX/+/JqMMctiaGeFiZMDgVfUYzhzFMtLcmIyHzRQrsEunz1J8UmE+Gknj8HQ5GPxyNioOK2Mn15EUeT+jRcUKuGi7VBk0mBYuCyGfaZjULAUIetmELTyd5Ii5LIjqiIIAs26VGPT+UmYmBnSpfpE/py+S+M799KDnoEuA//sRNsxDdg4eR9zf16bLWbEZb5fPmuwNm7ciKenJ23btqVu3boMGzaMGzducOjQIU3Hl+WxKVOYgEt31aPtngsdQz3e33yuFv202OX7WJHe/8l/8+40gaGpPgDRGt4NlFHe+gYSGhRJweJ5tR2KzCcIhiZYdxyBddcxxL+4h//UXkTfOK3tsL4LnPI7sOb4b3Qe1IBFE7fSo+4k3rzKepsLBEGg5bC6DF3TjUt7bzGu4XzCsmiivsz3z2cNVrt27cibNy9Xr15l69atTJ06ldWrVzN48GCGDh2q6RizNLalCxP95gNRfh8k11boKLEv4sy76+o3WOYOFugZ6eH/VDsGy+if3l7R4Vm7m9zjOx97NroXUX8LI5nMYVi0IvYjl6KfrwjBa/4gaPUfJEVqt5n594Curg79x7dixaFfee8XTKsyo9iz/kyWXIor38SL3/cNwP9lEKNrzeHds6xnBmW+fz5rsC5evMju3bspVqxY6nPt27fn0KFDrFq1iubNm2sqviyPTcmCCEoFAZfUUxPMwcuFd9efqf1LTKFQYJ/fHv9H79Q6zpcwsfhosCJDo7Uyfnp59sAPUwsj7Bw+X7pEJmugNLHAqsuvWHUaRdzjG/hP7UXM7fPaDuu7oHiFAmy++AfVGpZkbM+ljOziQ2R41vu7zV/CiSlHBiMoBEbVmi3vMJTROJ81WKVLl/7syVWqVOHcuXPcvHlTnTFlK3RNjbAo7ErARTUZrOKuxARFEKaB6fgc7g68f6ydCtm6+rroGeoSGZL1vqjT8vzBG1w9cmebnonfM8nJycTFxRMZGU1YaDiJif8u8SEIAkbFq2A/cil6zgUIWjmR4L+mkRwtLxmpiqm5EZOW92baGm/OHrpJ24pjeXjzpbbD+g858tow5chgHPLZMq7hfC7tvaXtkGR+IL7Z7PlTChQowMWLF9URS7bFrmwRnq0/QHJiEgodpaTaDsVdQBB4e+0pFs52kmr/Z6wCObm15ybJSclaaQFhZm1CRFCUxsfNCL7P/HGVyzOojdjYOF6+8OP5M19ePH/N82e+qY/w8EgSExJJ+OeR/JmehBaWZtjYWGJlbYmNzceHtY0ltrYuFPe0I+fdo8Q+uYVl6wEYFiqjhXf4fVGnRVk8vJwZ0WkhHauNZ+i09rT6uWaW+gFiamXM+F3ezO/1F9M7rKDbtOY06FVF22HJ/ABk2GAB2NraSh1HtsauXBEeLd1GyN2nWBdzl1Rb38wIG/dcvL36lILNy0uq/Sk5PByIj4kn6FUgti7qNXOfw8zahLDASI2PmxFeP/enasPi2g7ju+GN33sO7j/F8aPnuXXzAW/f+KcuhxsbG5LXxREX1zw0aV4HKytzdHV10dHRQVdXBx0d5cf/1dVBR0eH9+/8iYmJJygwhKCgEAIDQrh75zGBgcEEfAgmJiYWOyMFv1ezpvyfv3Er0ZqXzpVw8ShAwUL5cHTKlaWMQXbB0TUHa47/xuzRfzNl0BqunH7AuIXdMbMw1nZoqegb6jFkdVfWjt3FiuFb+eAbROffm8ilVmTUSqYMljpwdnbGwMAAA4OP2/VHjRpF69atAXjy5AmdO3cmMDAQCwsLVq9endqm52vHNIVFQRd0zU0IOH9bcoMFkLNUPl6eVM9OxX+N45ETgLf332rFYJnbmhAWoJ6irVIQHRlLWHAkOR3lHxiZRRRF7t55zIG9Jziw7yQ3b9xHR0eH0mWL0qpNA1zzOZHXNQ8uLo7Y57DJkOEJDg7Gysrqs8eSk5N588afh/ef8ujBM/Y/vkQ15UtyPNrO2KUhXHgTh729DeUrlqBs+eKUr1iCgoXyyTfgdKKnr8vIWZ0pVbkgv/X5kzblxzBtTT88S+XTdmipKBQKukxuiq2jFStHbCPAN4QByzqm1uD70ZkwYQLjx4/nzp07FC5cmKtXr9K/f39iY2OJjY2la9euDB8+HIDo6Gi6d+/OlStXUCgUTJ06lWbNmgEf/9YGDBjA/v37EQSBwYMH07dv39RxJk2axKpVq4CPG+p+//331GMrVqxg6tSpJCcnU6NGDRYtWoSOTpaxKRlHzCI4OTmJd+7c+eyxatWqiatWrRJFURS3bNkili1bNl3HPuXatWsiIF67di1dMQUFBaUveFEUr45aIJ5s/2u6z88ITw5eE+fn7y1GvAtWi35afis2Rtw/da/KOhm5diks6LtOHF59pspjq4uXj9+KRY3ai1dO31fbGJm5btmBm9fvicMHTxE93euIFoaeYh77cmLXjsPELZv2iaEhYZKMkdFrlxDsL37wGSm+HlBHvDVjpDjp1xli7WodRVszL9HC0FN0cigvtmraT5w7a4V49fJtMSkpSZI4sxpSf+b8Xn4QO1b9TSxh1klcOWtPlrxul/beElvbDxJH1Z4tRgRHZVpHHX+vGb1PSaF57do1sW7duqKjo2PqfbhYsWLirl27RFH8+D5tbW3Fe/fuiaIoihMmTBA7d+4siqIoPn/+XLS3txeDgz/en9asWSNWr15dTExMFIOCgkQnJyfxwYMHoiiK4qlTp8SCBQuKkZGRYmxsrFiiRAnx4MGDqToODg7i+/fvxeTkZLFRo0bikiVLJLsG2iDL/zz78OED169fp0OHDgA0b96cFy9e8PLly68e0zR25YsS9uAFsUHSbwfPVepjYVe/S48l1/7PWIVy8eaun9rH+RyW9maE+Gfd7fQf3n0sXGmbw0K7gWQjbt24T8smfalaoQ17dx2lTr3KbN+zlKe+p1i5djotWtXH3MJMK7HpWNph0+cPLFr2x/rDA7rp3WHX0iG8en+ePQdX0K9/J+Lj45kxZSk1q7SnUL5aDOr/O4cPniE2NmsXxNUmuZxsWXF4DB1/qce8sRsZ0HI24SFZK7eydIMi/L7vF9489ufXenMJehuq7ZC0RlxcHP369WPRokX/mTEODQ0FICoqCj09vdQZ4k2bNqU2Ys+bNy+VK1dm165dqcd69+6NUqnEysqKVq1asXHjxtRjXbp0wdjYGH19fbp168aGDRsA2Lp1K02bNsXe3h5BEOjdu3fqsexKlpp7a9++PcnJyZQpU4YpU6Zga2vL69evyZkzZ+o0oSAIODo64uvri7Gx8RePOTs7f3Ecb29vzM3Nadas2VdLToSEpL8StK6HIwgCL46cx7629Mmz5q72PD99B7tK6q2ib5XPmls7bhIcrFpF94xcuxQMzHUJeRdGYGBgllyaef3yYwkLQSdJ5evzJTJz3bIiT5+8Yu7MlRzYdwoX1zzMWTiW+g2rpP6tRkZKv5Mv09fOoxz6OVyI372MQJ8R6JSug0f11hQs7Er3Xi1JSEjkxrV7HDl0lqOHz7F6xRaMjAyoWLkUNWqXp1qNclhbW0j6XjSJuj5zHQfVxq1Ybv7ov5Y2FX5lwp/ds9QGEeu8Zgzf3JU5nf5iRI2ZDFrbEQfXjC3/Z+TafWn5+ktEvHhDqKE05WAiXrz54rFx48bRoUMH8ub9d/HkVatW8dNPPzFmzBgCAgJYtmwZOXLkAMDX1xcnp//XAnR2dsbX1/eLx65evZp6rEqVKv86tnXr1m9qZleyjME6ffo0jo6OJCQkMGbMGDp37sz+/fsB/uOqxTQ1ob527EssXLiQ4sXTl6ic7j8KKyssCroQdeMJVm3qpe81GcCpvAcvT9zJ8B9pRslfKj/n/zyLToISM3tzlbQyGqujWy6SEpNRJOpilUO1sdVBYpyIUqkgj7N6k6HV/d9Ynbx+/Y6pvy9i4997yJU7BwuXTKR1u4Yay6PI9LWzskIcMIvIM7sJ37sKnt/Bst1g9F0KA1C3vh1161dDFEUePXzOgX0nObDvJCOHTAegfMUStG3fmMZNa2FqmnWSu9OLuj5z9ZpXxLO4G0PazaP/T3MYu7A7DdpUUMtYmcHKyoqpR4fwe7NFTG+1ijFbe5O/hHOGNdTB9TGLCDOSRvtZ9Od/EF64cIErV64wderU/xybMWMGM2bMoFWrVjx//pyqVatSunRp3N0/5hmn/Q789L6rjmPZkSxjsBwdHQHQ1dVl4MCBuLm5AZAnTx78/PxITExER0cHURR5/fo1jo6OGBkZffGYNrCvWIxn6/aTnJCIQlfaS5u7jDu3/zpJuF8QZrmtJdX+1zhFP16717deU6i2Zk2OTa6Pv9YC/UKypMEKC4nCzNJE3mn2GeLi4pk3ayVzZ63E1NSYKTNG0Llbc/T1s08CsaBQYFqlCQYeJQnZMJuABcMwqdIU8/qdEfQ+tnISBIECHq4U8HBl0NDufPAP4tCBU2zbcgDv3uMYNugPGjSuTpt2jahavSxKpbRlW7IjufPasfrYOCYPWMWv3Rdz+/JThkxph56+rrZDAz5+70w6MJA/2ixlXMMFDPurO8Vranaj1OcoPqkvRQsWlkTL/P5daHHwP8+fOnWKhw8fps5e+fn5UadOHaZOncqOHTtYv349AC4uLpQpU4bz58/j7u6Oo6MjL1++TK0o8OrVK+rXrw+QeqxUqVKpx1LuySnHUkjvsWyL1rK/0hAZGSmGhISk/nvWrFlipUqVUv9dpUqVfyWylylTJl3HPkWdSe6iKIoh95+Lu4q3EwMu383Q69JDTGikuMC9j3h381nJtdOSnJwsjvMcLR6Yvk8lncwkf0aGRIlNzbzFs9ukS+6Ukjm/bhAbFh6k1jGyY5K7r+9bsXrFtqKtmZf425g5Ynh4pFbikPLaJScliuHHtoivhzQU303uIca+ePDN1/j6vhVnTf9TLF2ssWhh6CkWyFtdHDNyhnjn9iPJ4lIHmvrMJScni1uWHxVLWnQWO1QZJ757HaiRcdNLbFScOLnVErGF1S/iyY2X0/Wa7yXJPYWUzWaJiYmipaWlePLkSVEURTEgIEDMnTu3ePnyx+vy22+//SvJ3c7OLvVarFq1SqxRo0Zqkrujo6N4//7HjUEnTpwQCxUq9K8k9wMHDoiiKIrPnj37T5L74sWLJbsG2iBLJLr4+/tTrVo1ihQpgqenJ6dOnWLt2rWpx5cuXcrSpUtxc3Nj6tSprFixIl3HNI15AWcMbC15f+aG5NoG5sbYFnLk9fmHkmunRRAE8hRzxPfmK7WO8zmMLYwwMjfE/1WQxsdOD1GRMRiZGGo7jCzF+XPXqFahDQEBwRw+sY7xvw/MlktknyIolJhWb4H9UB8EA0MC5g0mbM9KxMT4L74mTx4HBg/rwcXrOzl2+m8aN63FhvV7qFSmBdUrtmXj+t3ExX359d87giDQonsNVh0dS+D7UNpWGMOFY+rpgJEZ9I30GLG+B1XalGZez7XsWnBM2yFpDaVSyebNmxk8eDBFixalcuXKDB06NHVWatiwYcTExJAvXz7q1KmDj49P6lJpx44dcXd3x83NjVKlSjFs2DA8PDwAqFq1Kq1atcLT0xMPDw9q165N3bp1gY+zZBMmTKBChQq4urpiZ2dH9+7dtXMBpELbDk+TqHsGSxRF8eak5eKRxoPE5OTkDL/2W5ybuUP8s8xQMVnN254Pzz4o/uoxQqXt1Zn9ZTe4wlRx8YANmR5XnYztuUTsVH28WsfITjNY27ceFO3Mi4sN63QTgwJDtB2O2q5dcmKiGHZ4g/h6cAPx3ZSeYpzv43S/Ni4uXty3+7jYrFEv0cLQU8znWFmcNH6B+MbvvVpizQza+MyFBIaLfRpPFYsZdxBXztqjlu/LzJKcnCz+NX6X2NTMW1wzdudXY/veZrBkpCVLzGB9T+SoXJxoP38iX76VXNuxYkFigiMJfPjlHSFS4FwqLzFhMXx44q/WcT5HDhcb3j9Xf9/FzBAfm4B+Fskb0SaiKLJg7mq6dRzGT81qs233Eqyy8S66byEolZjVaoP9kAUIOjp8mDOAsAN/ISYmfPO1enq61G9UjW27l3D55i6aNq/LEp91FPWoR7dOw7l44cZ3kcybUSysTVmwfRjdhzVm3tiN/Np9MbExWWN2TxAEOvzWmK5TmrFz3lGWDd782bZMMjLfQjZYEmNTqhBKA33en7wmubaDV150DPXwPXtfcu20OHo5oVAqeHHlhVrH+Rw58trwNqsarPhEdPWyzL4QrSCKIlN+X8S40bMZNLQ7S1f8gZ7ej2E6dXPmxW7QPMxqtyPiyEY+zBlI/Nvn6X59fre8TJ89intPjzJ52lDu3HpAvRqdqVy2FRvW7SIh4duG7XtCqVTg/VtLpq3x5vjuq3SvMwn/t+opf5IZGvWtRr+F7Tiy+hzze/1FYkKStkOSyWbIBktilAZ62Jbz5P0p6Q2WUk+X3GXc8D37QHLttOgb65OrcC5eXHqm1nE+R8789gT5hRKXRX7NpiU5WdRKE+ysxNRJi5gxdSnjJw1k3MQBP9yOSkGpg1ndDtgNmouYnMSHWb8QfngDYlL6b75mZib07NOOSzd2sXXXYnLmsqdvz7GUKtqY1Su2/nB5WnValGXVkY95We0rjuXWpSfaDimVGh3LMWhFF85tv87MziuIj/2xTLCMavzYdws14VC1JCF3nhIbIH0BP8eKBXl77RnxUbGSa6clbykXnl9O/69zqciV3w5RFHn79IPGx/4WYnIyCsWPZSjSMmPKUqZPWcpvvw9kwOBu2g5Hq+jlyY/9kPmYVm9B+IG/+DB3IAnvM7YxRKFQUKNWBTZtX8jpi1soXqIwg3/5neKF6rPEZx1RUdFqij7r4eGVl7/P/E5uF3t61J3MzrWntB1SKhWaFWfkhp7cPPaQP1otISZSruIvkz5kg6UG7Ct5ISgVvD99XXJtp8qFSE5I5I2a2+bkLeNKiF8wIW80O2Wf2+1jpWC/R+81Om56EASBHzBdBoDtWw/yx+8+/PqbNwOH/NjmKgVBRw/zBl2wGzgHMS4W/xneRBzbgpic8aUkzyLurPxrBhev76RS1dKMGTmLoh71mDFlKaEhWbcBupRY25vz5/7RNGpfifF9/mTa0LUkJCRqOywAStQuxNhtfXhy3ZcJTRYSEZy1Wv/IZE1kg6UG9MxNsC7uwbtjlyXXNneyxSyPDa9O35NcOy0uZV0BeHZBs8uEJpZGWOW0wPf+O42Omx4USgVJST9esuurl34M9J5I0xZ1GTL8Z22Hk+XQc3LHfpgPJpUbE7Z3JQHzh5LwIXP9PN3c87Jk+R9cv7uXps3rMHvGcjzdazPldx8iIr7/m7qung7jFnbn13ld2fLnMfo0nkZokPRtlTJDoYr5mbC7P++eBTCu4XxC/H8M4yuTeWSDpSYcqpci8Op94kOl/XIQBAHnKoV5eequWncfmViZkKOAA88uaD4fwtHDgVf3pd+FqSpKHcUPl+ianJxMr+6/YmlpxpwFY3+4nKv0IujqYfHTz9j+MovkyDD8Z/Ql4uQOxEzuPnN0ysWMOaO59eAgXX9uxbzZq/D6Z+nwR8jRatmjBsv2j+LZfT86VZ/Aq6dZY0Y7X3FHJh0YQERwFBOaLCQp8cf6PpDJGLLBUhMO1UshJou8U8NuQueqhYl4E0zwU/XO8uQrn5+n55+qdYzP4VwoJy/vqrcURWbQ19cj/ge4uaVlxbLNXLpwg0XLJmFubqrtcLI8+nkLYjd8ESbl6hG2cykBC4eTGJj5Hwt29tZMnDyYq3f20qBhNX4dMZOSRRrx91+7SMpAYn12pHiFAqw9MR6FQqBTtfFcP6feIsvpJU8BByYfHEin35ug1JFbIcl8GdlgqQkDGwusixfg7ZGLkmvnKuOGrpE+L47dllw7Lfkq5CfYN4jg15qtrO5cJDeBr0OyXJ6DvqEucTE/zi4iP7/3TBw3ly7dW1KhUklth5NtUOgZYNGsD7be00kKC8R/eh8iz+7J9GwWQO7cOZi3aDwXru2gRMnC9Os1loqlW7B317Hvuo5WHhd71h4fT/7CeejVcCr7NpzVdkgA2DvbZIl+hTJZG9lgqZGctcoSeOUecSHSLhPq6OuSp4IHL46r12C5ls2HoBB4cla9CfWfktczFwAv72Quj0VdGBjqExP94+wgGj9mDsbGRoyfNFDboWRL9PMVwX74YoxK1SJ0qw+BS0aTGKxa8V4397ysXj+LY6f/JoeDLR3bDqJm5fZcvCB9e66sgpmlMYt3jaBeq3L82mMJPhO3yIU/ZbIFssFSIzlrlEIURd6duCK5tkvNory/9ZKoD2GSa6dgZGFEbs/cGjdYOfPbo2+kx7NbWctgGZsZEhURo+0wNMLVy7fZtvkAv/7mLS8NqoBC3xDLlt7Y9PmDxA9v8J/Wh6gLB1SedSpesjA79i5j94HliKJIvRqd6dV9NO/eZr3yJlKgq6fDhCU9+WVCK/6ctouRXXyyTOV3GZkvIRssNaJvZY5NqUK8PXRBcm3nqoURFILaZ7HyV3LnydnHGv3FqFQqcPbMxfObvhobMz2YmBoSGf79GyxRFBn362wKebrRruNP2g7nu8DAvTj2I5Zg6FWJkE3zCFw6hsRQ1TsWVKpSmqOn1zN/0XiOHz1H6WKNmTNzBbGx399MqyAIdBvamJnrf+H0/hv8XG8yQf7q+4EpI6MqssFSM7lqlyPw2gPJi44aWpqQq1Q+nh25Kanup7hVcicyMJL3DzRbNiFfcSee3Xit0TG/hZmFMdGRsVmmNo+6OHv6ChfOXWfs+F9QKuUkXqlQGBpj1WYQ1j1/J+HdS/yn9ibq8hGVZ7MUCgUduzTj6q09dOjclD8m+lC2eJPvNj+rZpPSLD/0K+98A+lQ9TdePMp6O45lZEA2WGrHoXopBKWCt0cvSa7tUrMYfhcfEafGZau8pVzQM9Tj0WnN7uDJX8KJd88DslSiu7m1CQARIVknJnUwY+pSihQtQO26lbQdyneJYcFS5BixBEPPcoT8PYug5eNJCle9oK+5hRlTZozg3JVt5HfLS8e2g/ipfg/u3tHsEr8mKFzClb9OTcDQWJ8uNSdmqfY6MjIpyAZLzeiZGWNXvihvDp6XXNulVlGSE5J4eeKO5Nop6Ojr4FouHw9PqLf/4afkL+4EwJNrLzU67tewsP6YixQSFKnlSNTHzev3OXPqCkNG/CzXvFIjCiNTrNoPxbr7b8T7PsZ/ai+ir52QZMbJzT0vW3YuYvMOH96/C6BKuVaMHT2L6Ojva3nbIY8Nq4+Mw9UjFz3r/8HJfdKXxJGRUQXZYGmA3HXLE3L3GVF+0iagmjpYYV/EmaeH1LuDyL2aBy+uPCcuSnN5HTlcbDC1MubxlZcaG/NbWNuZARCsxo0F2mb50o3kzuNAg0bVtR3KD4GhZznsRyxB3704wX9NI3j1ZJIiQiXRrlWnEueubGPM+P4sX7KR8iWbceKY9Pmg2sTM0pjFu0dQqW4xBreZy9YVx7QdkoxMKrLB0gD2lb1QGurz5uA5ybVd63jhe+YeCWosH1CgagGS4pN4ek5z0/CCIOBWyplHl19qbMxvYW1nDkCgf6h2A1ETIcFhbNtygK49Wsq5VxpEaWKOdedRWHUZTdzTOx9ns26ekURbV1eXQUO7c/byVhydctKsUS969xhNYIBme4yqE30DPaat7U+rnjWZ9MsqfCZu+S5zz2SyH7LB0gA6hgbkqFoSvwPnJf/Dz1fHi8TYBF6evCupblps8tpi7WzDwxP31TbG53AvnZfHV19mmf5/RiYGGJsa8OGttBsWsgo7tx8mISGRDp2aajuUHxKjYpWxH7kUfdfCBK+eTNCaKSRFSdPvzjWfE7v2L2fB4gkcOnCa0l4/8dfq7d9NPSmlUsGImZ0YMLE1f07bxbhey777zSgyWR/ZYGmIPPUrEPnyLWEPX0qqa+5oi22hPDw9eF1S3bQIgoBH9YI8OHZfo78MPcq5EhMRi28W6UsoCAL2ua1576fZyvaaYsumfVStVgY7e2tth/LDojS1wKrrGKw6jiD20TX8p/Yi5q40y3qCINChc1Mu39hF7bqV+KXveBrU7sqTxy8l0dc2giDQdUgjJq/ow4HN5/ml+awfpm6dTNZENlhfICE4mKBlK0gIlOZmalO6MHpWZvgdkH6ZMF/dErw8eUety4QeNQoS8iaE9480V64hX3FHdHSVPLjwTGNjfguH3Na803DrIE3w/l0AF85dp3mretoO5YdHEASMSlQjx4il6Dm6EbR8AsHrZ5IcLU1HCFs7a5Ys/4Nd+/8k4EMwjev+zPw5q76b3oYN2lRg0c7h3LnylB51JxMcIM0soIxMRpEN1hcQ9PSIOnWaoMNHJNFT6CjJVbscbw6eJ1niDuz56xVX+zKha9l86Bnpcf/oPbWN8Sn6hnq4Fnfk/rmsY7ByOtvy9qXqBSKzGqdOfiwjUqNWRS1HIpOC0twa6x7jsWw3hJg7F3g/rTcx96XrClG5ahnOXt5Kp67NGD9mLo3qdufVy6zVPSGzlK5aiBWHxvDhbQjd60zC/83396NIJusjG6wvoGNiglG5MgQdPKRSk9a05GlQkbigMAIvS2uEzB1tsSvsxJP9VyXVTYuugS5uld25f0RzBgugUIV83D//NMskreZ2tuP1C/8sE49UnD5xiYKF88vLg1kMQRAwLl0L+5FL0HVwJmjZWII3ziE5VppabAYG+owa24c9h1bwxu89FUu3YM3Krd/F59u9iBMrj4wlNjqOLjV/x/fZe22HlCGCn73jwz1fSR7BzzRbKFrmIzraDiArY1K9Gv6nzxJ5+w6mxYqqrGfukReTvDl5ve8sduVV10tL/gYluTh3N/GRMeiZGEqqnULBmoXYMmwTkUGRmPxTdFPdFKqQn+2zj/DmiT+53XJoZMyvkcfVnpioOIL8w7DJYaHtcCTj4oUb1KhVQdthyHwBHQtbbHpNIuriQcJ2LiPu0Q0s2w7CwM1LEv0KFUty5tJWxoyYwUDviezZeZR5i8aTK7f2/+ZUwSlfDlYfG0fvRtPoWvN3Fu0ajnsRJ22HlS4OD1nFAwNbSbRex35/s+7ZAdlgfQV9jwLo58lN0L4DkhgsQRDI06ASj//cQUJkNLomRhJE+ZH89Ytzbto2nh+7TYGfykimm5aCNQsBcP/oPUq3Vs8Yn1KgrAtKHQV3Tz/JEgbLOb8DAC+fvPtuDFZwUCjPn/kyckwfbYci8xUEQcCkXD0M3LwI2TiHwEWjMK7QEPPG3VHoq/6jyszMhPmLJ9CoSU0G9J1AuZLNmDJ9OO06/pSti87a57JmxaExeDedQfe6k1mwbShe5dy0HdY3qT2rK0UKekqidfv+HWa02iaJlkz6kZcIv4IgCFjXr0fo2XMkhklTXDJ3/QokxSfw7thlSfRSMHWwwqG4K4/3qm+Z0NTWDMfiTtw7rL7K8Z9iaKJPvuJO3D2TNVph5M5rh1Kp4OXjrLGzUQquX/u4ZF2yVBEtRyKTHnSsc2DTZwoWzfsSfeUI/tP7EPdUuqbvtepU4vzV7TRsXB3v3uNo32oAwUGhkulrAytbM5btH4V7EUf6NJrK2UO3tB3SN7FydcCukKMkDytXB22/nR8S2WB9A+vaNQEIPnJUEj1De2tsSxfi9V5pCgmmxa1hSV6fu09MsPpauRSuW4RHJx8SHxOvtjE+xbOKG3dOP84SNXv09HXJ7WLH84ffj8G6d/cxJiZGOOfNre1QZNKJoFBgUqkx9sMXozS3IWDhcEK3LyE5PlYSfQtLMxYtm8T6TfO4eOEGlcq25Py57N2KxsTMCJ8dwylbvTADW83mwGbp25fJyKRFNljfQMfcHPOK5Qncd0CyxM88DSsTdP0hUa/9JdFLIV+94ogiPD2ovi9CzzqeJMQm8Pj0I7WN8SlFq7oTERzFyztvNDbm13D1yM2zB1kjFim4f+8pHgXzZetloB8VHZuc2HpPx7xJLyIv7OfDjH7EvZCuIHD9RtU4c3ELTs65aFSnOzOnLsvW5RwMDPWY+fcA6rYqx+hui9n8pzQ/nGVkPodssNKBTYP6xL32I/K2NEtjOaqVRMfYkNd7Tkuil4KRtRl5yhfg0R7ptnJ/iq2rHfb57bmzX3NT7G6lnNE30uPWCc2Zuq+Rr2Bunt57re0wJOPJoxe4F3DVdhgymURQKDCt2hT7oT4ojEwJmD+U0N3LEROkmWXOlTsHuw8sZ8jwn/njdx+aNOjJG7/stSMvLTo6SiYu7UnbPrX5Y+Bq1vsc1HZIMt8pssFKByZFi6CfOxdBe/dLoqdjqE+uuuXw3XMKUeI2MO6NS/Pu2jPC1VhtvEjDYtw9fJfEOM20otDV16VQxXzcOvFQI+N9i/yFHQn6EPbdNH1++dIPZxd5eTC7o2ufB9sBszBv2JXIU7vwn+lNvK80P0p0dHQYPa4fuw8s5/nTV1Qq25J9u49Loq0NFAoFw6Z3oMughswYvo7Vc/ZqOySZ7xDZYKUDQRCwaVif0DNnSQgNlUTTqUk1Yj+E8OGCdMmpAC41i6JjqMejPdIm0aelWCMvYsNjeHRKc4anWHUPHlx4Rly05nK/voRb4TwAPLrjq+VIVCcsLIKQ4DCcnHNpOxQZCRAUSkxrtMR+6AIEPX0+zB1E2L7ViInS/N1UrFyKM5e2Ur5CCTq0GcjgX34nJkaavC9NIwgCA35vzc8jfmLumI38OX2XtkOS+c6QDVY6sapVCwSB4IOHJdEz98iLmZsjr3ackEQvBT1jA1xrFePRrstqKxaYw90Be7cc3NpzQy36n6NYjQIkxCVy96z2dxPmcbXHyMSAhzdfajsUlXn39gNAtq93JPNvdB2csRs4B7O6HYg4vpUPs34h3u+pJNpW1hb8tXEOs+aNYcO63dSu2pGXL7JnBXhBEOg3riV9xjTHZ8IWFv3+fRRZlckayAYrneiYm2FZtQqBe/dLUtldEAScmlbH/8x1YgNCJIjw/xRoUoaQ5+/5cOeVpLpp8WpcnLuH7pCgod2EufLbY+doxY2jDzQy3tdQKBQUKOrEg1svtR2KynzwDwTA3t5Gy5HISI2g1MGsdjvsBs8HQcGH2QMIP7gOMUn1pX1BEOj2cyuOnl5PVFQ0VSu05vBB6XdGa4peo5oyYGJrlk3dybyxm2STJSMJssHKADaN6hP//j3hV6XZpZe7XgUUOjr47j4liV6qbrkCGNtbcH+b+rYhF2vsRVxUHPePSbdj6WsIgoBXzYJcP3wvS3z5FfTKy71rz7UdhsoEBAQDHxsAy6SP6OhobYeQIfRyuWA3eB6mNVsTfvhvPswZQMLbF589N6PvrVBhN06c3UDZcl60ae7NtMmLs0Q5lczQdUgjhk7rwOo5e5k+7K8s8T0jk72RDVYGMPLwwNDVlcA90iRE6poakbNOOV7tOCFpsrtCqcCjaVke771KYqx6ZphsXe3I7ZmbG7s0VxunRJ1CvH8RyNunHzQ25pcoVMKFNy8DCAmM0HYoKhEWGoFSqcREwq4C3zM+Pj6YmZnh4+Oj7VAyhKCji3n9TtgNmoeYmIj/rP6EH9mImKbkQmbfm7mFGX9vmc/osf2Y9scSWjfzJiQ4e24A6eBdl9Fzu7Bh8WEmD1iVbc2iTNZANlgZQBAEbBo1IPziZeL9palh5dysOjHvAvlwUdpkd4/m5YiPiOHZ4ZuS6qbFq0kJHhy7T0x4jNrGSEvhSvnR1dfh2iHNNpz+bCwlP5Y1uHv1mZYjUY3w8EhMzYzlGljpwMfHB29vbzysjPH29s52JgtAL09+7IcuwLRqM8L3r+XDvMEkB7xR+b0pFAqGjuzJlp2LuHb1DlUrtObWDc3MbktNq59rMn7xz2xbeYLfvVfIJksm08gGK4NY1qiGwtCQQIlKNlgUdsXM3YlX26Td8mzhZEfOUvm5v1V9y4RePxUnKT6JOwc0UxPLwFgfz8puXD14VyPjfY3cee2wtDHlzhVpEoe1RUx0DEZG6mkO/j2RYkB6eDmxv21Zeng5ZVuTJejoYd6oG7YDZiHGRrGkbzvJ3luNWhU4eW4jVlYW1KneibWrtmXLpbYmnarw+7Je7Fx7mimD1mTL9yCjfeRmzxlEaWiIdZ1aBB04SI6O7VHo6amkJwgCzs2qc3vaamL8gzC0ly4XpmCL8hwdsYYw3wDMHaXpyp4WcwcLXMvl49q2q5RuXVZy/c9Rqp4nfw7bQkRwFKZWxhoZ83MIgkDRMvm5dVH7uxpVIS4+AX191T7D3ztpzdW4Su4IgsC4Su4AeHt7E/fyAb1aNP548r9uxOJ/nkv9f2nP+9zNO/W59J33WQPwjVgA1r9NZOzxu198bwD9+vX7r/ZXcHTKxYFjaxg9fDoD+k3g+tW7TJ8zGj093QzpaJuG7SqSmJDE+L5/otRRMGJmJ3mmVyZDyAYrE9g0akjAjl2EnjqNVa2aKuvlrleBe/M28GrHCQr0biFBhB/JV7c4p3/fxP1t5yk36CfJdNNSvHlJtgzdSNi7UMwdLNQyRlpK1fdk6eBNXD10l2pty6h9vK9RtEx+lk3bSWJiEjo6Sq3GklkS4hOy3Y1Pk0RHRzNgwAAK25qlGhAg1Yhc9Atm+KxFNIp+hKFuBj8DqTfrNDdt4T//5+vnpbnhCylP/ssDCP85L+W5mMRERizaS2Fb0y+8txAGDBhA165dMTLKWI6egYE+s+ePpURJTwb1n8izZ76sWT8LK2uLDOlomyadq5CYlMSk/ivR0VEyZGp72WTJpBvZYGUCA8c8mJYoTsCuPZIYLB1jQ3LXq8CrHSdw694Eha40/1l0DfVwb1yaB9suUKZ/QxRqMAFF6hdl+69bub7zGtX61JBc/1OsHMxxL52Xi7tvad1gFSvvTkxUHI9uv6JQcRetxiKjHoyMjJg3bx7e3t5MPPMo1YiIosjEM4+4GxDBgvnzydevb5pX/dfUZNWb8jwXn6+8t3AWLlyYYXOVlvadmpDXNQ8d2wyiVtUObNi6ADf3vBK+A/XTolt1khKTmDJoDUodJQMntcmy/z1lshZyDlYmsW3SmOiHj4i6L01dJueWNYkLDOX9KWl35RVsWYGoD2G8PKWevCVDM0MK1SrMtW3q63/4KeV+KsbNYw+IidBuBelCxfOib6DL9XNZo0diZki5ocp8mX79+rFw4UKW33jFxDOPUg3I8huv+L2qB+0sYxFjoxEUyn8eio8PQUh9ZFX69evHtGnTPvveFi5cmOHlwc9RvkIJjp3+Gz09XWpV7cCJYxckiFyztO5Zi+EzOrJm7j4WjN8s/83IpAvZYGUSszKl0cvpwIcdOyXRM8/viFVRN15uPSaJXgp2hRyxLZSHe5vPSaqblpLNS/LuwTve3NVMNeeyjYuREJfI1UPaTXbX09fFs3Q+rp3NGj0SM4NSR0lCgmZ6SmZn0pqs+hsusvzGKxYsWMCgafOIuXuR99N6E3Nfcz8ypKRHjx7/eW9SmasUnPPm5uDxtZQuU5SWTfqydNH6bGdS2vWtw5Ap7Vg5c49c8V0mXcgGK5MICgV2TZsQeuoM8QEBkmg6t6xJ4JV7RLx4I4leCoVbV+LVqbtEvAuWVDcF96oemNiYcHWrZm4wdo5W5C/hxPkdmmvV8yVKVvLg+rmH2XYrt6GBPrExcdoOI1uQYrIeBEexcOFCvL29MS5dC/uRS9B1cCZo2ViCN84hOSZK26FmmE/fm5TmKgVzc1M2bltAn/4dGDl0GgP6jic+PkHycdRJx1/qM3BSG/6ctoslf2zXdjgyWRzZYKmAVZ1aKAwMCNi5RxI9hxql0bMy4+WWo5LopeDWsBQ6hnrc36Kekg1KXSXFm5Tg+o6rJCUkffsFElC+qRfXj9wnWkM1uL5EqcoFCQ+J4tEt9bUlUieGRgbExGbPZr3aoF+/foSHh//LgOhY2GLTaxIWrQcQc+M0/tN6E/vouhajzByfe29So1Qq+f2PISxa9jubNuzlp/o9CAqUtlWYuukyqCG/TGjF7UtPSdTQ951M9kQ2WCqgNDLCun5dgvbvJ0mCjvJKPV2cmlbj9d7TJEZJZxz0TAxwa1iKe1vOkZyoni+EUq3KEBkYycMTmukVWL6JFwlxiVw5oN1lQs9SrhgY6XPppPaLn2YGU1MTIsKj5OWODPC5pG9BEDApVw/7EUvQsc1F4OLRhGxeQHKcdn8AZBRVEtozQtsOP7Hn0EqePX1FneqdePUyezWL7ja0MQu2D0UnoztHZX4oZIOlInZNfyIpKprgw0ck0XNuVoPEmDhe75O2cWrhNpWI8g9VW7J7zkK5yFkoF1c2X1KL/qfY5rGiQFkXzmy9qpHxvoSevi4lKrhz8bj2i59mBjNzE5KSkoiS0ND/yOhY2WPT5w8sWvQj+urRj7NZTzRTiDe7UbpMUQ4d/4vk5GRqV+2Y7Sq/Z9fSLDKaQzZYKqJnb49FxQoEbN+JKEEejmEOaxyqluTF5iOSzirYFXLEztOJuxvU1/G+dOsy3D96j8igSLWNkZaKzYtz6/hDIoK1m/NSplphbpx/RJya+j6qE0tLcwCCg0O1G8h3hKBQYFKxEfbDF6O0sCXQZwSh2xeTHC8vxX5KXpc8HDq+lly5c9CwTjeOHVHfZhyZz1O7dm2KFClCsWLFqFSpEjdv3gSgW7duuLu7U6xYMSpXrpz6PHysD9e2bVvy5cuHm5sb27f/Px8tOTmZ/v374+rqSr58+Vi0aNG/xps0aRKurq64uroyduzYfx1bsWIF+fPnx9XVlZ49e5KYmL034MgGSwLsWjYn7s0bwi9KM3uTt3VtIl+8JfCytMtOnm0r8+rMfcJeB0qqm0LxpiVBgOvbNTOrVL6JF6II53dqN9m9fE1P4mITsmW5BltbKwACP6hnA8SPjI5NTmy9p2PepBeRFw7wYXpf4p5nz6VkdWJrZ82eQysoV6EEbZr3Z8O6XdoO6Ydi8+bN3L59m5s3bzJkyBC6desGQJMmTbh37x43b95k+PDhtGrVKvU1M2fORF9fn6dPn3Lo0CH69u1LSMjHXLp169Zx//59Hj9+zOXLl5k+fToPH37caX369Gk2bNjA7du3uX//PgcOHODQoUMAvHjxgrFjx3L27FmePn3K+/fvWbFihYavhrTIBksCjD0KYFyoIB+2SrOrxLqEB6b58vB8w0FJ9FLI36Ak+qYG3N2onlksYytjCtf25NLGixrJ6bGwM6NIFTfObJW2dlhGcS2YG1sHSy4cvaPVODKDzT8G68OHIC1H8n0iKBSYVm2K/VAfFMZmBCwYSuiuPxHj5Z2baTE2NuLvLfNo16ExfXuOZebUZXJeoIawsLBI/f9hYWEoFB9tQePGjdHR+Vj0umzZsrx69Sp1t/SmTZtSN0PkzZuXypUrs2vXrtRjvXv3RqlUYmVlRatWrdi4cWPqsS5dumBsbIy+vj7dunVjw4YNAGzdupWmTZtib2+PIAj07t079Vh2Ra7kLhF2zZvxYuIkoh89xsjdTSUtQRBwbVeXmxP/JPLVO0ycHCSJUddQD49m5bi/9TxlBzREqYYWKaXbluXP9kt4e/ct1lWk66v4JSq1KsmC3usIeB2MbR4rtY/3OQRBoEKtIpw9covBU9ppJYbMYmdvjUKh4N3bD9oO5btG1z4PtgNmEXliO2H71xJ77zJW7Yei5+Su7dCyDDo6Osz1+Y3ceRyYPHEhvq/eMGv+GHR1f8xWTv5P3uOn+1oyra/RqVMnTpw4AcDBg//9YT9v3jzq16+far58fX1xcnJKPe7s7Iyvr+8Xj129ejX1WJUqVf51bOvWrd/UzK7IBksizCuUQ8/BAf+t28j76yiV9XLVLc/9hZt4vuEgRUZ2lSDCjxRuU4mbq4/z9OAN3BuXlkw3BbdK7ljmsuTG1mt4VvGUXP9TyjYsylLDTZzZcpVmg2urfbwvUbFOUXauPcVb30ByOtpoLY6MoqOjQw4HW974ff0LWEZ1BIUS0xotMShUmuD1M/kwdxCmNVthVqcdgo7ccBs+/lgZNqoXeRwd6N9nPG/f+LP679mYmGhmd2NWYr33X9jr2Umi5R//9R9Qa9euBWDNmjUMGzaM/fv3px5bt24dmzdv5syZf698pO1Q8OlsozqOZUdkgyURglKJXfOm+C1aQnyPbujZ26ukp9TXI2/LWjxdvYcCvVugZ2EqSZyWLjnIU74At/46oRaDpVAqKNO2HMd8jhATFo2huXq/GA1NDSjToAinNl2h6aBaWmtLUqZaYXR0lJw5eIPWPWtpJYbMkscxJ69fv9N2GD8MujmcsBs4l4hjmwg/9Dcxdy9i1W4Iennyazu0LEOb9o1xyGlHh9YDad64N5u3L8TcwkzbYWmU9gs74llQmh+pd+7fYX2bjd88r3PnzvTu3ZugoCCsra3ZtGkTEyZM4NixY9jZ/d/sOTo68vLlS2xtbQF49eoV9evX/9exUqVKpR5zdHT817EU0nssuyLnYEmIVZ3aKI2N+bB9pyR6zi1rIiLycvtxSfRSKNKhKv63XuJ/+6WkuimUbluWxPhErm7TTLJ7lTaleP3wPc9vaa+Wjqm5EcUruHP6wE2txZBZnPPm4sVzaZYiZNKHoFRiVrsddoPnIwgKPswZSNiBvxATs1dlc3VSpVpZdu77k8ePntO4Xg8CA36sjRj2+XOQ2zOPJA/7/Dk+O0Z4eDhv375N/feOHTuwtrbGysqKzZs3M2bMGI4ePfofo9OyZUt8fHyAj8npp06donHjxqnHli5dSlJSEsHBwWzatInWrVunHluzZg1RUVHExcWxcuVK2rRpA0Dz5s3ZsWMH/v7+iKLIkiVLUo9lV2SDJSFKQwNsGjckaP9BEiMiVNbTtzQjT4NKvNh4mCQJW0o4V/PELLc1N9dIa9xSMM9hjnt1Dy6sPauRad6i1QpgYWfKyQ2aqcH1JSrV8+LKqftER2av7fh58+bh5QvZYGkDvVwu2A2eh2mtNkQc2cCHOQNJePtC22FlGUqU8mTPwZW8e/eBhnW68faNv7ZD+q4ICwujSZMmeHp6UrRoUXx8fNi7dy+CINC+fXtiY2P56aefKFasGMWKFSMo6ONmmGHDhhETE0O+fPmoU6cOPj4+WFl9zIHt2LEj7u7uuLm5UapUKYYNG4aHhwcAVatWpVWrVnh6euLh4UHt2rWpW7cuAC4uLkyYMIEKFSrg6uqKnZ0d3bt3186FkQrxB+LatWsiIF67di1d5wcFBWV4jPjgYPFG3Ybiu783Zvi1nyP8+RtxV/F24qtdJyXRS+H6yqPiQo++YsT7EEl1U7h24Ko4OOcv4pNzj9Wi/ykrR28TO+cdKcbHJWhkvM/h++y9WNSovXh4+6VMa2TmM6cqmzfuFS0MPcXQkDCNjy0l2rh2UhLn+1h8N6Wn+HpwAzHs8AYxOTFRI+Nmh+v2+NFzsVD+WmJRj7rii+evtR1OKuq4dhm9T2lLU+bbyDNYEqNraYlVrZoE7NhJcrzqhSdN8+bEvpIXz9btl3Q2qFDL8ij19biz/pRkmmlxKuWMfX57zq0+qxb9T6nWtgzhQZHcOKK9atB5XOxxL+LEsZ2XtRZDZnB3dwHgyeOX2g3kB0cvT37shy7AtFpzwvev5cO8QSS8z967qKQiv1teDhxbg46ODvVqdObB/afaDklG5ptkCYMVGxtLkyZNcHNzo1ixYtStW/dfyW7Ozs4UKFAgdZpy06ZNqceePHlC+fLlcXNzo3Tp0ty/r/12C3Ytm5EYEkrw0WOS6Ll2bEDEMz8CLtyWRA9Az8SQQi3Lc3fjGRJipK9ALggC5TtX5O7B24S9C5Vc/1OcC+fCpWgejq+/qPaxvkbNpqU5deAGsWq4purCNb8TgiDw6OFzbYfywyPo6GHesCu2A2YjxkbjP7MfEce3ICbLTYXz5HFg/5HVWNta0rBON65fzZ7tqWR+HLKEwQLo2bMnjx494ubNmzRs2JCePXv+6/jWrVu5efMmN2/eTE2YA+jVqxc9e/bk8ePHDB8+PEus2RrkyYN5+XJ82LwVMUn1L0br4gWwKOjC07X7JIju/xTpWI248Gge7lSPKSnZojS6BrpcWH9eLfqfUq19Ga4dukdogOr5b5mldtPSxETFcfbQTa3FkFGMjY3I65KH+/eeaDsUmX/Qdy6A/VAfTCo2ImzPSgIWDCMh4I22w9I6dvbW7D24Etd8TvxUvwdnTmWv2WKZH4ssYbAMDAyoX79+6hb7smXL8vz5t39Nf/jwgevXr9OhQwfg4y6EFy9e/Gv2S1vYt21NnN8bQs+pbi4EQcC1YwMCr9wj9IF0CbDmeWxwqVWMm6uPS9JH8VMMTA0o2bI0F9edJzFe/T2lKrcsiaBQcGqj9r50nfI74F7EiUPbtDuTllEKFc7P3TvZr9XP94ygp49Fk57Y9p9BUkQIH6b3JeKUND1PszMWlmbs2LuUUmWK0qppP04ez15/azI/DlmyDtb8+fNp1KjRv55r3749ycnJlClThilTpmBra8vr16/JmTNnajl/QRBwdHTE19cXZ2fnL+p7e3tjbm5Os2bNaN68+RfPS+mtlCnsbDHwLMTbv9aTXKigyvWZDLxc0c9hzf3l2ynwq3SFR12bl+JZz2Xc2XuR3BULSKabcu0KN/Xk3OoznN94lsINi0im/yWK1XLn8OpzVGxXTGs1sSo3KMKa2Qfx832LkYlBhl6r0mdOBVzzObJ6xTaCgoK0dt1URVvXTu1Y5ESvx2QSjm8ibMcSIq6dRO+nXigsVau1l0J2vW4+yybQ9+dxtGnuzZ9rplChYgmNx5CRa5eyy07mB0LbWfafMnnyZLFs2bJiVFRU6nOvXr0SRVEU4+PjxeHDh4v16tUTRVEUr169KhYsWPBfry9ZsqR46tSpz2prYhdhWsJv3BSv16gjhl66rJJOCs83HRJ3lWwvRvr5S6IniqKYnJwsbm45TdzWYbZkmqL472u3uPVCcW6DWZLqf4nbJx+KTc28xbtnn2hkvM/x5lWAWNSovbj37zMZfq22dnQd3H9KtDD0FF+99NPK+FKQHXbDqUrM45vi2wmdRL9hP4kRZ/aIyUlJKmtm5+sWExMrNm/cW3SwKiWePpn53buZRd5FKPM1ssQSYQozZ85k+/btHDhwACOj/1cATylypqury8CBA1NL9ufJkwc/Pz8SEz8uP4miyOvXr7NM9VeTokUw8iiA//oNkuwAzNOoCnqmxjxff0CC6D4iCAJe3Wry5tJjPtx9JZluWip2q4zvjVe8uv5SLfppKVzZjZz57Di0Qj0NrdNDTkcbipVzY//mC1qLIaN4FS8EwPVr97QciczXMMhfFPvhizEqWZ3QrQsJXDKaxJAft4+kgYE+6zbNpVyF4rRu5s3Z01e0HZKMTCpZxmDNnj2bDRs2cOTIkX91946KiiI0NDT13xs2bMDLywsAOzs7vLy8WLduHQDbtm3D2dn5q8uDGUGMCFYp30EQBHK0b0vUvftE3r6jcjw6hvrkbVMb350niQsJV1kvBZdaxTDLbc2NlUcl00xLwRqFsHay5szK02rRT4sgCNTpVoGLu28R+kG6a5RR6rcuz8Vjdwj+EKa1GDKCnb01znlzc/H8dW2HIvMNFAZGWLb6BZvek0n84If/1N5EXTz4XfRuywwpJqtseS9aN+vHuTOa6SAhI/MtsoTB8vPzY8iQIYSGhlKtWjWKFStGmTJlAPD396datWoUKVIET09PTp06ldqYEmDp0qUsXboUNzc3pk6dyooVKySJKSnYn/iJ7Ym9qprpMCtTGkNXF/zXb5AkrrytaoMg8GLTYUn04GP/wGJda/LkwHXC3wRJpptWv0KXStzac4Ow9+o3HFXblkGhVHB0jfZmkGo3K4MgCBzcmn0ScMtVKM6Fc7LByi4YFCiB/YilGBarSMjGuQQtG0dSaKC2w9IKhoYGrN88j9Jli9GqaV/ZZMlkCbKEwcqdOzeiKPLs2bPUUgyXLn1se+Li4sKNGze4ffs2d+7cYdeuXf+aoXJ3d+fChQs8fvyYq1evUqhQIUliUlrZI7h4ErlzmcqzWPbt2hBx/QZRDx6qHJeehSmOTaryYvMREqOla8lSsHk59EwMuKWm9jml25RFV1+X82vVX3jU1MqYii1KcHj1OZIStVM/yMLalIp1irJ3g2YKrUpB+QoluHP7EaESzo7KqBeFoTFWbQdj/fME4t884/3UXkRdPvpDzmYZGhrw95b5qSZLXi6U0TZZwmBlVXTqdiLR7ymxV1UrGGpRqSIGjo68X/e3JHG5dqhHYmQMryRsAq1rpI9nu8rc23yO2LAoyXRTMDQzpHSbMlz465xaCpt+Sr2fKxPoF8KVA9orRtiwXUXuX3/BswfZo35R5aqlEUWR82evaTsUmQxiWKgMOUYuxbBwGUL+nknQigkkhf9YzZHh/yarTLmPy4VynSwZbSIbrK+gyFsYvcJlidy5VLVZLIUC+3atCb90megnqhdzNHKwJXeDijz9ax9JcdKZlaIdq5GcmMSdv9WTK1WxWxWiQ6K5tl390/euxfLgXjovB5apP+/rS1Su54WZpTF71msv4T4jODrlwtEpJ6dOardptkzmUBiZYtVhONbdxhH/8iH+U3sRff3kDzeblbJcWLZ8cdq26M+Vy7e0HZLMD4pssL6BaZNeksxiWVaril5OB95LlIuVv0sj4oLD8N0lXS9BIxszPJqV4/ZfJ0mMS5BMNwUbZxsK1i7M6T8186Vfr2dl7px+jO+Dd2of63Po6etSt2U59m04S6KWliozSrXq5Th5PPvsfpT5L4ZFymM/cin6bl4Er51K8OrJJEWGajssjWJoaMBfG+fgWbQArZr2k7sUyGgF2WB9Az03L2lmsZRKcrRtQ9jZ88Q8V70au4mTA7lqleXp6j0kJ0hXJd2rW02igyJ4uEM9ydlVelbF/4k/D088UIt+Wsr9VAwLezOtzmL91LEyAe9DuXBU9V2kmqBazXI8fvSC16+1Y0plpEFpYo51l9FYdR5N3NPb+E/tRcyt7JMPKAVGRoZs3LqA3LkdaN6oNy9f+Gk7JJkfDNlgpQPTpn0+zmJdOaKSjlWtGujlsJduFqt7E2I+BPN6n3RfnBbOduSr48X15UdIVsOsi0sZV/IUc+TkYvUk06dFV0+HOt0qcHLjZSJDotU+3uco6JWXfAVzs+sv6WYa1UmVqmVRKpUcO3xO26H8cERHS/8ZNfKqjP3IpejlLUTQqkkErZ1KUtTnNzGoY3xtY25hxrbdSzA2MaJpw568fxeg7ZBkfiBkg5UO9PIXRd+z/D+zWJk3HYKODvZtWhN6+gyxr3xVjsvMNTcO1UvxZOVOSWexSvSqQ5hvAE8OSJ/sLAgC1fvW4On5J/jeVE9h07TU7lqRpIQkjq3TzrKXIAg06VyVk/uuExyQ9XfnWViaUbpsUQ4f1N6s34+Ij48PZmZm+Pj4SK6tNLXEuttYrDoMJ/bhVfyn9SLm7r9nqNU5vraxs7dm+96lxMcn0KxxL0KCs0dtOpnsj2yw0olJsz4kvnlO7CXV6k9Z1amFro2NZLNYbj2aEP0mAL8D0s042BVyxKlKYa4uPqiWxrKF6xbBJq8tx33UU9g0LZb2ZlRoXpz9y05rrWRDgzYVANi3MXvMCtWuW5lTJy4SGxun7VB+CHx8fPD29sbDyhhvb2+1mBxBEDAqWZ0cI5ailzs/QcvHE7x+JsnRkSxfvlzt42sbR8ec7Ni7jA/+QbRs0oeICOl3SsvIfIpssNKJnqsn+kUrEqHiLJZCVxf7tq0JOXmKWN/XKsdl7uZEjqolebJqt6RLeqX61iP46TueHbkpmWYKCqWCan1rcPfAHfyf+kuu/ykNe1clwDeYy/u0kwdlaWNK9cYl2bH6RLbY0VWnXmWio2PlLe4aIMVc9fByYn/bsvTwclKryVGaW2P98wQs2w4m5s55praoxogRIzQ2vjZxc8/Ltl2Lefz4JR1aD5B/QMioHdlgZQCTpn1IeveSmAsHVdKxrlsbXSsryepiufVoQpTve94clm4ZzMHLhdxl3bmy6IBaTEHJ5qUwtTfjxCLVdmemB1cvRwqWd2Xv4hNqH+tLNOtSjecP33LzYtbfzVTAw5W8LnnYv/ektkP5rklrrsZVckcQBMZVck81OXN+HUrMnQsfH7fP//M49//HrbPE3DpLdNrHzTP/PE7//3Hjn8f1U0RfP0XMjVMIunpsjLbk1wNXvzj+92iyinoVZOO2BVy5dJuuHYaSkCD9bmkZmRR0tB1AdkLPpRD6XlWJ3LkEw7J1EJSZu3wKPT3s27XBb4EP9u1aY6hi70QLj7zYVy7Ok+U7yV2nPIJSGt9cql99dnScw8sTd8hbvYgkmino6OtQ5eeq7JuyhzpD6mKZy0pS/U9p2Lca0zss58m1V+Qv4aTWsT5H6aoFyZ3Xjm0rjuNVzk3j42cEQRCo37AaWzftZ9a8X1Eo5N9hUhMdHc2AAQMobGuWam6AVJNz0S+YYVNm0zD0Foa6SsnHj0lIYsTiYxS2Nf3C+CEMGDCArl27YmRkJPn42qR8hRKs3TCbdi1/4Ze+41m0bFLq+5eRkRLZYGUQ02a9CRzbhpizezGq0iTTOtb16vBh02ber11H3nFjVI7L/eemnO44ljeHL5C7XgWV9QBylc5PzpL5uOyzH+dqnpJ/CZXrWIGjC45waukJmkxsLqn2p5Sq74m9sw17F51g0Iouah3rcygUCpp1qcqSP3YwdFp7LKxNNR5DRmj4Uw185q/l8qVblC3npe1wvjuMjIyYN28e3t7eTDzzKNXkiKLIxDOPuBsQwfyZ03Hp9XOaV/3z95fm71BIfY4vn/eFY3PdltB/4OAvjB/OwoULvztzlULN2hVZ9Ockfu4yEkfHnIwa20/bIcl8h8gGK4PoOhXAoFRNInctw7BCAwQd3UzpKHR1ydGhPb6z5hD99BlG+VxVisuioAv2FYvx+M8d5KpdTpJZLEEQKNWvPru6zufV6Xs4VymssmZa9I31qdS9Mid8jlHjl9qY2qjPdCiVChr2qcKq0TvoOOEnbHJbqm2sL9Gkc1UWT97OjjWn6Dq4ocbHzwilyxQlRw5b9uw8KhssNdGv38ebure3NwDjKrkz8cwjlt94xe9VPeiQSxdBRxeFgbFaxvceMAhBR++z4y9cuDA1vu+VFq3q89r3HRPHzcPRKRftOzXRdkj/4vWj95grVM/TTdGS0TyywcoEJk17E/hrS6JP78S4estM61jVron/xs28W70W10kTVI7LrWczznQaJ+ksVp7yBcjh5cIVn/04VS4k+SxWpa6VObXkBGf+PEn9UY0k1f6U6h3KsfGP/exdfJIuk5uqdazPYWVrRt2W5di09Agdf6mHjo70Sz9SoVAoaPhTDXZuP8zvU4bIy4RqIq3JuugXwt2AcBYsWECXEq6E7VxG7KPrWLYdhIGbekxuv379iIqKYsSIEanj/wjmKoWBQ7rx6uUbBnpPJGcue6rVKKftkFKZ9/MaLJR2kmiFJn2QREcmY8gGKxPo5s6HQdm6RO76E6OKjRD0DDKlIyiV5OjUgVdTphF1/wHGBT1UisuykKtaZrFK96vP7h4LeX3uAY4VC6qsmRYjS2PKdarAuTVnqda3Bobm6luSMDTRp073iuxfdpoWQ+tgYqn55Y/2feuwZ/0ZTuy5Rq2mpTU+fkZo2qIOy5du5Mrl25QpW0zb4Xy3pJiZAQMG/MvcGLgXJ2TDHAIXjcK4QkPMG3dHoW8o+fg9evTA2Nj4P+P/CAiCwMy5o3nj957O7Qaz/+gaCntmjRzJAX92prCHpyRadx/c4US7zZJoyWQA8Qfi2rVrIiBeu3YtXecHBQV98VjC+1fi2y4lxIh9q1WKKTkpSbzfvZf4eOgIlXRSCL77VNxVvJ34et9ZSfREURSTk5PFTc2niptbTReTk5PT9ZqvXbtPCfMPE4e7DBEPzz6Y2RDTTYh/mNjKdqC4efoBtY/1JbrV/l3sXGPCZ49l5Lqpm6SkJNHDpYY4fPAUbYeSLrLStcsMUVFR/3kuOSlJjDizW/Qb1lh8O7GLGPv0tuTjply3z43/oxAeHilWLttSLOhaQ/R7/S7dr1PHZy6j9yltacp8G3neP5Po2DtiVLkJkXtWkhwdkWkdQaHAoUtHIm/cJOKm6l3fLQu5Yl/Ji0fLd0hWF0sQBEr3b8D7G895ff6hJJppMbMzo0zbspxefpLYyFjJ9dNiYWdGjY7l2LvoJLFR2qmD075fHW5eeMzda8+0Mn56USgUNG1Rhx3bDpKYKF2nAJnP87mEckGhwKRiI+yHL0Zpbk3AwuGEbl9Ccrz0fyffa0J7ejA1NWbTdh8USiWtmvUjLCzz3+kyMinIBksFTJr0RIyPJWr/GpV0zCuUx8gtP+9Wrpak5pR7r+ZEvXqH337pehQ6VS6EfRFnLi/Yq5a6WNX6VCcuKo7za9Vf7bzJgJpEh8dwZLV2KqtXaVCC3HntWLdAtXpqmqBFq/oEfAjm1IlL2g7lh0bHJie23tMx/6knkRf282FGP+Je3Nd2WN8VORxs2bzDB7/X7+nSfgjx8XKNLBnVkA2WCigt7TCu3Y6og+tICgvKtI4gCDh060LU/QeEX1K9eraFR14capTm0bLtJEn0JZEyi/XuunpmsSxzWVGyZWlOLT1OfEy85PppsXO0onLrUuxacJyEOM1/iSqVCtr1rcOR7Zd49zpQ4+NnhGLFC5IvvxNbNu3Tdig/PIJCgWnVptgP9UFhZErA/KGE7l6OmKDev5cfCY+C+Vi3cQ7nzlxlkPfEbNF5QSbrIhssFTFp2BV0dInctUwlHdMSxTEp4sm7VWsk6f9XoE8LYvyD8N0hXfVyp8qFsC/qzKX56pnFquFdk+iQaC6uOy+59qc0G1SLkPfhHF+vnZmZJp2qYGRqwIZFqvW2VDeCINC6bSP27jpGZGS0tsORAXTt82A7YBbmDbsSeWoX/jO9ifd9pO2wvhsqVSnNwqW/8/e6Xcya9qe2w5HJxsgGS0UUxmaYNOxG9IltJPpnvmZJyixWzLPnhJ46rXJcpnlzkadBJR6v2ElijDT5GoIgUKZ/Q97feI7v2QeSaKbF2smGEs1LcmLxMRJi1TuzlCu/PeWberFjzhESEzTfBNrIxICW3WuwbdVxIsKytnFp1bYBUVEx7N2l/ubcMulDUCgxrdES+6ELEPT0+TB3EGH7ViMmyrNZUtCqTQNGjenL5IkL2bf7uLbDkcmmyAZLAoxrtUFhZknENtV6d5kULoRZ6VK8W/0XogRJxe69mhEfFsmLDYdU1krBsVJBcni5cHHubvXMYvWvRWRgJBfWqT8/qsXQOnzwDeb05itqH+tztOlTm7jYBLatzNpf4I5OuahYuRR/r9ul7VBkPkHXwRm7gXMwq9uBiONb+TDrF+L9nmo7rO+CoSN70rhJTXr3GM2D+/I1lck4ssGSAEHfENMmvYm9eJCEl6rlJzl060LcmzcEHTqiclxGDrY4N6/BkzV7iQ+LVFkPPs5ilR3YiA93XvH8iOq7Hj/F1sWOEi1KcXzhUeKi1bvLz6lQTko3LMK2WYdJSlJ9WTaj2DlY0qBNBdb7HCIhPmvv0mvf8SfOnLrCyxd+2g5F5hMEpQ5mtdthN3g+CAo+zB5A+MF1iElZ+zOV1VEoFPgsm4Sjcy7atxpASHCYtkOSyWbIBksiDCv/hNLBmfDN81TSMcrnikW1Krz/az3JcaobjPzdmyAmJfF0zV6VtVLIU64AecoX4OLc3SSrwZjUHlSH6NBozq2Wbhfkl2g5tA7vngVwbvt1tY/1OToNaEDAuxD2b1J/3pkqNG5aCzNzU1at2KLtUGS+gF4uF+wGz8O0ZmvCD//NhzkDSHj7QtthZWtMTIz4e/M8QkPD6d55uFyuRCZDyAZLIgSlDmYtfyH+7gXi7qmWOJ2zS2cSQkII2LVH5bgMrM1xbVeP5xsPEhsQorJeCmUH/UTw03c82iV9krhVHmvKtC3LCZ+jxITHSK6fFlcvR0rUKcTWGYe0Movl6pGLKvW9WDN3L8kSbG5QF0ZGhnTo1IR1a3YQI1FOn4z0CDq6mNfvhN2geYiJifjP6k/4kY2ISZrPM/xecHLOzep1Mzl98jLjx8zVdjgy2QjZYEmIfolq6LoWIWLTPJV2AurnyolN/Xr4b9hIYoTqBe9cOzZAaaDPoz+3q6yVQo6izrjUKsalBXslKwWRlpoD6hAfm8DpP09Krv0prUbUxe/Rey7svKH2sT5Hl8GNeP7wLacPaGf89NK9Z2uCg0LZviXr1+/60dHLkx/7oQswrdqM8P1r+TBvMAnvfbUdVralctUy/DF9GD7z17Jx/W5thyOTTZANloQIgoBp6wEkvLxP7GXVcqhydGqPmJCI/98bVY5L19SI/F0b47vzJJGv3qmsl0K5QY2JfBfC3Y3SL+WZ5zCnQueKnFp2gqjgKMn105K/hDNeNT3YMv2gVmaRvMq54VXejZWz1FP+QipcXB2pVacSSxf9naXj/JGIjv7yDlRBRw/zRt2wHTALMTYK/5n9iDi+FTH5v7NZX9OR+cjPvdvSsXNTBnpP5NqVO9oORyYbIBssidEvUAL9YpWJ2LoAMTHzMzu6lpbYtW5JwM7dxL1/r3JceVvVQt/GgoeLpcuhscrnQIGmZbmyaD/xamhxU927JohwfJH6ywO0GlmP1w/fc2HnTbWP9Tm6DmnE7UtPuH0pa7fP6d2vPXduP+T8uWvaDuWHx8fHBzMzM3x8vr57Wd/ZA/uhPphUbETYnhUELBhGQsCb1OPLly9Pl86PjiAIzJj7K0W9CtKh9UDevf2g7ZBksjiywVIDpq1+ISngLdHHVTMzdi2aoTQ14d0q1VrxACj19SjQqzlvj1wi9P5zlfVSKNO/IfGRsdxcfUwyzRRMrEyo3LMqZ1edIey9enfwuJfKi1dNDzZraRarUp1i5C+Uh/ULsnbh0Wo1yuFewIXFC9ZpO5QfGh8fH7y9vfGwMsbb2/ub5kjQ08eiSU9svWeQFBHCh+l9iTi1k4ULFzJixIh06/zo6Ovrsfbv2SgUAh3bDCQuTq47JvNlZIOlBnRz58OwUmMidi5TqRG00tAQh86dCDl2gujHT1SOK3eDSpjkzcn9hZtU1krBNKcVnu2rcH3FEWKCpW+QWqVnNfQMdDkyV7paXl+i9aj6vH7wjvPbNZ8LJQgCPYb/xNXTD7l9OevW3BEEgd79OrB/7wlePM98YV2ZzJNirnp4ObG/bVl6eDml2xzpuxbGfthijMrWYd740fTv3z9TOj8y9jlsWLdpHnXrV0VXV0fb4chkYWSDpSZMm/eF+Fgi96xQSce6bm0MHB15s2y5ynkvCh0lHv1aE3jpLh8uSpdDULJ3XQRB4MriA5JppmBoZkh175pc2nCBwJfq7dvnVtKZ4rULsnHKfpISNb/rqmbT0ji55WDJ5G0aHzsjtG7XEEsrc5b4rNd2KD8cac3VuEruCILAuEruqeZoRs+2hG5f8s9j8f8f2xalPsL2rmT5gVOMPfngizqyyfo6XiUKMXRkTxQK+RYq82XkT8cXEJMSUd7ZhBiVuZu60tIO4wZdiDq0nsQ0+Q4ZRVAqydmzO5E3b0nSCDpH1RJYFsnPg/kbJel5CGBoaULxn2tz5+/ThKmheXHFLpUwsTHl4Mz9kmt/SrsxDXn79INWehQqlQo6D6zL+aN3uHnxscbHTy+GhgZ0/7k169fukIsvapDo6GgGDBhAYVuzVFMEpJqjwramjFqxieC7V4h9fIPYxzeJfXLr4+PpbeL+eYQ+uM6oVVsobGv6BR0zBgwYICe+y8ioiGywvkRsGDpnZpJwYmamJYzrd0ZhakHE5vkqhWJWpjQmRYvw9s8VKtezEQSBggPaEvboJX4HpGtHU6xzdQwsjLk0T/XaXZ+ia6hH7UF1ubnzOm/vZ96spgeXonmo2Lw4m6YeIC5G8/kVlRsUw62wI4t/z9qzWD/3bkNiYhIrl2/Wdig/DEZGRsybN4+7AeFMPPModUZbFEUmnnnE3YAI5s1fgMu4FeQYufTjY8SS1If9P4+8Y5Yzb/4C7gZEfEEnnHnz5mFkZKTNtysjk+2RDdYXEIytSSzTm8Sra0j+kLlO9Qp9Q0xb9Cf20iHin2S+rYwgCOTq9TOxr3wJOqB6DSLrYu44VC/FA5/NJMZI045G10ifMv0b8mjPFQLuS5+bU7p1Gaydbdg/VbqK9F+i7a8NCfsQzoFlqjfdzigKhYLeY5px6eQ9rpy+r/Hx04utnTVt2jdm2aK/iY1Vb0sjmf/Tr18/Fi5cyPIbr1LN0cQzj1h+4xW/V/WgjUk4SVHhKuksXLiQfv36aeDdyMh838gG6yskFe2IYJ6b+EPjM61hWKEhOs4ehP89U6UlOSO3/FjWrM67NetIkmDq3uOXNsQFhfH8b+nypjyal8fC2Zbzs3ZKppmCUldJ3WH1eXDsPs/VXMrAwdWWmp3Ks332EaJCNb9MUq1hCQp65WXR71uzdL0p7wGdCAgIZtPf0s9aynyZtOao/oaLLL/xigULFjB4pg+xj67hP7UXMXcvZEpHNlcyMtIhG6yvoaOHbp3fSH5yjKTHmStDICgUmLUdTMKzO8ReVG32KWfXLiRFRuK/SfVaViZ5cpC3dW2erN5DbGCoynrw0QSVG/wTvmfu8/6K9CaoaKNi5Cqcm72Td6vdeLQcUZeE+ER2zFN/Da5PEQSBfuNacOP8Y84fua3x8dNLvvzONPqpBgvmriFJbsWiUVLM0YPgKBYuXIi3tzdGJaqRY8RS9BzdCFo+geD1M7+5i7lfv35MmzYtVUc2VzIy0iEbrG+g9GiAwrk88Yd+Q0zKXOFQfY9S6JeoRvjm+YjxmS/IqWdvh13zpnzYup34gIBM66Tg1qMpCl0dHi3ZqrJWCq61vcjh5cL1BQckbwStUCho8GsjXl17yZ0D6jUeVjnMadinKnsXnyT4neYTucvXKkKxcm74TMzas1gDBnfj2dNX7N0tfR00ma/Tr18/wsPD/2WKlObWWPcYj2W7IcTcucD7ab2JfXD1qzo9evT4j47Mj8Mvv/yCs7MzgiBw9+7d1OdFUWT8+PG4ublRuHBhqlatmnosOjqatm3bki9fPtzc3Ni+/f9t2JKTk+nfvz+urq7ky5ePRYsW/Wu8SZMm4erqiqurK2PHjv3XsRUrVpA/f35cXV3p2bNntm+uLRusbyAIAnr1fkcMfELilcwX/DRrPZDksEAiD/6lUjz2bVujNDTg3eq1KukA6JkZ4/5zU17tOknYE2n6lAmCQKVRzQl5/I6HOy9KopkW98oFKFDNg32Td5MYr94/viYDaqJnoMumqdKXn/gWgiDg/VtL7t94wfHdX79BapPiJQtTpVoZ5sxYkaWN4PfK5xLRBUHAuHQt7EcuQTeHE4FLxxCycS7JsV9uOSUntP+4tGjRgrNnz+Lk5PSv5+fPn8+dO3e4e/cud+/eZcOGDanHZs6cib6+Pk+fPuXQoUP07duXkJAQANatW8f9+/d5/Pgxly9fZvr06Tx8+BCA06dPs2HDBm7fvs39+/c5cOAAhw59rHH44sULxo4dy9mzZ3n69Cnv379nxQrVyhxpG9lgpQOFgyfK4u1JODEdMTokUxo6OZwwrtWWqD0rSQrN/OyT0tiYHB07EHz4KNFPVC8+6tyiJsZ5cnBvznrJbpA5irngVKsIF+fsJj5K+hY6jcb+RJBvEOfXSN8DMS3G5oa0HFaHY39dwO+x6u2KMkrJSh6UrV4Yn4lbSJJ4NlBKBg3tzq2bDzh2RLpdqTKqE69njE3vyVi0HkD0jVP4T+tD7OPPF9GVSzL8uFSuXJncuXP/5/kZM2Ywbdo09PT0AHBwcEg9tmnTptQZz7x581K5cmV27dqVeqx3794olUqsrKxo1aoVGzduTD3WpUsXjI2N0dfXp1u3bqnGbevWrTRt2hR7e/uPBY179/6XqcuOyAYrnejVGAnJiSScmJFpDZOffgZdfSK2qlbEz6ZhfQwc8+C3aKnqxUd1dSg0oO3H4qNnb6qklZZifWsTGxrF9T+lb/2Sw92Bsu3KcXjuIaJD1NsIum6PStjksmDdBO0kcvef0IrnD9+y92/1mklVqFy1DCVLeTJz2p/yLFYWIaVP4aJFizApVw/74YvRsXEgcNEoQrYsJDkuJvVcuRdh1uTFwzc8uPFCkseLhxkrbxMeHk5AQAA7duygbNmylC1blk2b/t8BxNfX918zXs7Ozvj6+qrtWHZFrvOfTgQTO3QrDyLh2B/olOqMws49wxoKYzNMm/Um/K9pGNdsg65zgczFolSSq29vno0YTeipM1hWrZwpnRTsKxfHpmRB7s1Zj21ZTxQStH8wcbCkWNcaXF9xlEKtKmKa00plzbTUGVqP6zuucXjOIZpMbCapdlp09XVpO7Yh835ey4OLz/Eo66K2sT5HoeIu1GxSiiWTt1GvVTn09HU1On56EASBoSN70aa5NyePX6RajXLaDumHJqXae2FbM7y9vYGP+Vo2faYQdW4vYXtWEPvwGlbtBrP84GlGjBjxn3NltM+o7osxUkjzvRmdHJyh8xMSEoiPjycmJoaLFy/i6+tLuXLlKFSoEIULFwZILVAL/OeHlTqOZUdkg5UBdMr1JPHqWuIPjkO/48Z/fRjSi1G1FkQf3Uz43zOwGrU8UxoAZiWKY1auDG+WLce8bGkUBgaZ0oGPH+pCg9tzqv0YXm47hkubOpnWSkvJXnV5sO0C52fuoM7s7pJopmBqa0aN/rU4OHM/FTpXxNbVTlL9tFRqUYLdC46zduxO/jg8KNP/zTJLv3EtaV5yBFtXHKddX2n+20hN7bqVKFW6CJPGL6Bq9bIav0YyH/m0lc7EM4/+ZZxMKjXGwKMkwX/PZsbPrRl74sEXz5XRLlNW9KGgR2FJtO4/uEuL9unPJbW2tsbExIQOHToA4OjoSIUKFbh69SqFCxfG0dGRly9fYmtrC8CrV6+oX79+6rkvX76kVKlSqcccHR3/dSyF9B7Ltog/ENeuXRMB8dq1a+k6Pygo6D/PJdzfJ0aNtRUTHx7OdByxt86JbzsWFaMvH8m0hiiKYqzfG/FGnQbi27XrVNJJ4caEZeL+aj3FuLBIlbVSrt3dzWfF+fl7i2+vP1NZ81Pio+PE30v9Jq7o+qfk2p9y8/gDsamZt3hh1w21jvO5z5woiuL4PsvEqo59xMjwaLWOrwpnTl0WLQw9xd07VPtcZ5YvXbsfhYULF4qA2MPLSfT9pbb4ekAd0feX2mIPLycREKd1biIGrZshBq2bIU7r9NNXz124cKG23062QB2fuYzep6TSdHJyEu/cuZP6759//ln08fERRVEUg4ODRScnp9TX//bbb2Lnzp1FURTF58+fi3Z2dqnXYtWqVWKNGjXExMREMSgoSHR0dBTv378viqIonjhxQixUqJAYGRkpxsbGiiVKlBAPHDggiqIoPnv2THRwcBDfv38vJicni40aNRIXL14s2TXQBnIOVgZRFqiHIm8l4g+OQ0zMXCsV/SLl0S9aiYgNs1Uq26CfKye2zZviv3Ez8f4fMq2TQoG+LUlOSOTxn9u/fXI68WhWDhuP3Jz5Y4tkvQ9T0DXUo8Gvjbl36A5Pz6me8P81ilYrQLEaHvw1fjeJCZqv+dRrdDOiImL4a4HmdzSml4qVS1GjZnl+Hz8/22+vzm6kp0/h6L92Ef72FeHvfBm9brfci1AG+DhbmTt3bvz8/KhZsyb58uUD4I8//uDAgQMULlyYSpUqMWrUKIoXLw7AsGHDiImJIV++fNSpUwcfHx+srD4uZ3bs2BF3d3fc3NwoVaoUw4YNw8PDA4CqVavSqlUrPD098fDwoHbt2tStWxcAFxcXJkyYQIUKFXB1dcXOzo7u3aVd+dA42nZ4mkSKGSxRFMWk9/fEqHH2YvzZRZmOJeHtS/FtlxJi+I4lmdYQRVFMjIwUb7dsIz6f9IdKOik8XrFT3F2qoxjx4o1KOmmv3euLj8T5+XuLD3ddUjW8/5CcnCzOazRbnFlzmpiUmCS5flpe3PETm5n3F/cuPqG2Mb72i3jWqPViGZtuov/bYLWNryq3btwXLQw9xTUrt2p8bHkG6+szWAvmzE73ufIMVvr4nmawZKRHnsHKBAr7guiU6kzCyZmIkZmbOdJxcMK4bgci96wkMfBtpmNRGhuTs3tXQk+cIvLO3W+/4Bu4tK+Hob0V9+asV1krhdxl3HCtXYxzM3aQEC1t3zpBEPhpfFPe3n/Dlc2XJNX+FOfCuajZqRybphwgIli9uxc/R4/hP2FopMfC8Vm3wXKRYh40b1WPqZMWEx0d8+0XyEjG1/oLTqrhSb3Aq8T+0xM17bnjTj2QexHKyKgB2WBlEt3qI0ChQ/zh3zOtYdL4ZxTGZkRsmK1SLFa1amJUwB2/hYsRrsCnwAAAJHJJREFUVWxZotTXo+DAdvifvYm/hGUbKgxvRkxwJNfUULbBqbgzXk1LcGDaPmIjpK+7lZa2YxuSnJzMhsn71DrO5zCzMKbPmObsXneGe9efa3z89DLmt/4EBgazxEc6ky6TPr7UX9C0Vhvcp2xgZs+2hG5bRHJcLP369aNly5asvvWaMitPy+ZKRkZiZIOVSQQjK3Rrjibp5iaSfK9kSkNhaIxZm4HEXjlK3L3Mz74ICgW5+/Uh5tkzgg4cyrROCg7VS2FTqhB3Z64lKT5z7YE+xdzRFq+uNbi+/AgRbzO2ZTg9NBjViNiIWI4tPCK5dlosbE1pObwuh1ee5dW9zM88ZpZmXauRr2BuZgxfl2W3MTvnzU23n1sxd9ZKggIzV5hXJvN82qcQYMDIX/GwNmXsyQf4LF7Chxl9mTdhDFu2bKGwrSnvImNp2bKlbK5kZCRENlgqoFOiA4JDEeL3jUJMztzMkUG5+ui6eRG+bhpiYubNjLFHAaxq1eTtytUkRny9weu3EAQBz+GdiH4byPN1+1XSSkvJ3nXRNzPk3HTpkuhTsMxlSbW+NTj950mCfIMk109L/V5VcHC1ZcUIzfcJ1NFRMmRqe25eeMzhbepdElWFoSN6gigyc9oybYfyQ5LSpxBILduwv21Zeng5MebYHXptO8vA8ZP/eb4cPbyc2LJli1xsVEZGQmSDpQKCQolew6mI726TeG1d5jQEAfOOI0h8+5KooxtViidnj66ICQm8X5u5WNJi6pKbvG1q83jFLmL8pTEseiYGlB/ShCf7r/HmivS7/qr2qY6xpTF7ft8puXZadPV06DqlGXfPPOHi7ltqHetzlKvhSZX6Xswds4HYmMztZFU3NrZWDBjSjRXLNvHi+Wtth/NDsmrVqn/VxErZJdjDy4ndN59QPrcV4yq5E5uYnPq8t7e3bLJkZCRCNlgqosxTEqVXWxKO/oEYnbmlL12nAhhVb0Hk9iUkhQZmOhZda2tydGhHwK49xLx4mWmdFNx/boaOsQH35v6tslYKBZqUwb6IM6cmbiI5UdpyB/pG+jQc05g7+2/z6PRDSbU/pXitQpSoU4jVY3YQpwWTM3hKewLeh7J2nuZzwdJLH+8O2NpaMXHcPG2H8sPxtbINTmaGCMAFv2CW33iFx+JjrLn9Wi7RICMjMbLBkgC9WmNATCLh6ORMa5g27wc6ukRsmqtSLLbNmqCf0wE/n8UqL1/pmhpR8Je2vD18kcAr91TSSkFQKKjyWxuCHr/lzt+nJdFMi1eTEriUdWXHmG0kxqu3FlPXKc0IeRfGznlH1TrO53DKl4N2feuwctZe3vupd0k0sxgZGfLrb/3Zuf0wly9pfqbvR8bIyIh58+ZxNyA8dUchwOqbrxh76iEFbU0RgYlnHuFubczYkw9os/0qdwPCmTdvHkZGRtp9AzIy3wGywZIAwcQW3eojSby2jqQ3NzOloTAxx6xlf2LO7SX+Cx3v06Wjq0uuvr2JvHmL0JOqG5jc9StgWTQ/d2asJTlBGsNi7+lE4dYVuThvD9GB4ZJopiAIAs0mtSDoZSCnl5+SVPtTcrra0bBvNXbMOcoHX+kT979Fz5FNMDYxYO4Y1ZaW1Unrdg0p7OnOmJEzs2xS/vfKp2UbUsxVDy8n2hTMRUozoweBkZTPbcV5v2A50V1GRkJkgyUROqW6INh5kLB3ZKYrlhtWaYJu3oKErZ2a6aR5APPSpTCvWJ43S5aRpOJUv6BQUGREFyJevOHFZul26JUd1BiFUsG5GTsk00zBwSMnFbpU4sicg4S+DZVcPy0th9XB2MKQNWOkfx/fwsTMiP4TWnFwywVunH+k8fHTg1KpZNLUIVy5dItdO9S7w1Pmv6Q1WSnmysnMkLGnHpLDRB8AETjvF0z53FZyoruMjITIBksiBKUOeg2nkvzmOkk3MpezJCiUmHUaRaLvI6KPb1Upntx9epMUFck7CRLezd2dcW5eg0dLtxIbIM22e0NLE8oNacLDHRd5e+2ZJJppqTO0HvrG+uyeoF7jY2hqQKeJTbiw6ya3T2re5DTuUIlCJVyYNnQtSUnStiKSiirVylKnXmXGjZ4tFx/VAl27dkWhUFDI1jTVXJXPbcW7yDhM9XRSzzvvF4yDiYGcgyUjIxGywZIQpVNZlMVaEX9kEmJ05oyInqsnhlWaErF1IUnhmV920rO3w759OwK27yTm+YtM66RQoG8rFLq63J+/QWWtFAq1LI99EWdOjt8gecK7oZkhjcb+xK29N9We8F65VUkKlHVhxYitGu9TqFAoGDGzEw9vvWLHmpMaHTsj/DF9OB/8A5k9fbm2Q/nhMDIyYv78+dwLiEg1V+f9gslrYUTEJ3mK7yJjadasmZyDJSMjAdneYD158oTy5cvj5uZG6dKluX//vlbj0as9DpISVEt4b9kfgIjN81WKxa5FM/Rz5+L1/IUqN1rWMzPGo38b/PafI+iGNIYlbcL77XUnJdFMS/FmJXEp48qOX7eRGKe+hHdBEOgxvQV+j/w5sEy9eV+fo0jpfDRqXwmfCVsID9F8C5/04OLqyMAh3Zg/ZxWPH6lu+GUyRsosVg4T/VRz9SI0GqWgRCkoUArK1HO3bt0qz2DJyEhAtjdYvXr1omfPnjx+/Jjhw4drvfu2YGKHbo2RJF77K9MJ70ozK0xb/ULM6Z0qJ7zn6d+PqLv3CD6i+k43x8aVsSzsyu2pqyWbcbL3dKJwm4pcnLeXqA9hkmimIAgCzf5oQdCrQE4tOyGp9qe4FM1D7W4V2DT1AMHvpX0f6WHAxNbExyWwcOIWjY+dXgYO7U7uPA4MHThJTnjXMEZGRsycOZP3/ywLvgj9aKCK5ylF70qDKZ6nVOq58n8bGRlpyNYG68OHD1y/fp0OHToA0Lx5c168eMHLly+lGSA5c5XVdUp1/Zjwvmd4ppPVjao2R9fVk7DVk1Wq8G7qVQzL6tV4u2wFieEqVnhXKPAc2ZWIZ3682CxdT8Fyg35CqafD2WnbJNNMwaFATip1r8yRuYcI9lPvTr92Yxqio6vD6tHSV6r/FjY5LOgzpgVb/jzGnavS57RJgYGBPjPmjObMqSts2rBX2+H8cAwaNIhGjRoREZ+IUlBSyrEss5otpU2JTsxqtpSSjmVSZ7LkGSwZGdXR+fYpWZfXr1+TM2dOdHQ+vg1BEHB0dMTX1xdnZ+cvvs7b2xtzc3OaNWtG8+bNP3uOEB+M0elGhBceR2KOOhmOTagyBv3N7Qg/tYikou0z/HoAmvYncVZvAnYuR6d668xpAMZtWhJ64SIvFi3BuqeKM3z25uRoWIGHi7ZgVMINfVvLz54WEpKxHLRi/WpzcdJ2HOsWwb6Ei2oxfkKpbmW5tvMaW0dvosXczF/H9NBiVC1WDt1BqcaFKFQ5X4Zfn9HrlpY6rUqw86+TTOi7jMV7h6LUUX7zNZrGq4QH9RtV49cRMyhdxhMLSzPJtFW5dj8K169f/+f/iZR2rvivAqRlnCtx4/XHvqrFihXj9u3bWooy+5CRz5yVlZUaI5HJimRrgwWkfkGkkJ7p7YULF1K8ePGvniOKlsSZuWB8fxyK/I0QdE0yFphVTeKfd4TzczEr2QrB1D5jrwewKk147bZEH1yDWdWf0LHJmXENACsr6NYFv0VLyPlTI4w9CmRO5x+8hnTi+Pm7+C3fQ6kZA78ybPq/UCw71ODV/ltcm72Ptrt+Rakn4UfTCppOaM5ffVbjf+MdHjUKSaf9CQ16VOPyrrv8/dsB5l4chb6hXoY1VPkinrC4Jx2r/MbBjVfo+Ev9TOuok5lzfqVM8SbMn7OWuQvHSaot38S+jp+f3z/fmQKXX56ldfGOCIKAKIpcenkG/qmO5efnp9U4sxPyZ07mS2TrJcI8efLg5+dHYuLHBGZRFHn9+jWOjo4qawuCQEzhyRAXiHhrUqY0dGuOAR194g+MzXQcJs36IhibEv7XtExrANg0boihqwuv5y1ATFItf0rX1JjCQzrw7vgV3p++/u0XpANBoaDq+DaEvvzAjVXHJNFMS9FGxchfyY0dY7eRoMbWNoIg0GtOa4LehrJ1xiG1jfMlChV3oXWvWvj8vo23vplvu6ROHHLaMea3/qxZuZVLF29qO5wfDlEUSRKTuOJ7kcHbe7Lx2loGb+/JVd9LJIlJcg6WjIxEZGuDZWdnh5eXF+vWfaz1tG3bNpydnb+6PJgRRCNHhCKjER8sRAzO+HS5YGSJXp3xJN3dSdLTzCVZKwyNMWs/nLgbp4i9lvlEbUGpJM/AX4h59pyA3XsyrZNCztplsS1XhDvTVpMYE6uyHoBNgdwU7ViNKz77CJe4/YsgCDSf3JLQd6EcXaDegpe58tvTbHAtds0/hu+Dd2od63N4/9YSMwsjpgxanWVvlt17tqJ4icIM6j+RhITM5xjKZI6Uz8WN11dZcmY2N15f/dfzMjIyqpOtDRbA0qVLWbp0KW5ubkydOpUVK1ZIqi8UHABmbiRf7I8oZrzUgbJoSxR5KxG/ZzhiQuaKLBqUqol+0YqE/TWN5NjMJ58aF3DHpkF93q1aS0KgagZGEASKjOxKXEg4j5ZKl9Rd5peGGFiYcHLCRsm/7G1d7ajeryYnFh3j/eP3kmp/SvPBtbBzsmbpoI0kq1giI6MYmxoycnZnzhy8yZEdlzU6dnpRKpXMXTiOxw9f4DP/L22H80OSMpOVJCbLM1cyMmog2xssd3d3Lly4wOPHj7l69SqFCkmbXyMo9VCUXQCBlxEfZ7xIoiAI6DWahhj+joRTczMXgyBg1mkUyZGhRO5YkimNFBy6d0Ghp8f/2rvzsCjL9Q/g33c2ZBMXEEVAXEBTRJQW8hwr19BSUyszUUlzy7XjetzNNCtSUlMzl/S45pZmpmkpVgbHQE1zAQIEREUWURZlYJ7zhz/4oYLOvPMOg/L9XJfXJTPz3s/jfQ3X3D7PO/eTsuJLs+IAgL17HTR9txfiN/+A7JhLZscDAJ1DNbw4uy8uhZ9F7P4oRWKW1nF0Z9TyrI3tkyxb+GhttBgR9hbO/x6Pw+t/t9g45enQ/Wm07x6ATyZuwM0blbM3VstWzTBydH98smAlEhN4z481CCFQv359FldEFvDYF1gVQXL9B6QmIRDRsyDyTV/5UDk3gabdWBT+tgyGNHnHqWhc6sOx51DkHtwEfZL8I1k0jo6oP2IoboQfQ3ak+asbjQe8AgcvN5z+cA2EQke1NOrYCo27+OOX+dtxO1vZ4kBbTYs3Pu6LxD8SEPGf44rGvp9vO290CA7Ehtl7kHVN2UOtjTH1s4HIz7uDJbO2VfjYxpoy/T3Udq6JiePYG8ta+G1BIstggWUkKWA+oNZBnJgk63ptu7GQanig4LtJsruq23cdCE29BsheN9+szuw1O3aAY5vWSFmyDEX55p0Np9Jq4DdtMG789TcSd5jfzLTYCzP6ovB2AX77WPmeUo2fb4Ln3n4e+xbsRfaVG4rHL23QvNeg0aixdqryPb4exbV+bYyZ8yZ2rPm50h4G7eBgh9Cw6fjp8HHs+Ga/tadDRKQYFlhGkmxqQQpYCJG4A+Ky6U02JW016Lp/CsOlCBSd2ipvDhotnEJmQP/3n8g7Kv8DW5IkeIwfA/2NbFxZb/79L7X9m6JB7w44/8U2xQ6DdqhbA20nvoZzO47j8n9jFIlZ2qvTe0Bnq8OuGeYdqv0ojrXs8c5HvfHbrmhE/fiXRccqyxtDO6HlM40xb8waFNypnDeTv9z1BfR6PQhTJ36Ma1cr5zcfiSpazIV4nD55TpE/MRfirf3PqZIkUYXW5aOjoxEQEICoqKhH9sECgMzMzHt6nAghYDjUDchJhKpHFCSN6Qei3tk5CkUxh2E79jdI9s4mXw8AN1bPwe0/DsNl4bdQ15AXAwCubduO1DXr0HRpGOya+siOAwAFN3Nx5PVJqOXfFM98Mu6B3MkhDAbsfPsz5GfloN/eGdDYaM2Kd7/T+05hw/B1GPTVYPh1a6Vo7NKEEPig13Kk/p2GzyOmoZq9TbmvVSJv94s9m4x+/5iBd6f0xIhpvRWNrZSM9Cw8/3QvtAnwxZYdSx/ob2cMS+SuKmDe5LNE7oo/pxxsmkCjslUkZqEhHzl34oz+7CNlPPaNRiuSJElQBS6BYe8zEH9+BKnNPJNj6ILmIj/mMAoOzIZNny9kzaN63/G4czIcNzd+jJqjP5UVAwDq9OmFrJ+PImnR52i6fAkktfzO37rq9vCdMABR05bh6rFo6Hy9ZMcqJqlU6PBhMLb0nI8/VvyAwPE9zI5Zmt8rrdCiiy92Td8B7394w9bJ9ILZGJIkYfiiNzH++Y+wZcH3eGd+xRY53r4eGPT+K1jz6V506f0cGjWrX6HjG6O2c02ELZuN/m+Ow8b1uzEgpHIWgkQV5au1H+Gpp5orEuv8+XPo1/8NRWKRCUQVEhUVJQCIqKgoo16fkZFR5uNFp+aLwg0OwpB5VtY89FGbRO5MF1EYFy7reiGEyDu+X6QOaCXyo47IjiGEELkXLorozl3F1a3fmBVHCCEMBoM4Pmqh+LHrGJGWkmp2vGK/h+0Vy556T6RfTFEsZrGsy1ni3z6TxDeTtige+347F/0o+tQYI2L+SCj3NeW958x1O/+O6NFqggh+cZbQ6wstMoYSRg2bKdxdnhOJCckmX2up3D3pmDf5LJE7Uz+nrBWTHo33YMkg+U4AHBvBEDFKXm+s1v2g8mqLgu8mQhTI62tVLTDobm+s9fNhyJN/iLNdUx+49OqJKxs24k6qeU0xJUmC37/fQcGNW7i0TrnDfJ8ZGQQnzzr4ecYmGBT6pmKxGm418Oq0HojY9DvijscqGvt+Pcd0QEM/dyx7bxP0FXw/lE01HT74cjj+iorHhrDvK3RsUyz4dDJq1qqB94bNrPD+YURESmKBJYOktoHq+S+A65EQF78y/XpJgq5H6N3eWEdD5c1BkuA0aDpEXg5ufbNEVoxi9UIGQlvDCclhS8z+qrx9/TpoOvJ1pH4bjswzyhQsap0WHT7sj6unEnBm8zFFYpYWOKAtvJ5piO2Tt1n0GB21Ro3Ry4Nx5e/r+ObjAxYbpzytnvPGwHGvYMX8XYj7K7nCxzdG9eoOWL5qHo7/GoUVyzZaezpERLKxwJJJcv0nJJ93IU7OhMg1/cNK5dwE2hcnoPD4ChhS5fWhUTvXg+MbY5H383YUXDwpKwYAqG1t4T5uDG5Fn0TmIfPPAWzULwgOPh44NXcVigqUWalxe7oJfPu1w++LvsWtK5mKxCymUqnw5qdvIetyJn4Ms+z5gQ1auOGNKUHYHXYYcdFJFh2rLCNn9IZHY1fMHPYl9PrCCh/fGP984Rm8N2YA5s1egvPn4qw9HSIiWVhgmUFq8yGgsYchcryslR/NP0dBcmmKO9+OhyiSV4jYdXoT2sZ+uLF2LkTBHVkxAMDp2WdQs2N7XF7xJfRZN2THAQCVRg3vCf2Rm3wNsau/NStWaW0n9oLOvhqOzlH+GB1X77roPPZlHF3xMy6ftWxX8V7jO8PLtz6WvrfRKluFH341AjFnkrDm070VOrYpZs4di4aNPDBiyDQUKFSkExFVJBZYZpB0TlA99zmQsh8i0fR+SpJaC91rYRDXzqHw+Ap5c1Cp4TRkForSUpCz1/SjfEqrP3I4IEm4vNy843gAwL6hG7wH90Ts198pdoyOjaMtXprTD4lHziDmuxOKxCyt/aiOcPVxxdZ/bUaRvkjx+MU0WjVGL++PK3Fp2P6JZVfMytK8dUMMmdQDqz/eg/MnEyp8fGNUq2aDlavn49xfcfhkgfnvRyKiisYCy0ySZw+gQS+IExMgbpt+gLK6vj80zw+H/kgoDOl/y5qD1r0JHLoPQc7366BPkt+UU1ujBtxHDkPWkaOKHKPjM7gnHLzq4dScVTAUKlOwNOrUCj6vPo3weduQez1bkZjFNDoN3lrcH1cvXMHhpaY3kzWFl299vD45CLsWH7LKVuHQKa+hcXN3zBj6ZaVtQNqqdXNMmTYCi0PX4L+Rp609HSIik7DAUoDq2UWAoRDijymyrtd2mALJ0RUFeyfIPgLHofsQaOp6InvtBxAG+cVMzU4d4RjQBslhS1CUa945gCqtBv6zhyE79hL+/o9y31x7YUZfqDRqHJ29RfGtQveWHug4pjMOf/6jxbcKe7/fGQ1auFllq1Cr0+DDr0bgUtwVrJyv/HFEShk/cTACnvbFiCHTkJMj7xu3RETWwAJLAZJtXUhPL4SI3wRx+ZDp1+vsoOu5CIbE4yiKlvfNKUmrg9Pg2dAn/IXcHzfLigHc/Xai57/GoSgnF5e/WiM7TrGaLRqjcXA3XFy1C7cSUs2OBwC2tRzw0px+iD98GrHf/6FIzNI6jesCV++62DJ+EwoLLHcjuEarxpgVwbgSl2aVbxV6+3pg5PQ++HrxPpyOtGyLCrk0Gg1WrlmAa1evY+qEhdaeDhGR0VhgKURqPACo2x6GiNEQ+hyTr1c3agd1m/4oODgXhpvy+lHpvFvBrtNbyNnxBQrT5K++6Fxd4TZ0CDL27cetk6dkxynWbPjrsK1bG6fmrYJQqI9Vk5dbw7tbAMI/2Ia89JuKxCym0WnQL6w/rsVexeHPK2arcPfiQ4iNUuZeNVMMev8VtAhohJnDvkR+7u0KH98YjRp74tPF07HpP99i6+bvrD0dIiKjsMBSiCRJd3tj3UmHODlbVgzdy3Mg6eyg3zdF9taX4xtjoKpeE9lr55m1feb8ajc4tPJD0meLUZSfLzsOAKir6eA/ayiyTsciYZtyBcuLs/pCUkk4YoGtwvq+7ug0rgt+WnoIyX9atmdU7/c7w6ulO5ZZYatQo1Fj3qrhSLucic9nbavQsU3RL7gH3urfHRPGzsNFHlxLRI8BFlgKkhwbQvKfBXFhBcT1CNOvt3WC9pWFKLpwAEVn98iag6qaHZxCZqLgXCTyj8q/t0ZSqeA54X0U3riB1NXrZMcpVrt1MzTs2wXnv/gGucnXzI4HALa1HO9uFR46ZZmtwjFdUO8pN2wdvxH625YrfDRaNcasvNuAdE/YUYuNUx4vHzeM/aAvtq48hN9/OlPh4xtDkiSEhk2Hh6cbQoInIC/PvKKfiMjSWGApTGo2GnAOgOH4SIgi0/tSaZq/AnWL7ijYPw0i1/RvJQKAjV9b2LbriZtbFqEoXf7xNzZu9VBvyDtI37MXt07La4Za2lOj+0JX0xGnP1yt2IpTk6A2aNLVMluFaq0a/cL643r8dfy42LL3SDVo7oY3p3bFwVW/4XxExa/QvDWiMwI7+GLm0JXIvK5sHpVib2+HdRtDcSnhMia//5G1p0NE9FAssMohinJhc+0zGPJMa3sgqdRQPb8CuBkH8ae8m3J13RYAhkIU/DBd1vUAUP3tCZBs7ZG9zrytQpeePWDf0vf/tgrNu0dHY1cN/jOHIv2Pc7i00/yO8cVemm25rcJ6T7mhy7+CcGT5T7gUlaho7Pv1Gt8JjVq7Y8mwDci7WbErNCqVCvNWDUdRkQGzR6xSPI9Keap5E4SG3b0fa8tGeau8REQVgQVWeSQdVHcuwHBtu+mX1vSF1HIyRNzXEHrTWx1Ijq7QdZuPovM/wJAlr0eSyr46nAbPxJ1z/0VhsvzeWMVbhfqMTNyMMH3b834uz/miQZ8OiN9yULHeWMVbhZfCz+JGgjLbj6W1f68j3P088MvacMVjl6bWqPHuot7IzsjBb7vlH30kl0u9mpi7chh+P3wG508lVvj4xnp7QE+8HdwToR9/Bb2+cvbwIiKSRGX9r6oFREdHIyAgAFFRUWjTps0jX5+VFosaLo0gSWqTxxJFBYA+G1I1FzlThRAC4tZVqKrXk3V9saLMa1DXcjUrBgAUXL8OnYvx/5bMzEzUqlWrzOcK825DFBVB62hv9rxKy7maBYe6NRWNWexm2k3Y17SHWmv6e8EUmZmZKMoFXDzKzl1FuJKcjnoezlYb3xh5efnIzcmDS53aJY897D1H5WPe5LNE7kz9nLJWTHo0jbUnUJkJTW1ZxRUASGodoJZXXAF3b+qVzCyuAChSXAEwqbh6FI1dNcVilWap4goAqtepbrHY97NmcQWg0hdXAGBnZws7O1trT4OIqFzcIiQiIiJSGAssIiIiIoWxwCIiIiJSGAssIiIiIoWxwCIiIqqiYmNj0bZtW/j4+ODZZ5/FuXPnrD2lJwYLrIfYuXOntafw2GLu5GHe5GPu5GHe5HsScjd8+HAMGzYMMTExmDx5MoYMGWLtKT0xWGA9xK5d8s/yq+qYO3mYN/mYO3mYN/ke99ylpaUhOjoawcHBAIA+ffogISEBiYmJ1p3YE6JK9cHKz797/Mj58+eNen12djaio6MtOaUnFnMnD/MmH3MnD/Mmn6m5a9asGezs7Ix67f79+43+rHqUhISEMh9PTk6Gm5sbNJq7pYAkSfD09ERSUhK8vLwUGbsqq1IFVnFVXlytGyMgIMBCs3nyMXfyMG/yMXfyMG/ymZI7YzqpOzs7w87ODjNnzjR3avewsbGBs/ODTYQlSbrn5yp0uIvFVamjctLT03Hw4EF4eXnB1pZdoImIqOIYu4KVlJSE9PR0Rcd2dnaGp6fnPY+lpaXB29sbGRkZ0Gg0EEKgXr16iIiI4AqWAqpUgUVERET/76WXXkJISAhCQkKwY8cOhIaGIiIiwtrTeiKwwCIiIqqiLl68iJCQEGRkZKB69epYv349WrRoYe1pPRFYYBEREREpjG0aiIiIiBTGAouIiIhIYSywHmHu3LmQJAlnz54teYxHC5SvS5cu8PPzg7+/P9q1a4dTp06VPMe8le/27dt47bXX4OPjA39/fwQFBd3T7I+5K9/YsWPh5eX1wO8pwLw9DHNjPL7HSBZB5YqKihJBQUHC09NTnDlzpuTx9u3bi3Xr1gkhhNi+fbsIDAy00gwrn6ysrJK/7969W7Ru3brkZ+atfPn5+eL7778XBoNBCCHE0qVLRefOnUueZ+7KFx4eLpKTk0WDBg3u+T0Vgnl7GObGeHyPkRwssMpx+/ZtERgYKOLj4+/5pbp27ZpwcnISer1eCCGEwWAQrq6uIiEhwYqzrZy+/vprERAQIIRg3kx14sQJ0bhxYyEEc2es+z/8mLfyMTfy8D1GpuAWYTlmzZqF4OBgNGzY8J7HH3a0AN01cOBAeHh4YMaMGVi/fj0A5s1US5YsQffu3QEwd3Ixb+VjbpTBPNLDVKmjcoq1a9eu3DOeTp48iZSUFJw4cQILFy4s8zVV9WiBR+XNw8MDALBhwwYAwPr16zFp0iTs378fQNXNG2B87gBgwYIFiI2NxcqVK0seq6q5MyVvZamqeTMGc6MM5pHKUyULrF9++eWhz2/atAkXLlwoWb1KSUnByy+/jNWrVyMgIAApKSkoLCwsOVogOTn5gSMInkSPytv9Bg0ahBEjRiAjIwMeHh5VNm+A8bkLDQ3Frl27cPjw4ZIjNapy7kx9z5VWlfP2KMyNMphHehhuEZZh6tSpSE1NRWJiIhITE+Hu7o6DBw+ia9euqFOnDlq3bo2NGzcCAHbu3AkvLy+e2wTg5s2bSE1NLfl59+7dqF27NmrVqsW8GWHRokXYsmULDh06hBo1apQ8ztzJw7yVj7lRBvNID8NO7kbw8vLCvn374OvrC4BHC5QnOTkZffr0QX5+PlQqFVxcXBAaGgp/f38AzNvDpKSkwMPDA40aNYKjoyMAwMbGBpGRkQCYu4cZNWoU9uzZg6tXr8LZ2RkODg6Ii4sDwLw9DHNjPL7HSA4WWEREREQK4xYhERERkcJYYBEREREpjAUWERERkcJYYBEREREpjAUWERERkcJYYBEREREpjAUWERERkcJYYBEREREpjAUWEd0jMjISkiRh8+bNJY9lZGTA29sbXbt2RWFhoRVnR0T0eGAndyJ6QPfu3REfH48zZ85Ar9ejU6dOyMnJwbFjx0qO8iEiovKxwCKiB5w8eRIBAQHYunUr9uzZg2PHjiEyMhJubm7WnhoR0WOBBRYRlalPnz44cOAANBoNfv31V7Rs2bLkuSFDhuDAgQNITU2FXq+HRqOx4kyJiCof3oNFRGXy9vZGXl4eJk6ceE9xBQADBw5EdHS0lWZGRFT5cQWLiB6wadMmDBo0CP7+/sjMzMTFixeh1WofeJ0kSVzBIiIqA1ewiOge4eHhGDx4MBYvXoytW7ciKSkJa9eutfa0iIgeK1zBIqISFy5cQNu2bTFo0CAsXrwYwN3twCNHjiAuLg42Njb3vJ4rWEREZWOBRUQAgLS0NAQGBsLPzw+7du2CSnV3gTsmJgbNmzfHokWLMHbs2HuuYYFFRFQ2FlhEJBsLLCKisvEeLCIy2YABA+Du7g4A8PLyQr9+/aw8IyKiyoUrWEREREQK4woWERERkcJYYBEREREpjAUWERERkcJYYBEREREpjAUWERERkcJYYBEREREp7H/6V3VgLeh4iAAAAABJRU5ErkJggg==" }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contour(x1_data,x2_data,z_data)\n", "plot!(X[1,:],X[2,:],label=L\"$\\mathrm{x}_k$\",marker=:diamond,aspect_ratio=:none)\n", "scatter!([x0[1],],[x0[2],],label=L\"$\\mathrm{x}_0$\")\n", "scatter!([xs[1],],[xs[2],],label=L\"$\\mathrm{x}_\\mathrm{opt}$\")\n", "xlabel!(L\"$x_1$\");ylabel!(L\"$x_2$\");\n", "#xlims!(-4,4); ylims!(-4,4)" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Scaled gradient method" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to improve the conditioning of the problem, we define a scaling matrix" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2×2 Diagonal{Float64,Array{Float64,1}}:\n", " 0.001 ⋅ \n", " ⋅ 1.0" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "D = Diagonal(inv.(diag(Q)))" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The scaled matrix defining the quadratic function is" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "2×2 Array{Float64,2}:\n", " 1.0 0.632456\n", " 0.632456 1.0" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Qs = sqrt(D)*Q*sqrt(D)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "and its conditioning is dramatically improved" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "4.441518440112253" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cond(Qs)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "The scaled version of gradient method is" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "hidden": true }, "outputs": [ { "data": { "text/plain": [ "scaled_gradient_method_quadratic_exact (generic function with 1 method)" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function scaled_gradient_method_quadratic_exact(Q,c,D,x0,ϵ,N)\n", " x = x0\n", " X = x\n", " f(x) = 1/2*dot(x,Q*x)+dot(x,c)\n", " fx = f(x)\n", " F = [fx,]\n", " g(x) = Q*x+c\n", " gx = g(x)\n", " iter = 0\n", " while (norm(gx) > ϵ) && iter <= (N-1)\n", " iter = iter+1\n", " gxs = D*gx\n", " α = dot(gx,gxs)/dot(gxs,Q*gxs)\n", " x = x - α*gxs\n", " fx = f(x)\n", " gx = g(x)\n", " @printf(\"iter = %3d ||∇f(x)|| = %4.2e f(x) = %4.2e t = %4.2e\\n\",iter,norm(gx),fx,α)\n", " X = hcat(X,x)\n", " push!(F,fx)\n", " end\n", " return F,X\n", "end" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "iter = 1 ||∇f(x)|| = 5.23e+03 f(x) = 5.12e+04 t = 6.34e-01\n", "iter = 2 ||∇f(x)|| = 2.07e+03 f(x) = 5.04e+03 t = 2.37e+00\n", "iter = 3 ||∇f(x)|| = 5.15e+02 f(x) = 4.96e+02 t = 6.34e-01\n", "iter = 4 ||∇f(x)|| = 2.04e+02 f(x) = 4.88e+01 t = 2.37e+00\n", "iter = 5 ||∇f(x)|| = 5.06e+01 f(x) = 4.80e+00 t = 6.34e-01\n", "iter = 6 ||∇f(x)|| = 2.00e+01 f(x) = 4.73e-01 t = 2.37e+00\n", "iter = 7 ||∇f(x)|| = 4.98e+00 f(x) = 4.65e-02 t = 6.34e-01\n", "iter = 8 ||∇f(x)|| = 1.97e+00 f(x) = 4.58e-03 t = 2.37e+00\n", "iter = 9 ||∇f(x)|| = 4.90e-01 f(x) = 4.50e-04 t = 6.34e-01\n", "iter = 10 ||∇f(x)|| = 1.94e-01 f(x) = 4.43e-05 t = 2.37e+00\n", "iter = 11 ||∇f(x)|| = 4.83e-02 f(x) = 4.36e-06 t = 6.34e-01\n", "iter = 12 ||∇f(x)|| = 1.91e-02 f(x) = 4.29e-07 t = 2.37e+00\n", "iter = 13 ||∇f(x)|| = 4.75e-03 f(x) = 4.22e-08 t = 6.34e-01\n", "iter = 14 ||∇f(x)|| = 1.88e-03 f(x) = 4.15e-09 t = 2.37e+00\n", "iter = 15 ||∇f(x)|| = 4.67e-04 f(x) = 4.09e-10 t = 6.34e-01\n", "iter = 16 ||∇f(x)|| = 1.85e-04 f(x) = 4.02e-11 t = 2.37e+00\n", "iter = 17 ||∇f(x)|| = 4.60e-05 f(x) = 3.96e-12 t = 6.34e-01\n", "iter = 18 ||∇f(x)|| = 1.82e-05 f(x) = 3.90e-13 t = 2.37e+00\n", "iter = 19 ||∇f(x)|| = 4.53e-06 f(x) = 3.83e-14 t = 6.34e-01\n" ] }, { "data": { "text/plain": [ "([520500.0, 51218.9376443418, 5040.114454207455, 495.96408828126397, 48.804522020193765, 4.80252789647304, 0.47258477783797576, 0.04650391982276397, 0.004576140959884023, 0.00045030754750436015, 4.431176598732463e-5, 4.360425704160355e-6, 4.2908044619437993e-7, 4.222294835357607e-8, 4.1548790756620346e-9, 4.0885397175046286e-10, 4.023259574395495e-11, 3.9590217342548465e-12, 3.8958095550315435e-13, 3.833606660391748e-14], [1.0 -12.30484988452656 … 8.651441834858464e-10 -1.0645469306264076e-8; 1000.0 353.76443418013855 … 8.65144183485802e-7 3.0605724255509227e-7])" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "F,X = scaled_gradient_method_quadratic_exact(Q,c,D,x0,ϵ,N)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "hidden": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgU19fA8e9u3N1diOEJwd2Cu7sUKS7FvaVAcae4u7u7S3BCIJAQEgKEuOvO+0favL+2OCsJzOd58kAyu3NOJitn79w5VyIIgoBIJBKJRCKRSG6kqk5AJBKJRCKR6HsjFlgikUgkEolEcqau6gSUKS0tjeDgYLy8vNDV1VV1OiKRSCQS/cfLly+JiYmR6z7Nzc1xdHSU6z5FH/dDFVjBwcH4+fkRGBiIr6/vJ2+fmJiIkZGREjL7/ojH7uuIx+3ricfu64jH7esp4ti9fPkSb29P0tIy5LpfXV1dHj9+LBZZSvRDFVhfKjc3V9UpFFrisfs64nH7euKx+zricft6ijh2MTExpKVlsHHTn3h7e8hln48fP6Vzp77ExMSIBZYSiQWWSCQSiUQFjI+3/2edafkcEsQRSlUQJ7mLRCKRSCQSyZk4giUSiUSir6KIydiFyYfmYIkTykUgFlgikUgk+gp5k7G9SUtLU3UqBY44oVwEYoElEolEoq+QNxk7jU2bNuHt7a3qdAqMx48f06lTJ3FCuUgssEQikUj09by9veU2GVsk+p6Ik9xFIpFIJBKJ5EwssL5TOekZhO04gSCTqToV0XcuOSyK4OW7SQ6LUnUqXy3p5i2Sb99RdRoI2VmkntyGkJ2ltJjSJ0cQUn/cieoikaKIBdZ3KPrKfc62GsmjeVtIevpS1emIvnPJoZGEbj7K2VYjuNBlAmHbT5AZn6zqtL5I7PGTPBs5hpDhI0l5+EhleWQ9uU3S5lm8G9uKjHuXFB5PyExB4/w00hdXJefRQYXH+5igoCCCgoJUmoNIJE9igfUdyUnL4N601Vwb+Ad6TjbU2PEHRl7Oqk5L9J2zrVWWgJNLKTNzMNrmJjycs4kT9fpzY/g8Xp+5iSw7R9UpfpLzuNG4/jqJnORkQoYM59mY8aQ9ear0PLSKlcd86nbUTK2InzOAuHmDyXkbobB4Ei19MjvuQ82pHFnbe5K5/SeElHcKi/chQUFB1KhRgxo1aohFlui7IU5y/07EP3xO4LglZMYmUGJMd5xa1kIikag6LdEPQk1LE9taZbGtVZbM+CReHb9K5OFL3BwxHw0jfezqlMe+UWVMirkXyMelRCLBqGIFDMuXI+HCJV5v2MiT/oMwqlgB666d0XVzVVouGvbumI5eQcbNkyRtmcu7sS3Rb9gd/UY9kGhqyT+gnjmabdeQ+3A/WYdHk764KpoNp6NWrKlS/lZ/F1fR0dEA1KhRg7Nnz+Lj46Pw2CKRIokFViEn5MoIWX+QJ3/uxsjLmfKLR6LvYK3qtEQ/MC0TQ1zbBeDaLoDk0EgiDl8i8uhlXuw6hYGbPU7NamDfsDKaRvqqTvU/JFIpJtWrYlylEvFnzvJ642ae9OmHcdUq2PToira9vXLykEjQKVsXrZJVSDmwipSDq0m/egSjLmPQKl5RIfHUizdDzaUiWYfHkLWzN2oP96HZ6A8kBlZyj/e3/y2uzHU0AYiOjhaLLNF3QTxFWIilv43lys/TCF66E/dujai8eqJYXIkKFANXe3wGtqPOwQWUXzQKfWdbHs3fwol6Awgcu5h3Nx4VyAsxJGpqmNapjc+alTgOH0Jq8BMe9+jNy3kLyI6JVVoeUi0dDFsPxHzqDtRMLImb1Y/4xSPJjY9WSDyJviVabVej2XY1uS9v5M3NurcLQRDkHuvfxdX2lv5sb+mPuY5mfpElni4UFWZigVVIRV+5x/kO40iNfEvF5ePw7tcGqYY4ICkqmCRqUiwrlsB/5mDqHluE18+tSQh+wdWfp3G62XCert5Hxrt4Vaf5HxJ1dczq18Nn3Srsevck4cIlHnXtwauVa8hJVt5Efg07V0zHrMKoz1SyHt/k3ajmpB7bhJCrmPlt6kUbozPgImruNcja3Y+s7T3leqXh+4orDzN9PMz0xSJL9N0QC6xCRhAEQtYe4NqgWRgXdaPa5mmY+4ldlEWFh5apEe5dGlJz9ywqrZqIWWlPQtYc4GTDQdwcuYCYW0EKGTH5FlJNTSxbtaToxnVYtmpBzP79BHXuztttO5BlZCglB4lEgm6lRljM3I9OpYYkbZ1DzMQOZIXcVUw8PTO0Wv+ZN5r14kreaNbjo9+83w8VV3+Td5EVHByMvb09oaGhAMyaNYsGDRoUuMeY6PsjFliFiCw7h7tTVvB48XY8fmpGufnD0TIxUHVaItFXkUgkmJX2pPSUvtQ9tphiwzuTHBrJlT6/c7b1SMK2nyA7uWCtc6emr4dt9674bFyHSa2avF63gUddexBz8DBCbq5ScpDqGWLUdSxmkzYiUVcn9rduJK79DVlqkkLiqRdtjE7/86jZ+5G1tSuZewYgpCd+9v1zE2PJigghKyKEe6ePUqNa1Q8WV3/7T5FVrSr3Th/N309WRAi5iZ93qtbLy4tZs2bRpk0bzp07x9KlS9mwYUOBvNhC9H0RzykVEtnJadwcOZ+4O0/w/a0f9g0qqTolkUhuNAx0cWlbF+c2dYi5GcSLXad4OGcTQYu2YV+/Es6tamHk6azqNPNpmJjgMLAfli2b83r9BiIWLOLd3v3Y9u6JYbmySnnz1nQthtmkjaSd2UnyjkVk3D6PYeeRaPvXkXt8iYEVmh02kHt3O1lHxpERepFc958/674pV46QfHwzALGxKchSv/zUqiw1mdh1vxP9P8WYQUBHjOp3/qz7t2/fnrNnzxIQEMDp06cxNzcHoG3btmzYsAEtLQVcnSn64YkFViGQ/iaWa4NmkhEdR/klo8VTgqLvlkQiwaJsUSzKFiXjXTzhe88SvvcM4XvOYFrSA9eO9bGu5odUXU3VqQKgZWuD85hRWLZqwavlqwgdPwn9UiWx6/MTukWKKDy+RKqGXu12aPvWIHHjHyQsHolWqaoYdRmDmrmNfGNJJKiXbofUtQpZ+4aQdXjMZ91Pv2IDdIqVB8ASONXtGXXbdSY6Jpa2u2++dxTraWwKbXffJCY9C0tzM05s24i3h/s/bqNmaPrZuefk5PDw4UNMTU159epV/s8FQSA6OprffvuNPn364Ofn99n7FIk+RSywCrjksCiu9Z8BEqi8djIGLnaqTumHIQgCQq4MWU4uspxccrNzEXJlSKRS1DTVUdNUR6qhJp5qUBBtCxM8e7egSI+mvLlwm7Ctx7g1cgE6Nua4tKmLU/PqaBjoqTpNAHSLFMF91gySrt8gasVqnvw8EJPaNbHt3hVNK8W1OfibmqkVpoPnkhF4hsQNM3g3pgX6LfqhV7c9EjX5vsxLjezQ6rIDDekUWDXl07kZmaFmZJb/fUmHIpw9fyF/Hta/i6x/FFeWlnJp1zB69Gg8PT1Zv349NWrUwM/PD5lMRnh4OHPnzmXu3Lno6xe8tiGiwk0ssAqwhKBQrg2ciZapIeWXjEbH8vM/sYn+nyAIZCSkkvwqlqRXsaS9SyIjIZWMxFQyEtLITEwlIzGNjIRUMhNTycnIJjc7r6jiUxNhJRLUNNTyCy41LQ20DHXRNtbL+9for/8b6eX930QPfWsT9K1M0LUwRKomToP8FKm6GrY1/bGt6U9i8AtCtx4jeOkOnqzYjUOjKri2C0Df2VbVaeY1Ky1fDkP/MsQePc7r9RsJOn8Ri+ZNsWrfFnUDxc+X1PariaZPWZJ3LyF521zSrxzGqPsENF2LyjWORCJBvWgT4NMF1vv4+Phw9uzZ/xRZgNyLq0OHDnHs2DFu3LiBrq4us2fPpnXr1vTu3ZvatWuTmJiInl7BKNRF3xexwCqgYgIfc33IbAzd7Cm3YESBbMpY0KTHp/AuKIL4569JjIghKTKWpIgYkl7Fkp2amX87qYYa2sZ6aBvpoWWki7axPiauVvnfa+hoIlVXy/vSUENNQ/3/v1eXIsuRkZuVTW5Wzv9/Zf/1b2Y2mUnpfxVvqcS+TSAjMZXMxDQyEtP+UbBJ1KToWRrlFVzWJuhbG6NmrI2tjzMmLlYY2JoWmFNhBYWRlzOlp/TFe2A7Xuw+zYtdp3ix8xSWlUpi2aQKJrXKq3xEUaKmhnmjBpjUqkH0zt1E79hF7LET2HTtjHmjBkjUFPs3leroY9RpFDoVG5K45jdip3RGL6AjBi37IdHSUWjsL/G+IguQa3EF0KhRIxo1apT/fbt27WjXrh29e/dm+vTpXL16lVGjRjFz5sxvjiUS/S+xwCqAYu8Ec33gTExKFqHs3GGo62irOqUCRRAEUl7H8y4oIu/rcd6/Ka/z+iipaapjaG+OoYM5tv5F8GpeAUN7UwztzDCwM0PbWE8lb8KCTEZGYhopbxJIeROf9/X6r3/fJBATHEHSqzgCs/J6G0k11DBysMDYxRJjZ0uMnSwxcbPG3MseLYOC80apCtrmxnj1aUmR7k14dewKoduO83DUYiK8DuHetRE2NcuqvDhV09HBpksnzBvWJ2rNeiIXLyXm4GHsfu6NoZ+vwuNruhbDfMpmUo9tJHnPn2TcPotRj4lo+ZRVeOzP9e8iC5BrcfUxK1asAP5bgP1ojh07xvjx48nKykJXV5fly5dTsmRJBEFgypQpbNmyBU1NTczNzTl37hwAaWlp9OzZk5s3byKVSpkxYwYtWrQAQCaTMXjwYI4cOYJEImHYsGH069cvP97UqVNZu3YtAB06dOC3337L37Z69WpmzJiBTCajVq1aLF26FHX1wlumFN7Mv1MJj8O4PngWJsXdKTfvF9S0NVWdksoJgkDs0ygirwYTef0prwOfk5GQCoC2iT4WPg54NPLHwscBCx8HjJ0skEgL3qk3iVSKjok+Oib6WHi/f8mV2JgYNDIlJLyI/uvrLQlh0YSevEdSZAyCLG8EzNDeDDNPe8y97DD3ssfC2x5De7MC+XsrkpqmBo5NquHQuCphp6/yds95AscsRtfOAreODXBoUlXlH1A0zMxwGjEMi6aNiVz6J89HjcWwQjns+vRG216xcyolauroN+yOtl9NElf/StyM3uhUa45hu6FI9QwVGvtz/W+RBYhL5ChRfHw8nTp14uLFi3h7e3P+/Hk6duzIw4cPWbhwIQ8ePODhw4doamry+vXr/PvNnj0bLS0tnj17RlhYGBUqVKBGjRqYmJiwadMmgoKCePr0KYmJifj6+lKzZk28vLy4cOECW7du5f79+6irq1OpUiUqV65MQEAAYWFhTJgwgTt37mBpaUnTpk1ZvXo1ffr0UeER+jZigVWApIS/5tqAPzBwsaPs3GE/dHGV8iaeiCvB+V9pMUmoaapjXdqVEp2qY1nMEQsfB/SsjFV+SkieJFIphnZ5o22Olf55tWhuVjbxYdHEBEcS8ziSmOBIHm69QHpcCgAaelpYeDtgVdIZ61IuWJd0Qd/aRBW/htJJJBKMfb1wrV2RxOAXPNtwiAezN/Bk+W6cW9fBpW0dtEyNVJqjrkcRisybTcL5i0StXEXwT30wb9oY604dFD4/S93aCdMxK0k7t4fkbfPIvHcJoy5j0C5TU6FxP9ffRdbf/xcpx/Pnz7G0tMTbO++1plq1aoSHh3P79m1mzZrFuXPn0NTMex+ysfn/q1K3b9/OunXrAHBxcaFq1ars37+fbt26sX37dvr27Yuamhqmpqa0adOGbdu2MXnyZLZv3063bt3y57z16NGDrVu3EhAQwK5du2jevDlWf10U0rdvX2bOnCkWWKJvl/EunmsD/kDTxIByC0agrvdjnQISBIGY4Fc8OxbI8xN3iX/+BiQSLHzs8WpeHoeKXtj6uaH+AxedapoamHvaYe5pB03LAXnHLe1dEjFPXhETHEn0w3BCjgRyZ/UpAPSsjLH+q+CyKumCVXGn7/4YGnk54zdtAN4D2vJ881GebzrCs42HcGxaHfcujdC1MVdZbhKJBJPqVTGqUI7o3Xt5u3U7cSdPK2V+lkQqRa9mK7RLVSFx/TTiFw5D2782QuO+YKr6C2jEwuqfcnPekpsTKbd9vU+RIkV49+4d165do3z58uzdu5eUlBQePnzIu3fv2Lt3L7t37wZg6NChtG3bFoCXL1/i5OSUvx9nZ2devnz5wW23bt3K31atWrV/bNu1a9cn91lYiQVWAZCTms61wbOQ5eRQccV4NI1/nO7sCS+ieXLgBk8P3yIh7C1aRrq41ipJuYGNsC/viY6pOLn/YyQSCXqWRuhZGuFU5f/foFLeJvD23gve3Avj7b0wbiw+QnZaJlINdaxLuWBXtgh2ZYtgU9r1uy24dG0tKD6iC569WxC24yShW48RvvsMDo0q496tCfqOqlsYXaqlhXWHdpjVq0vU6nVELlpC7JFj2A/4Gf3ixRQaW83UCpMh88m4cYKkjX8ge9iNtM6j0KnU6LsaDS7s0tO3kZpyVk77en+BZWRkxO7duxk9ejTJyclUrlwZHx8fBEEgKyuL9PR0rl27xsuXL6lQoQJFixalWLG8x+f/Plb+veyQIrYVRmKBpWKynFxujVlMWmQ0lVdPVOmna2VJfZdIyJFAnhy4QfSDcDT0tHGrW4oqY1vhUMELNU3xYfmt9K2M0a9bCre6pYC8x1ns0yiiboUQee0pDzaf5+aSI0g11LEq4YR9OQ/synpg4+eGupaGapOXM00jfTx7NcetY31e7DrN801HeHnwAnZ1yuPevQlGRRxVlpuGqSlOI4Zh3qgBkYuWEDL0F0xq18SuV080zMw+vYOvJJFI0CkXgJZPOd6tmUriiglk3DiJUffxqJlYKiyu6PPp6LRDT7+4nPb1ANjw3m1Vq1bNn7yemZmJtbU1lSpVQl9fn06dOgHg6OhIpUqVuHXrFsWKFcPR0ZEXL15gYWEBQHh4OA0aNMi/7YsXL/D398/f5ujo+I9tf/vcbYWW8AMJDAwUACEwMPCzbh8bG6vQfGQymXBvxlrhgH8n4e2VewqNpWz/PnYymUx4dTNEODJohbDIq5+w2Ke/cLDvMuHpkVtCdnqmirIseBT9mPubLDdXeBccKdxdf0Y43P9PYUXZX4SFRfoKS4sPFPb3XCTcWXdaiHv+WpDJZErJRx4+99jlZGQKoTtOCicaDhL2+3YQrg2ZLcTef6rg7D5NlpsrxBw5Ktxv2Ua426iZ8GbbDiE3K0vhcWNjY4X0W2eENwNqCa/7VBZSLx74rL/7l76e/ii+9bgo4rh+bJ9RUVH5/x83bpzQokULQRAEoVevXsKSJUsEQRCEuLg4wcnJKf/+kyZNErp27SoIgiCEhoYKlpaW+c+/tWvXCrVq1RJycnKE2NhYwdHRUQgKChIEQRDOnj0rFC1aVEhJSREyMjIEPz8/4ejRo4IgCMLz588FGxsb4c2bN4JMJhMaN24sLFu2TG7HQBXEoQIVerHrNC92nKTE2B5YViih6nQUQpaTy7Pjd7iz+hTRD8MxdrGkyphWeDYpi7ax2NxPVSRSaf58rpJdaiDIZMSGvOblpce8vPiIyzP3cvH3nRjYmeJY2QfHyj44VPT6LtpDqGlp4tK6Nk7NqvPq+FVC1h7gUrfJWFQogVeflpgUd//0ThRAIpViVr8eRlUq82b9RqJWryX26DHs+/2MYdkyCo2t7VcDTU9fkjbNzBvNun4ibzTLVPFd6P8mk8lIS0tDV1cX6Q92NawqTZgwgUuXLpGTk0OFChVYvXo1ANOmTaN79+4sXboUgDFjxuDrm9deZMSIEfTo0QN3d3ekUilLlizB9K95fJ07d+bmzZt4eHjk3/bvSfTVq1enTZs2FC+eNzLXrl076tWrB4CrqytTpkyhUqVKyGQyatasSc+ePZV3IBRAIgjfwYnOz3T79m38/PwIDAzMf6B8TFxcXP6DRt5iAh9z9efpOLeuTfERXRQSQ5XeRrzm9ekg7q4/Q/KrOOzLe1K6R22cqvr8cK0EvoQiH3NfIjstk1c3Qnh5KYjwi0EkhL1FoibFzr8IrrVL4FKrJIZ2ijuF9TW+9tgJuTKiTt/g6co9JIe+wrJSSTz7tMSkqJsCsvx86aFhRC79k5S79zCqVBH7fn3RtJL/6bt/H7eMO+dJXDsVISsdw/a/oFO16XvnZn3p6+mH3L17l3nz5rFz507S09PR0dGhdevWDB06lFKlSn31flXlW4+LvI6rovcp+jRxBEsFMmISuDV6IWalPSk6pIOq05GrzKQ0Alee4P7m8+RmZFGkQRlKL6mNhY+DqlMTfQENXS2cqxfDuXrehNakyFjCLzwk9PR9Lv2xhwtTd2LuZY9LrRK41i6JhY9DoZ0gLVGTYle3PLa1yhJ16jpPVuzhYpeJWFUuhWeflhj7uKokLx1XF9xnzSDh3AUi/1zO4569sO7cCYsWzZBqKG6enHbpamh6lCZpy2wSV08m4+ZJjHpMVMho1pYtW+jatSs5OTn5P0tPT2fDhg1s2bKFDRs20L59e7nHFYmUQSywlEyQybgz6U8kEil+0wcg1fg+/gS5WTk82HqBm0uOkJOZTZEWZSnfp8EP04fpe2dob0bxDtUo3qEaWSnphF8IIvT0Pe5vPMvNJUfQtzbBpWZx3Ov7YVvGvVCusShRk2IXUAHb2uV4deIqT1fu5ULnCSottCQSCSY1qmFYtgyv/zptGHfiJPaDBmBQUnHTCqR6hhj3+hXtsnVIXP0r78a2yuubVaG+3Arpu3fv5hdXunYG2Dd0Q9/JiJTwRCIPPyftVTJdunTB29u7UI5kiUTfx7t7IRK65Rjvrj2g/JLRKm98KA+CIPDs2G2uztlPUmQM3i0rUm5QI7I0ZOibisXV90hTX4ciDfwo0sCP3Oxcom6FEHbmPqEn7/FgywV0LQxxD/DFvb4vtn5uhe6UsERNin39StjVrfCPQsu6Rhm8+7XGwPX9XfgVSU1PD/t+fTENqEvkwsU8Gz4y72rD3j+hocBTytolq6A5bReJG6aT8OdYtAPPYNh1LGqG3x5z3rx5+cVV6SlVUNPOezvSdzLCoqwtdyZeIC0qhfnz5+c3tfwawcHB1K5dmwsXLuDq6sqsWbM4e/Yshw8fLrSjrqLCQSywlCgx5CVBi7bh1rkhluXlc/mtKr0LiuD8b9t5Hfgcp2rFaLi0D2YeeUt/xMXFqTg7kTKoaajhUMELhwpeVBnbmrf3wgg5cpuQo4Hc33QOPUsj3AJKU6S+Hza+roWq2PrfQivy2GWe/Lmbs21GY9+gEp69W6Jnr/x2BrpurhSZN5u44yeJWrWGoCvXsO3eFfMmjRTWpFSqb4RJvxmkl6lJ4rppxIxthVH38SAx/up9ymQydu7cCYB9Q7f84upvatrq2Dd05+nKu+zYsYM1a9Z89cR3Ly8vZs2aRZs2bZg9ezZLly7l5s2bYnElUjixwFISWXYOdyYuQ9/ZFq9+rVWdzjdJj0vh2vwDPNx+CVN3a5quHfSfZV1EPx6JRIJ1KVesS7lSeXQLXt8J49mxQJ4dvc39jefQszLGs0lZvJqWzS/ECwOJmhSHhlWwq1uB8L1nebp6H6+OXcWxWXU8fmqGjqVyL0rIu9owAKNKFYlas5bIpX8Sd/IUDkMHo1tEcVdA6pSti6aHL4lrpxK/YBjJDn5fva+0tDTS09OBvBGr99F3zvt5eno66enp+curfI327dtz9uxZAgICOH36NObm5mRmZtKnTx8MDQ3Jzc1lyZIlX71/keh9Cs/HyULu6cq9JD9/he+vfVHTLLyNHEOOBrKp/hSeHr5F1XGtaLdvnFhcif5DIpVi6+dG1XFt6H5hGi23/oJrrRIE7bzMlkZT2dZsGnfWnib1XaKqU/1sUg11XNrUoda+uXgPaEPUqeucbjaMh3M3kRmfpPR81A0NcBwyCI8Fc5BlZfOk/yBeLV9JbnqGwmKqGZtjMmQeRr1+JTM48Kv3o6uri45OXsuPlPD3PwZSXuT9XEdHJ/+2XysnJ4eHDx9iamrKq1evANizZw/VqlVj4cKFmJiYcPXq1W+KIRL9m1hgKUHikxeErDuAx0/NMPJ0VnU6XyUzOZ0TI9ZxbPAq7Pzd6Xx8MiW71ERNQ3Frp4m+D38XW9Unt6fHpRk0XNoXQ3szrszex9oqY9jfcxHB+6+TnZap6lQ/i7qOFu5dGlF7/zzcuzYmfO9ZTjcdytM1+8lJV/7voOfjg9efi7Hp3pV3+w8S/FNvEq/fUFg8iUSCbpUmmPSf+dX7kEqltG6dN5Ifefg5uRk5/9iem5FD5OFnALRp0+ab+2KNHj0aT09PLly4wPDhw3n27Bnh4eE4OzsDeT2YwsPDvymGSPRv4ilCBZPl5HL315Xou9hRpHsTVafzVV7dDOHkyHVkJKRRZ2Y3PJuWFecviL6KmqY6rrVL4lq7JBmJqTw7epsnB25wcsQ6zulp49GoDEVbV8KyuFOBf4xpGOji1aclLm3qErJmH0+W7+bFjpN4/dwKh0ZVkSjxSkqJujrW7dtiUq0KEQsWEzpuIsZVq2Dfry8a5orpV6Zm/G3Leg0dOpQtW7aQ9iqZOxMvYN/QHX1nI1JeJBJ5+BlpUSmoq6szZMiQb4pz6NAhjh07xo0bN9DV1WX27Nm0bt2aX375Jb+oevHiRX7DS5FIXsQCS8FCtx4j8Uk4VdZNKXQtGWQ5udxYfJiby45h6+dGi43DMLQvWM0lRYWXtpEexdpVoVi7KiRGxBC89xpBu6/waPslzDzt8GlVEc8mZdExKdgLfmuZGFBseGdc2gYQvHQHd39dyfPNR/Ee0BarKqWVWihq2driNuN34s+e49XS5QT16IVtz+6YN25Y4C4wKFWqFOvXr6dr166kRaXwdOXdf2xXV1dnw4YN39yioVGjRjRq1Cj/+3bt2tGuXTsyMjLo27cv9+/fJz09nYoVK35THJHo3wrXO34hk/42lifLd+PSpg4mxVTbFfpLpbxJ4PjwNby+/ZzyQxrj1zugUPY2EhUORg7mlBvUCP/+DXh5KYigXVe4PHMPl2fuxbV2SYq2rohDRa8CVyT8Lz17S/ymDcC1Y30eL9zGjaFzMPP1wntQO0yLF1FaHhKJBNOaNTD0L0PUyjVELlpC/JmzOA4firZjwWr426FDB3x8fJg/fz47duzI7+Tepk0bhgwZotD+V9ra2t/U/kEk+hSxwFKgh3M2oa6rg9fPheuqwZeXH3N82BrUNNVpsXEotmVUszab6McjVZPiXK0YztWKkR6XTPC+6wTtusL+Hov+anZaFe+WFQv0qJZJUTcq/DmWd1fvE7RwG5e6TcamVll8BrVXamsHdQMDHIcNxqRWDSLmzie4Tz+sO3fEqk0rJOoF56W/VKlSrFu3jjVr1uQXWOJahKLvgfgoVpB3Nx7y+vQNig7pgIaBrqrT+WwPt13kwE+LsSzmSPv948TiSqQyOqYGlO5Rmw6HJ9Bq+whsfN24Ou8ga6uM4eTIdby5G0pBXUpVIpFgWbEk1Tb/TukpfYl/EMLZViN4tGAL2clpSs3FoGQJvFYsw6JFM16v28CT/oNIe/JUqTl8DqlUip6enlhcib4bBedjzHdEkMl4NHczpiU9sKtfOM7rCzIZV+cdIHD5cYp3rEbV8W3EU4KiAkEikWBT2hWb0q5UGduKoF1XeLjtIsH7rmPh40DxDlXxaOSv6jTfS6ImxaFRFWxq+fN84xGerT9ExMGLePVtiWOzGkjVlXMVrlRLC7tePTGpVpWXc+bxZOAQLFs2x6ZrZ6XEF4l+ROI7qAJEHrtCUshLfIZ0KPBXQkHeOoInR64ncPlxKo1qSbWJbcXiSlQg6Zga4Nc7gM4nf6Xxiv7oWRlzZsIW1lQZQ+D8IyRFxqo6xfdS19HGs3cLau6djVWlktyfvpbz7ccQfeWeUvPQ9SiC55KFeS0d9h3gce+fSX/4SKk5iEQ/CnEES85k2Tk8Wb4H62q+mJZQ3sTWr5WdnsXRgSuIuPqEegt+okj9r+/OLBIpi1RNinP1YjhXL0ZSZCwPtl7g4faLPNlxBdc6pSjVrVbe0jwF7AOOjqUppaf0xaVdAI/mbuLawJlYlC9O0WGdMHRTzhqHf7d0MK5SiYi5C4j+9XdkjRpi27snarqFZzqDSFTQicMUchZx+BJpkW/x7NtK1al8UmZSGvu7LyTq1jMar+gnFleiQsnQ3oxKI5rTfP9Iqk1sS+zTV+xuP5sdrf7gycEb5GbnqjrF/zD2dqHiivH4zx5K2qtozrcfw8PZG8lOTlVaDtr29rjP/gPTnt2JO3Wa4F59Sb5zV2nx/00mk5GSkoJMJlNZDiKRPIkFlhzJsnMIWb0Pm1plMfJwUnU6H5Uen8KezvOIe/6aZusHi8vdiAo9dR1NineoRqejk2i0vB9aBjqcGL6W9TXHc3PZUTISlFe8fA6JRIJNjTJU3/EHXv3aEL7vLKeb/0L43rMIucopMiRSKQYBdfBasQxNa2uejRjNy/kLyU1V3rG6e/cuXbt2RV9fHwMDA/T19enatSt3795VWg4ikSKIBZYcvTp+lbSod3j0aq7qVD4qPS6ZvV3mk/o2gRabhmFd0kXVKYlEciORSnGpUZxm6wbT/uB4nKoW5ebSo6yrPo6L03aR/DpO1Sn+g5qmBkW6NabW3jlYVizBvamruNBlArF3nygtBy1bG9xnzcB+YH/iT53hca+fSbr19WsNfq4tW7bg7+/Phg0b8hd/Tk9PZ8OGDfj7+7N161aF5yASKYpYYMmJkCsjZM1+rKv5YlTEUdXpfFBWSjr7eywiPTaZFpuGYe5pp+qURCKFMfe0o9bvneh2biqlutXk8Z4rbKg1gZOj1hP79JWq0/sHbQsTfH/9mcprJ4NEwuWevxI4finp0copCCVSKRZNG+O18k+07Gx5PnocL+fMJzdFMaNZf49c5eTk4Gzqxpi6v7Gm4w7G1P0NZ1M3cnJy6NKliziSJSq0xAJLTt5cuE1K+GvcC/B6g7lZORwZsILEiBiarhmIqbuNqlMSiZRC18yQ8kOa0O3cNCr+0pyIK8FsaTSVg72X8OpmSIHqp2VaoghVN/xKyQm9eHftAWda/ELIuoPIsnM+fWc50LKxxn3mdByGDCT+/AUe9+pL8u07co8zb968/OJqefvNNCjalCKWXjQo2pTl7TfjZOpKTk4O8+fP/6Y4wcHB2NvbExoaCsCsWbNo0KBBgfqbi75P4lWEcvJs4yFMS3sqdUmMLyEIAqfHbeLVzWc0XT0Acy/lXLH0vRMEgdT4VJLeJJL4JpGk6CQyUzLISs0iMy2TzNRMslIzyUzNIistk+yMbAAkUslfX1KkUgkSSd73uUIuBqaG6Bhqo22gg5aBNjoGef/XNtRGz0QPQysjDCwMxFYaX0FTX5vSPWpTolN1nh6+xe1VJ9jTcS5WJZ3x/7k+zjWKF4grDyVSKU7NqmNbqyxPVuwmeOkOIg5doMTo7piX8VF8fIkE80YNMfQvQ/jseTwbOQaLZk2w/akHUm3tb96/TCZj586dALQv0w1dzX9evairqUv7Mt2YcWIiO3bsYM2aNV/dgNTLy4tZs2bRpk0bZs+ezdKlS7l582aB+DuLvm9igSUHcQ9CiL8XQtm5w1SdygfdWHSYJ/uvEzC3B/blPVWdTqGSm5PLu9B3vH4cxZsnr4mPiCPhdQKJrxNIeJNIzl9F0980dTTR1NNES08LTV2tvH/1tNDS00TXJO+NRJAJ//wSBGQygeyUTGLC3pGRkkFGUjoZyRlkpmT+59O2RCrBwNIQI2sjDK2MMLI2wsjKCBMHUyxcLDB3sUDXWLzk/kPUNNXxbl4er2blCD//iFvLj3Go7zLMve3x71cftzqlCsS6hxoGuhQb3hmHJtV4MH0tV/r8jl29ihQd0gFtCxOFx9e0ssL9j2m823+AqJVrSLoViNPIX9Dz+baLYtLS0vLnXBWxeP/rkYeFF5A3Jys9PR09Pb2vjte+fXvOnj1LQEAAp0+fxtzc/LPve+7cOS5dusT48eO/Ov7XkKWHIUvVkdu+RMonFlhyELb1OLr2VlhVKa3qVN4r5EggNxYfpvzQJgW243VBkfwuiVcPX/E6OIrXQVG8Dn7N22dvyM3Ku9Tf0NoIM0czjGyMcSjpiJGNEcY2xhhZG2NobYShpSFqGl/fnTsuLg5TU9N//Ewmk5GVmkV6UnreaNnrBBLfJJL49q9Rs7eJhN0IJfFNImnx/z9fRs9UD3MXCyxcLfOLLmsvGyxcLVBTUgfxgk4ikeBcvRhO1Yry6kYIN5cc4ejAlZi621Dm53oUaVCmQIwUGhVxpNKqCUQcukjQwm2cafkLnn1a4dK2rsK7wUukUiybN8PQz4/wmbN5OmQ4Vu3aICv69UWWrq4uOjo6pKenE/LuCUUsvf5zm6fvggHQ0dFBR+fbCo2cnBwePnyIqakpr17lzb0LDw9n9OjRWFlZIZVKmTt3LufOnWPKlCk0bdqU+/fvM3nyZM6cOcOlS5fQ1NRk5MiR35THl8h9Pp4cDfl8SMp9rtzlmUR5xALrG2W8iyfq1A18hrQvEJ94/y36YTgnR63Ho7E/ZfrWU3U6BU7yuySeXXnGs8shPL/2jHfPowHQ0tPC2tMGx9KOlG1fHltvW6w9bdAz/fpP0V9LKpWibaCNtoE2JnYmUOzDp3czkjOIefGOd6HviAl9x7uwd0Q/e0vQyYekJeS9yKpra2DjaY1tUXtsfWyx9bHDxtsWHUP5fFoujCQSCfblPLAv58Hr28+5uewYJ4av5caiw/j1CcCzSblvKpzlkqNUimOTalhXL0Pw0h08mreZlwfOU2J0N8xK/7dAkTdtRwc8Fszl7bYdvNm4mXDdrz9VKJVKad26NRs2bGDrrXVUL1LnH6cJ07LS2HprHQBt2rT55vUJR48ejaenJ+vXr6dGjRr4+fmxfPlyhg0bhr+/P/379ycoKAjIW3x6yJAh3Lp1i2XLlhEQEKD04gpAzW0q6kXlczpYLTsIKPi9Gb83YoH1jcL3nUOqoY5j46qqTuU/0uOSOdx/ed6VVNM6i3MOgIyUDJ5feUbIpaeEXH7Km+DXAFgVscK9YhEChtfHsZQjJg6mhXLRWW0DbeyLO2Bf3OE/21LjUnkdHEXUo1dEBb0i4u5Lbu38/0acpo5mOJR0xNnPGSc/Z+yK2aOu+eO9RNj4utFkZX+iH4Zzc+lRTo/ZyI3Fh/Hv1wCvZuVVXmhpGupRYnR3HJtW5/70tVz+6Tccm1bDZ3AHNI305R4vLS0N3b86vEvU1LDu2B7DcmV5PuLbCo6hQ4eyZcsWXsQ9p/fWDrQv0w0PCy+evgtm6611hMeFoq6uzpAhQ74pzqFDhzh27Bg3btxAV1eX2bNn07p1a2rXrv3e53hWVlb+vxKJRGWvA1IdF6R68ulPKNVJl8t+RF/mx3v1lCMhV8bLvWexC6iAhoHyRzY+RpaTy7Ehq8nNzKbB4t6oa2moOiWVyUzNJOjUI+4dvMPjM0HkZOZgYmeCe2UPavavTZFKRTC0MlJ1mgqnZ6qHe8UiuFf8/wsxcrJyePc8mqigV7x6GEn4nXAOTz9ITmYO6lrq2Bd3wMnXCSc/F5zLuGBk/f0fp79ZFnOi4dK+xD59xY0lRzgzbhOBK45TdkBDPBr5q/zUobG3C1XWTSZ871mCFm7jzYU7FB3WEfv6leT2YWrJkiUMHjyYBQsW0L9///yf67q74TR6JOzb89X7LlWqFOvXr6dr166Ex4Uy48TEf2xXV1dnw4YNlCpV6qtjADRq1IhGjRrlf9+uXTvatWvHixcvGDduHNbW1mhoaODj40N0dDTBwcGMHTuWJ0+eMG/ePLS1tZk5cya//fYbEyZM+KZcRD8WpRZYgwYN4sCBA4SHh/PgwQOKFSuWvy0kJISuXbsSExODsbEx69atw8fH55u2KVr0tfukv43FqWVNpcT7EtfmH+TVjac0WzcYfWvFT4YtaHKzc3ly7jGBe27x6MRDsjOycSztRP2RDSkWUBwzZ3NxRA9Q11THxtsWG29b/Frmzc/Lycoh6tErXgSGER74gvuH73F+xTkAzF0sKFKpCO6VPHCr6I6BuYEKs1cOMw876i/oxbs+EVxfdIiTI9Zxa9kxyg5sSJH6viqdGiCRSnFuWQvran48nLOROxOWEXHoIiXGdEffwfqb9t2rVy9WrVmNFBgwaCB3795l5cqV+dulGt/+oa1Dhw74+Pgwf/58duzYQXp6Ojo6OrRp04YhQ4Z8c3H1Mc7OzmzevPk/P69Ro8Z/JrQfOnRIYXmIvmOCEp0/f16IiIgQnJychAcPHvxjW40aNYS1a9cKgiAIO3fuFMqXL//N2/4tMDBQAITAwMDPyjc2Nvaj22+MmC+caTNKkMlkn7U/ZQm/FCQsLNJXuLX8mMpy+NSxU5TIBxHC7rE7hQnFxgjDbAcJM2tOF04tOiHEhMeoJJ8vparj9ikJrxOEuwduC7tGbxemV5kqDLMdJAyzHSTMqjVd2Dtht/Dg+H0hLSFVpTkq69i9uRcm7O+5SFhYpK+wqcEUIeRYoCDLzVVK7E95c+mOcLLRYOFg+a5C8Io9Qk5m1ifv877j9tNPPwmAYFLMQnDtUFQwKWYhAMJPP/2Uf5svfT39lNzcXCElJUXILSDH8mt963GR93FV1D5Fn6bUEayqVd8/Tyk6Oprbt29z4sQJAFq2bMmAAQN48eIFurq6X7XN2dlZob9LVkIyby/cxntguwI1EpKZlMap0RtwqOiF7091VJ2OUshkMoJOPuLCynM8v/oMI2sj/NuWw69FGWx9xE718mBkbUTJxqUp2TjvStnE1wk8uxJCyOUQHh67z8XV55GqSXEu44J3LR+8a/lg7WlToJ4b8mJVwpkmqwbw+k4o1xce4ujAlZh721NhWFOcqhZV6e9sVakUZjv+4OmqvTxduZdXx65QYmwPzP0+fy7PkiVLWLVmNSbFLCg2qjwSiQS7+q48nHGV1WtWU6pUqX+cLpQXqVT6Ta0YRKKCpkDMwYqIiMDW1hZ19bx0JBIJjo6OvHz5Ej09va/a9rECa8CAARgZGdGiRQtatmz5wdvFx8d/cNvrgxeR5crQK+9NXFzBWdvs2u97yEpJx29UY+ITElSWx8eOnbzkZufy8NB9rq69QmxYDPalHGgxpzWeNb2QquedtilIf5vPoYzjJhda4FLDDZcabtQRAkiITCDs6nOeXQzh+NyjHJ52EEMbI9yruONWpQjOZV3Q1NVUaErKPnZaTsZUndOJ6LsvuLvsBAd7LcGytAul+9fFvJhql8uy7lgXg4rFeDZ/G1d6T8W6YSWcezVFXe+/V4r+73FLS0tj8ODBSAGTEpb5xaJEIsGkpBWJj2MZPHgwTZs2JTExUVm/TqGUmJj4j9eff7dfEX3/CkSBBfznU5/wP40Vv3bbhyxevBhfX9/PyutDT4rHlx9gUa4Y1m7On7UfZXh5+THPDwZSc2pHHLxdVZ2Owl5QMlMzubb5CudXnCPxdQJF6xaj/bxOuPh/H4tWF8YXYjMzM9xKulG7b12yM7J5fu0ZwWeCCDodxO0dgahrqeNesQjFG5SkWEBx9M3kf7UbqObYmdY0xbNGaV6ce8jVOfs4/tNyXOuUosLQJipdjsrU1BT79b8SvucMQQu3knAjiBJjumNdze+9t/373wULFjBg0EDi70djV98ViUSCIAjE33uLDFi8YAH29vZER0cr+TcqXIyMjArlc1kkPwWiwHJwcCAyMpKcnBzU1dURBIGIiAgcHR3R1dX9qm2KlBGTQOztYEpN+Emhcb5EdlomZydsxr68Bz6tK6k6HYXIycrh0poLnFp0ksyUDHybl6FGv1pYe3zbZF6RfGloa+BV3Ruv6t40ndKCmNB3BJ1+xKMTD9k1aju7Rm3Hrbw7xRuWpHhAcYxsjFWd8jeTSCS41CiOU9WiPD14k2sLDrCl0W94t6hA2QENMbBVzRutRCrFuVVtrCqX5t60NdwYNhfbOuUoNqIr2mbvvyK0f//+BF66wNptO3g44yomJa2Iv/eW+Ecx9OrVSyGnB0Wi71GBKLAsLS0pXbo0mzZtolu3buzevRtnZ+f803xfu01R3ly4jUQqee8nQVW5uewoqdGJNF076Luc9/L49CP2T95HzIt3VOhUkZoDamNiJ346LOgkEgkWbpZUc7OkWu8aJMck8/DYA+4fucf+SXvYO24XTr7OFG9QghINSmLm9PlLmBREUjUpXs3KUaSBLw+2XuTWsqME779BiU7V8O9XH20j1cwx0rE2o9yCX3h17AoPZ2/kbKsRFB3aEYf39O8TZLlM97ci85kXW28/IfFxLAJ5VxWuWLFC+cmLRIWUUgus/v37s3//ft68eUPt2rXR19fn2bNnACxfvpxu3boxbdo0DA0NWb9+ff79vnaborw5dwuz0l5oGheMS9Tjnr3mzppT+P9cH2MnS1WnI1fvnkezf/JeHp8Jwr1iEbqu6I6Nt62q0xJ9JQNzAyp0qkiFThVJT0wj6NQjHhy9z/HZRzk09QBOfs74tihDqcalFXYaURnUNDUo1bUmPi0rcnfdaW6vOknw3mv4929A8fZVUVNBA1eJRIJ9/UpYlC/Bo7kbuTtlBZHHruDcvyX8z6ms1EuHyH75lDU7dlPxyFkGDx7Mwn/1wRKJRJ+m1Gf5kiVLWLJkyXu3eXp6cvXqVbluU4SctAxibjzCZ1B7pcX8GEEQOP/bdgxsTfHtVVfV6chNdkY2Z5ac4vTikxhZGdF1ZQ+K1y/xXY7O/ah0jHTxa+mPX0t/MtMyeXTiIbf33GL/pD3sn7QHz6pelG7mS9GA4mjrf/2yLKqkqa9N2QENKdqmMtcXHuLS9F3c33SOir80w61uaZU8nrVMDPD9rR/29Stx7/fV3O49nYyB7XBpU4fcpFgSD69Dr2JDtFx86N/fh+7du+d3cheJRJ+vQJwiLEze3XiILDsHyyqlVJ0KAGGn7xN59QmNlvf7brq1h1x6yq7RO4iPjKPGz7WoPagOGjqKvQJNpFpaulr4NvPDt5kfKbEp3D90l9v7AtkyaBMa2hoUrVsMv5b+eFb3KpQLVetZGlFzakdKdqnO5Zl7OTpwJTa+rlQa1RKb0qq5IMWyYklq7JzJnZnreDhrA6/P3MS9RDoSLW2MGnXPv51YXIlEX0cssL5Q9OV76DnZfHOXZHnIzcrh0h+7cazsjXP1Yp++QwGXk5nDwan7ubTmAq7l3Oi+5idxAvsPSN9Mn4pdK1Oxa2XiIuO4u/82gXtusbrrCgytjfBv5Y9/23JYuBa+0+FmHnY0WTWAl5cfc/mPPexqOwv3+r5U/KU5Rg7Kn3+mrquN26A2ODeowvM5c8l+9oqcIg2RaItFlUj0rcQC6wsIgkD0lXtYVy+j6lQAeLjtIkkRMTRc0qfQnzqLDY9hQ991vA6OovnUllTsWrlQLrYski9Te1Nq9q9NjX61iHwQyY2tV7m84TKnF5/CpawrZduVo2Sj0mjpaak61S/iWMkb+71jeLL/OlfnHWBz/SmU7lEbvz4BaOop/3SoWQlnsj0zyMiw4eGaq7y6m0Cpib3Rc7BSei4i0fdCLLC+QOrLN6S/icWyfHFVp0JWSjo3lhzBu0UFzDwKd7fyB0fvsW3YVvRMdBl0YCj2xR1UnZKogJFIJDiUcMChhANNJjbjwfEH3Nh2jR3Dt7F3/G5KNi5N0cbFMKluUmg+bEjVpHi3qIB7PV8CV57g9soTPN5zlUojW+DR2F+pv0fS4fUIGSk4jlqOYetY7v62knNtR+M9oC0u7ep+dL3Fx48fKy3PwkA8HqK/iQXWF3h3/SESNTXMfL1UnQp31pwmOy2TsgMbqjqVrybLlXHkj0OcXXKa4g1K0HZOB3QM/9tpWiT6Xxo6mvnzteIi47i18wY3t1/n5vbr2BWzp2KXSpRu7oeWbuEY1dLQ1aL84Mb4tKzIpT92c+KXtdzfdI4q49pgXdJZ4fFzXz0j7dJBjJr8hLqZNeZm1lTfNoPHi7fzcM5Gok7foPSUvujZ//OUrLm5Obq6unTq1EnhORY2urq6mJsX7pYjom8nFlhfIDbwMcbFXN+73IQyZSSmcnfdaYp3qIqBTeHsBZWemMamARt4ci6YRhOaUr1PjUIz8iAqOEztTak7tB61B9fl1oGbPNh7j12jdnDwt/34tfKnYpfKhWYen6G9GQ0W9Sby2hMu/L6Tna3/wLNpOSoOb4a+tbFCYgq5OWQdWo2GnSv6VZvl/1xdV5viI7tiU6ssdycv51z7MRQb1gnHZtXzn6eOjo48fvyYmJgYueUjy8zk7c7dJF66goG/L9Yd2qOmI9/X25z4aJK3zCUn9jUGTX9Cu2SVr95XYmIiRkb/bdhqbm6u8IbXooJPLLA+kyAIxAQ+xql5DVWnwv1N58nNzi20izm/ffaWNd1WkhqfSq9NffGspvoRQVHhJpVKca9ahLLNyhEXGce1TVe4vvUql9dexK2COxU6V6J4/RKoq6D/1JeyL+9Ju31jCdp5mavzDvD8xB38+zWgdPdacu+flXJ+L0L0S0yGLkCi9t+rM839vKm+bToP527i3tRVvDl3i5Ljf0LbwgTIK7LkXkhUqED82fO8nLcA9T9X4TJxLLpFisg1hFClOolrp5J+di16WjkYtB2MRO3Lj21cXJy4HI7og8RZxJ8p5cVrsuKTVH56MCczm/sbz+LTsgJ6Fu9f6qIgCw98waIm81DTUGPI4eFicSWSO1N7UxqMbsSEm1PotLQrgiCwqd96fq/wK6cXnSQ1LlXVKX6SVE1KsXZV6HJyCsXaVuHa/ANsaTyViCvBcouRE/uGpKObUC8bgKajxwdvp66nQ6kJvSg7bzgJj8M423Y0r05ck1se72NSoxpefy5GzUCfp4OGEXPo8GetM/u5JJraGPX+DcOOI0g9sYW42f2RJSfIbf8iEYgF1meLu/cUpBJMirurNI8nB26QHp9KqW61VJrH13h+9RnL2y/FxsuWgfuHYO4szlEQKY66pjqlm/rSf/cgfjk9Cq8a3pyYd4zf/Cexa9R23j57q+oUP0nLUJcqY1vRbt9YdM0M2NdtAUcHryLlTcI37VcQBOJ3LkaqZ4BG9dafdR/rqr5U3/4HFv5FCRyziMCxi8lKSP6mPD5Gy9YWj/lzMKsXQMT8RYRPn0luerrc9i+RSNAL6IjpyGVkhz8hZnJHsiNC5LZ/kUgssD5T/P2nGLo7oKGvuv4wgiBwb/0ZXGqWwNi5cPUACrn0lJWd/sTJz5mfNvURJ7OLlMrGy5a2s9sz/sZkag2ow8PjD5hZbRorO//Jk/PBch0dUQRzTztabB5GnVndiLoZwqZ6kwlceYLcrJyv2l/6nfNkBt/CuFV/JFqf/1zUMjHAb8ZAfH/vT/TV+5xtM5q3l+9+VQ6fQ6qpicPgATiNGUXilas86T+I9Bcv5BpDy6cs5lM2I9HWI/bXLqTfOCnX/Yt+XGKB9ZniHz7HpLh85wF8qaibIcQ+jaJk5+oqzeNLPb/6jNVdV+Ba3o0ea3sVmqu7RN8fA3MD6gwNYPz1ybSb15Gkt0ms6LCMWTWmc2P7dXK+smBRBolEglfTcnQ6Phmf1hW5Onc/WxpP5eXlL2sLIEtLJmHPn+iUqIROsQpflYd9vYrU2PEHRp6OXB80iwcz15ObkfXF+/pcprVq4Ll0ERKplCf9BxN7Qr5FkLqFHWYT16NVqioJi0eQtHMhgixXrjFEPx6xwPoMOanpJIe+wqSYm0rzuL/5PCau1thX8FRpHl8i7GYoq7osx9nfhe6reqKh/X0s5yMq3NS11PFvU5Zhx0fQb/dAzF0s2D5sC9Mq/sb5FWfJTM1UdYofpGWgQ9VxbfJOG5obsr/7Qo4NXU3qu8TPun/iwTUI2VkYt/j5m/LQtjCh3MKRFB/ZlfB9Z7nQeTyJT8O/aZ8fjefogOfiBZhUr8bLmXMInz0XWUaG3PYv1dLBuN8MDNoOJvXQOuLnDkKWmiS3/RdUx48fx8/Pj9KlS1OsWDHWr18PQHR0NPXq1aNIkSIUK1aMS5cu5d8nLS2N9u3b4+7ujoeHB3v27MnfJpPJGDhwIG5ubri7u7N06dJ/xJs6dSpubm64ubkxYcKEf2xbvXo1RYoUwc3Njd69e5OTU3A/8HwW4QcSGBgoAEJgYOBn3T42NlYQBEGICQwS9vt2EBKfhisyvY9KfZcoLPbuJ9xdf1plOXyJ2NhY4dXDSGGs50hhScuFQmZapqpTKhT+fsyJvty3HrvXwVHClkEbhV8chwjjfEYLR/44JCS9S5JTdoohk8mEx3uvCSvK/iL86TtUuL/lvCDLzf3g7TOePRAiBgcIyRf25/9MHo+5xGcRwtl2o4WD5boIIesPfTQHeYg5dly406CJEPRTHyE9IlLu+8+4f1l43beK8HZEEyE7KuyDt1PE8/VL36e+ZZ8ymUwwNTUV7t27JwiCIISFhQlaWlpCUlKS0L17d2HSpEmCIAjCjRs3BEdHRyE7O1sQBEGYMmWK0LVrV0EQBCE0NFSwsrIS4uLiBEEQhPXr1ws1a9YUcnJyhNjYWMHJyUl4/PixIAiCcP78ecHHx0dISUkRMjIyBD8/P+HYsWP5+7GxsRHevHkjyGQyoXHjxsKff/4pt2OgCuII1mdICH6BVEsDfRfVdUwP3ncNiVSKZ9NyKsvhS8RHxLGi4zLMnc3psbYXmuJizaICztrThvYLOjH2ygT8W/lzYeU5ppabwu4xO4h5Ib9eT/IkkUjwalaOTscm4R5QmnOTtrKr/Rxinrz6z22FnCzidyxE08kLvUrybVBs6GZPlfW/4tIugKCFW7n683TS38TKNcb/Mguoi+fiBQjZ2TzpN5CEy1flun+t4hUxn7wJiVSNmCmdyHxwRa77L2gSEhIASEpKwszMDC0tLXbs2EH//v0B8Pf3x8rKKn8Ua/v27fnbXFxcqFq1Kvv378/f1rdvX9TU1DA1NaVNmzZs27Ytf1u3bt3Q09NDS0uLHj16sHXrVgB27dpF8+bNsbKyQiKR0Ldv3/xthZVYYH2GxOAXGLo7IlX/b58YZRAEgUc7r+AWUBptIz2V5PAlkmOS2dJ7E1r62vy0qS/aBspfW00k+lomdqY0ndKCCTcmU3tgHe4fvscfVX9n6+BNvHserer03kvHRJ9a0zrTYvMwMpPS2NZsGpdn7iE77f9PdSaf3knOu1cYtx2ERCr/1zI1TQ2KDulAhaVjSIl4w9m2o4k8prjCRMfFGc8lCzHwLUXYpClErVqDkCu/eVPqVo6YTVyPpntJ4mYPIPX4ZqVeDCEkBCPE3pHPV8L723tIJBJ27NhBixYtcHJyonLlyqxfv57k5GRkMhkWFhb5t3V2dubly5cAvHz5EicnJ6VtK6wKfte9AiAp5CXGPq4qi//2fjgJYW+pNrGtynL4XDmZOaztsYrs9Cz67xqIgbmBqlMSib6KrokedYYEUL1PDa5tucqZpacJ3HOL0s18qT2oLlZFCl6HeDv/IrTfP47bq09yc+lRQo4EUm1iW+yLmZJ0chsGNVqiaavY1zKLskWpvm0GD2as5fa4JURfuUeJUd0UsgKGmp4eLpMmEL1jF1Gr15L65CnOY0ejYWIsl/1LdQ0wGbaQ5O0LSNo8i+zIZxh1GYNEQ/Ej8rJL3ZFFymcMRPZC9t6f5+TkMH36dPbv30+lSpW4efMmzZo14/79+/9ZWePfxeX/blfGtsJILLA+QZaTS0pYFI5Nqqkshyf7r6NnaYR9+YI/uX3fpD1EPoig87rumDqYqTodkeibaehoUqVnNcp3rMiNbdc4vfgUd/bOoGTjUtQeXBcbL1tVp/gPaprq+P9cH4+GZTg3ZRuH+i6lTv1UDE1MMAjooJQcNA318Js2AMvKpbg/fS3x90PwmzZAIR9UJRIJVm1bo+vpwYup03ny8wBcJo5Dz8dbPvuXqmHYfhjq9u4krv2NnKgwTAbPRc1QsR3cpZXXIi0pn99Beu8x0PE/P7979y5RUVFUqlQJyDsVaGtry/379wF49+5d/ihWeHh4ftd+R0dHXrx48Y9tDRo0+Mc2f3//D97vb5+7rdBS4fwvpfuaSe5Joa+E/b4dhOjrDxWc3fvlZucIK8v9Ilycvksl8b9E4J6bwjDbQcLVTZfFydpfSTxuX09Zxy47I1u4suGS8Jv/JGGY7SBhbc9VQuSDCKXE/lIymUx4tny5EDE4QNhTu7cQtOeqIJPJ/nEbRR+35JevhfOdxgsHynZW+AT4zHfvhCcDhwh3AhoK0fv2/+d3/eb9h9wT3gyoJbwdUk/IevG40E9yf/PmjWBgYCAEBwcLgiAIISEhgomJiRAZGSl07dr1H5PcHRwc8ie5T5o06R+T3C0tLfOPxdq1a4VatWrlT3J3dHQUgoKCBEEQhLNnzwpFixb9xyT3o0ePCoIgCM+fP//PJPdly5bJ7RiogjgH6xNSXkQBYOCqmgnukdefkh6XgkejMiqJ/7nehUaza9QOfFv4Ua7Dl/fWEYkKC3UtdSp0rsToS+NpM7sdUUGvmBswiw191ha47vCy1CR0wk+hWawyeiXLc2rUeg70XERSpOImoP+bvoM1lddMwrVDPYIWbOHawJlkxCQoJJamuTnuc2Zi3qQRkYuWEj5jplxbOWi6l8B8ymakBiYkrJiAIHv/qbfCwsrKiuXLl9OqVStKlixJixYtWLp0KXZ2dvzxxx9cuXKFIkWK0K1bNzZu3Ii6et5JrxEjRpCeno67uzsBAQEsWbIkf03Gzp074+npiYeHB/7+/owYMQJv77yRuOrVq9OmTRuKFy+Ot7c3devWpV69egC4uroyZcoUKlWqhJubG5aWlvTs2VM1B0ZOJILwHZzo/Ey3b9/Gz8+PwMBAfH19P3n7uLg4YvdfImTdQeqfW/Gfc9LKcGb8ZiKuBtPl1K8qif85crJyWNRkHhkpmQw99gva+triIqhfSTxuX09Vxy43J5dbO29wYu4xEt8kUqaVP3WG1sPMUfWnyOM2zyb90TWsx6xCzcCYF+cecnbSFjISUqkwtAklOtcgITFBacct+sp97kz+E0EQ8J3SF8uKJRUWK/7seV7OmYuWnT0ukyegZSO/OXNCZjq5SXEkqenI/dh96fuUqvYp+jRxBOsTUl6+Qd/JWiXFjSxXRuipu7jX8y2wxRXAiTlHeR38ms7LuqKtL14xqAw52bmkJqYT9yaRN2ExhAdFERL4gqe3XhB6L4LwoCiinkUTHR5L3OtEkmJTSEtKR1bIP3EXRGrqapRrX4ExlybQdHJzgs8+ZkaVqewavYOEqASV5ZXx9A5pN09h3OQn1AyMAXCuXoyOhyfi07IiF6fvZlfbWcSHvFFaTpYVS1Bt63SMvZy5NnAmD+duIjcrWyGxTGpUw2PhPHJTU3nSbyBJgbfltm+Jlg7qFqpr2yMqHMRJ7p+QGvEGPQfVXC305k4o6XEpuNVR3Ke8bxV2M4wzS09Tb0QD7Is7qDqdQk0mkxH/JomY0CRiXyUQG5VAXFTev3lfiSTHpZCZlkVuztcVSlKpBH0TPQzM9DA008PATB9DUz0MzfQxNNfH3N4EKyczLJ3M0DfRLdCFfUGjrqVOlZ7VKNu+PJfXXeLsklPc3HGdCp0qUWtgbQwsDJWWi5CVScKORWi6FUe3XMA/tmnqa1NtYls8GpXh9LhNHO22hLIDGuLXOwA1DcW3otE2M6LcghGEbjvO44XbiL0dTJkZg9Czl//6qjqurnguXcSL36fzfMx4bH/qgWXrluLjWqQUYoH1CWmR0Zj7+agkdujpe+haGGJVwlkl8T8lOz2LbUM24VjKiRr9aqk6nUIlOyuHyOA3hD2IJOx+3teLh69IS/r/+SKa2hqY2hhhZmeMub0JHv4uGJrro62riZauJlo6mmjqaqClk/e9prYGEqmEnKxccrJzyM3Ozf9/TlYu2Zk5pCamkxSbQnJcat6/sam8ePiK5NhUEmOSyUj9//XkdA21sfyr2LJyMsPK2QwHLxucitpiaKavisNWKGjpalGzXy0qdq7ExVXnObf8DDe2XaP6zzWp1rsGWnqKX4sz6eRWcuLfYdVrygeLCRtfN9rvH8v52Xu4sfgwoafuUntGV8w9FT8yI5FKcetQH7PSXtwatZDzHcZSalJvbGuVlXssdUMD3Kb9xuu164lasYq0pyE4Dh+Kmo442i5SLLHA+ghZVjYZ7+LRtbP49I0VIPz8I5yrFUMiLZhnco/PPUbC6wR6ru+NmoqasBYWCdFJ3Dv7hIcXQwi9F0FE8Jv8hYVt3CxwKWFP89o+mDoa4OzlgLmdidJHkARBICU+jTdhMUSHx/I2PJbo8FiiX8YRePwR0S/j8nM2tjLEyccWx6I2OPnY4uRji72XNVpix/582gba1BkaQKVulTm9+BSnFp7gyobLBAyvT9l25RT2nMl+/YLk0zsxqNMODauPjyqraWpQqm8dijYuz6nR69neYjpl+zfAt5dyRrOMvV2otvl37k1dxa2RC3BuU4eiQzqgpiXfx5FETQ3bn3qg41GElzPn8HTgEFynTETLrmC12BB9X8QC6yMyo+MB0LUxV3rspFexxD17TbnBjZQe+3NEPojg/PKz1BvRAEt3K1WnU+DkZOfy5HoogSeCuHvmMS8e5C1d4lTUFvfSjtTqXB6X4vY4F7ND53863atykrtEIsHAVA8DUz2K+Dn9Z3tuTi6vn78j/FEU4UFRvAyK4sahBxxcfBYAqZoU52J2eJZ1xsPfBY8yzli7mv/wp2N0TfRoPKEplbpV5tjMI+watZ0LK8/RYEwjigUUl+vxEWQy4ncsRN3cBsM6n9+Y2Kq4E+32juHG4iNcX3SY5yfvUnt6F8y97OWW24doGOjiN2MgZju9eTR3E/H3QvCbMRB9R/lPzTCpWgVtRwfCJv3Gk/6DcBo7CqOy/nKPIxKBWGB91N8Flo618gusl5ceI1GT4lBRPo3m5EmWK2PX6B1YeVhTvW9NVadTYKSnZHLj8H1uHn3A3TPBpCWmY2xpQKla3jQdVIuS1T0xtlTePBx5U1NXw97TGntPayq1+P8rkdJTMokIfk3YvUie3Azj7plgjq68CICBqR4e/s54+DvjVdYFz3KuaGprqOpXUClTBzM6LOpM1T41ODR1P+t6rsa5jAuNxjfBxV8+DThTrx4lKywIiwEzkah/2SiQmqYGFYY1xbVOqbzRrJYz8P+5Pn596il8NEsikeDSpg6mJYpwa/RCLnQaR8lxP2EXIP+WLzrOzngsWUD4jFmEjpuYNy+rTasf/oOASP7EAusjMv/q1aJtaaL02BFXgrEq7oSWgfyXl/hW17dcJeLuSwbsG6yU0wgFmSAIPLkRxumN17i89zYZKZm4lXakcb/q+NUthmspe6QF9BSvvOjoa+FRxhmPMs4E9KwMQHJcat5VjTdf8PRWOAcWnWFrYjoaWup4lXOleDUPSlT3xK2Uww93etm+mD19t/XnyYVgDv9+kMXNFlC8fgkajW+KufPXf5jLTYwl8eAadMvVRcu9xFfvJ380a8kRbiw5Quipe9SZ1Q2zIoo/nWbk5UzVTVO5P20NgWMXE3MriGLDO6OmLd9Thur6+rj+OonX6zYQtXI16WFhOA4bglRTPMUtkh+xwPqIrJgENI305T4f4FMEmYzIa08o1q6yUuN+jozkDI7OPEyZ1mXl9qm7MEpNTOfcthucWHOJiOA3WDqa0mxQLaq3L4elo9jHysBUD986RfGtUxTIu0LyZdBrHlx4yoPzT9k7/xRbfjuErqE2PpXcKV6lCCVqeOHobfPDjCR4VvWiSGUP7uwN5PD0Q8ysMY0qPatRe1BddAy//INVwt7lSNTVMW7S65tzU9PUoMLQprjVKcXJkevZ3nw65Yc2pXT3mgqfE6qhr4vv7/0xL1uMBzPXEf/oOf5/DEbPQb5TESRSKbY9uqHj4kz4rLlkRkTiMmUimubKP2Mh+j6JBdZHZMUno2VurPS48aFvyYhPwa6sh9Jjf8qFVefITM2k/siGqk5FJcIeRHJs5UUu7LxFTlYOZRuWoMeMlhSv5vHdj1R9C6k0b36WczE7GverQU52Ls/vvOT++Sc8vBDCpikHyR67F0tHU/zqFaNMQDGKVXFHQ+v7Pp0olUrxa+lP8QYlObvsNOeWnuHWjhvUG9GAch0qIFX7vMdUetAN0u9ewLTTSKR68ltg3bKYE233jObq3ANcnrmHF2fvU3tGVwztFdtEVSKR4NSsOsY+LtwcsYDzncZTekofbKrLf0ULkxrV0bKzI3TSFJ70H4TrpAlyW8dQ9GMTC6yPyI5LUkmB9fr2cyRSCdYlXZQe+2NS41I59+cZKnWtjLGtsarTUarwR1Fs/f0QNw4/wNTWmOZD61C7SwVMrY1UnVqhpK6hhmdZFzzLutB6RD2yMrJ5eCmEwGMPuXn0AUdXXEBbT5OSNbwoU784vnV8MLEqvPPXPkVTR5OAYfUp374CR2YcYtfoHVxef5EmE5vjUfXji7zLMjNI2LkYLU9fdPxqyD03dW1NqoxthUutEpwatZ4tjadSdXxrvFtUUPhoo5GHE9U2TeXO5OXcHD4P966N8OrXBqmcTyvrehTBc+kiwib/RsjwkTgMGYhZQF25xhD9eMQC6yOy4pMxsJN/87tPeXM3DDMPOzQLWFf08yvOIsgEag6oo+pUlOZdRBzbph3m3NabWDqZMfDPTlRtXeaHmzekaJraGvjW9sG3tg8/zWrNy6DX3Dr2kFvHHrJ0wBYEQcCzrAsVm5emQtNSmNspf16kMhjZGNN+QScqda/C/sl7Wd5+KT61i9JkYjMs3N7/WpR0bCO5KQlY9J+h0ILHvpwH7Q+O5+LvOzk9ZiOhp+5R49cO6Fko9kOGhoEu/rOH8HzjER4v3kb8g2f4TRuAtoV8HwMaJia4z5pB5KKlvJw1l/Tnodj16YVETXyui76OWGB9RE5yKlomyv/U/PZBeIEbvUpLSOPS2gtU7FoZ/R+gyWRKfBp75p3k8J/n0DHQ5qdZrajTrRLqP/ikfmWQSCQ4FbXFqagtLYfXJTEmmdsng7h24B4bJx1g7Zg9eJZzoVJzXyo0LYXZdzia6ljKiQF7B3P/0F0OTj3ArNozqN67BrUG10VL9/8blWZFPiPl/F4MG3RF3Vzxk9C1DHSoPaMLrrVLcmbCZrY0/I0av3XEPaC0QuNKJBLcuzTEpLgbt0Yv4nzHcfj93h9z/6JyjSPV1MRh2GB03F2JXPInGS/CcZ44DnX97/81TyR/4qSRj8hOTEHDSLlPrOy0TOJCorAq8d8+RKp0ee1FcnNkVOst/1MQBUluTi6Hl5+nX6kpHF15geZDarPs7iTq96oqFlcqYmRuQI325RiztTdrn01j0PLOGJjosWHCPnp5T2BswDwOLTtHQnSyqlOVK4lEQsnGpRl1bgw1+9fm/MpzzKw2jXsH7yAIAoIsl/jtC1C3csSgRkul5uZauyQdD0/A1r8IRweu4PTYjWSlZnz6jt/IrLQX1bdOw8DNniv9pvN0zX4EOa+vKZFIsGjaBPc/ppEWEsLTgUPIfBUl1xiiH4M4gvUBgiCQk5KOppGeUuPGPHmFIBOwLFZwCqzs9Cwurb1A2bblMCzEfZw+5cXDVyzos4GXj15Tq3N52o1rKM6xKmD0jHSo3q4s1duVJTUhjRtHHnB1/102TNxPbk4upWt5U719Wco2LPHd9NvS0NGk3i8N8G9dln2T9rKh7zrcKxWhaWsDZJHPsBg0B4ma8l/KdUwNaLC4N0E7L3Ph951E3XpG3Tk9sCqu2NcuLVMjKiwezZMVewhesoOEh88pPaUvGga6co1jULoUHosWEDp+Ik8GDMZl0ngMShXcdWFFBY84gvUBssxshOwcNPSVXGA9jkCqoYapu41S437Mrd23SI1LpVqv6qpORSFyc2XsmXeSkdVngQAzz/5Cv0UdxOKqgNMz1qVGh3KM3d6HNU9/p9NvDUlNTGduj3X08BjHssHbeHwtFEEQVJ2qXJg5mdNzXS9+2tiHrHdvyTi3nWgNb2RmqptOIJFIKNqmMu32jUVTX4ddbWdya/lxZLnyHVX6T1w1KV4/t6LsvOHEBD7mQteJJIdGyj2Otr0dHovmo1vEnWejxhJz+KjcY4i+X2KB9QHZyakAqOsrt9FnTPArTFytUdMsGIOLgiBwcdU5itUrjrmLatZkVKS4N4n82mwJm6ccpFG/Gsw8+wtupR1VnZboC+mb6FKtgz/TTw5jceAEGvSqyp3TQYwLmEf/0r+yfcYR3kXEqTpNufCq4U2H9lKk2jrsPwgzqkwlcPdNlRaSJi5WtNr2C6V71uHq3P3s6zqf5CjFH2/rqr5U3fgbUnU1LnSZSNSp63KPoW6Qt1i0ecP6RMxbQOTS5Qi5uXKPI/r+iAXWB+SkZwKgrqfcAiv2aZRSVrP/XM8uh/A25C1VelZTdSpyd/f0Y4ZX/oOIJ2+YvL8/XX5t+t33XfoR2Lpb0mFCI/68P5kpBwfiU8md/YvO8HOJyUxru5xbxx6Sq+ARFkXKuH+ZzKDrWHYewrAzE3GrUIQtgzaxvN1S3oVGqywvNU11Kg5vRouNQ0iMiGFL46k8OXhD4XH1Ha2psn4K1lV9uTVqIY8WbEGWI98CSKKujsOgAdgP7Me7fft5Pn4SuSmpco0h+v6IBdYH5KblTdhU11VeqwRBEIgNiSpQpwcvr7uItac1ruXdVJ2K3OTmytjy2yF+bbEUl+J2zL08muLVPt5rSFT4SKVSilf1YMCSjqx+8jt95rUl7nUi09ou5+cSk9nxx1FioxJUneYXkaWnEr9nGdpFy6FTsjJGNsZ0+bMbvTb1JfZlLLNr/8GJecfIycxRWY52ZT3ocHA8ztWKcmL4Wk6MWEdWimInwKvraOP7e3+KDutE6OajXBvwB5lxiXKPY9G0CW7Tp5L2OJhnI0fLfYK96PsiFlgfkJORN4Il7zWwPibtXRJZyekFpsBKik7i0YmHVOhS+btZviQlPo1pbf5kz9wTdJzYmPG7f8bYQn6dr0UFk46+FnW6VWL2hZHMPDuCkjW82LfgFH2KTmR6+xXcOv4QWSF4s0w8vA4hPRXjVv3/8Zz0quHNiDOjqdqrOifnH2dWrRk8vfBEZXlqGeoSMLcndWZ1I/TUXba3mM67oAiFxpRIJLh1rE+FZWNJeh7B+U7jiX/wTO5xDP188Vg8H+uunRW+bJCocBMfHR8gy8wGUOo6hPFhbwEwdpHvmltf69bOG0g11PBr7qfqVOTiXUQcY+rMIeRWOON3/UzL4XXF5W1+QO6+jvRf3IFVwVPpNbsNMRHxTGuznIF+Uzmy4jzpKZmqTvG9Ml88JvXyIQwbdEHd5L9NRzV1NGk4pjHDT4zE0MqQ5e2Xsqn/epKik1SQbR6vpuVou2cMGrpa7Gg9k3sbzip8rpi5nzfVNv+OjpUZl3v9xssD5+UeQ9veHqNyZeW+X9H3RXx3+YDczCwApJrKm5OTEPYWiVSCkYPqFxsVBIEb265TokEJdIzke/mzKrx+/o5x9eaTnZnDjDPDKVVLXGvsR6drqENAz8rMvjiS6aeG4VrKgTWj99DLZwJrx+3hTViMqlPMJ+TmkLB9ARp2buhXafrR21p72tBv10DazevI0wtP+KPq71zbfEVlk+BNXKxovWMExdtX4cLUHRzu9yfp8SkKjaljaUrF5eNwaFSFu1NW8GDmemTZqjttKvoxFYxL1QqgvydJSjWUd4gSI2IwsDUtEFcQRtx7ybvQaJr/rtwGhorwKuQtkxovQkdfi8kHBn6Xnb9FX08ikeDp74LnWhdiIuM5tuoiJ9Zd5tCSc/g3KEbDPtUoVtVDpafJk8/uIfvNSyyHLfispVskEgn+bcpStE5RDk7dz86R27mz7zatZ7ZVydXAapoaVB3fBvsKnpwes5GtTX4nYE53hS5or6apQYlxPTH0cOLh7I0kP4/Eb8YgtEwKx5QA2bsQZFHyeS+QvQuRy35EX0b17+QFlJCT92lH3ouKfkxSRAyGBWD0CuD2nlsYWBpSpJLiXgCVIfLJGyY2WoiBqR6TDwz8rhcMFn07c3sTOk1uQuuR9biw8xaH/zzHpCaLcSpqS7Mhtancwlfp61DmxLwm+fhm9Ks2RdOhyBfdV9dEj7ZzOlC6qR87R21nVu0/qPdLfar2qq6S9TRda5XE8oATJ0asZU/n+fj3q0/Z/g0U9jorkUhwaVMHQ3d7bo5cyMUuE/CfMxQjj4LTyPlDMnf1JeOyfM6gZL7Olst+RF9GLLA+QMj5a8KrEufoJEXGYO5lr7R4HyKTybh78C6lGpdGqlZ4zyK/CX3HpCaLMLIwYPKBARiZF45PriLV09LVpE7XitTuUoGHF56yf9EZFvTawJbfDtFkQE1qd66Alq7i52cKgkD8zkVI9Y0wbNDlq/fjUdWTX06P4tjMIxyedpC7+2/TelY77Is7yDHbz6NvbUyzdYMJXH6M64sOE3UzhIC5PdGzVFxjXzNfb6pu/I2bw+dxqdtkSk3ujV3dCgqLJw9arf5Eu7h8pjJoPXgMq9rJZV+izycWWB8gCHkFlkSqvNMCya/jcaml+qUYXtwKIzk6iZKNS6k6la8WExnPpKaL0dHXZtK+/mJxJfoqEomE4tU8KV7Nk7AHkexbcJq1Y/aw849jNOhTlfq9qmJgqrjVHtJvnyPzyW3Mek1BqvVtPfm0dLVoOrk5pZv5suOXbSxoOJeqvatTtnt5OWX7+aRqUvz7NcDWvwjHh65ma9PfCZjbA4cKXgqLqWtjTqXVE7k3dRWBYxaTGByOd/82SAroh0ipRRGktiXks6834vwzVSiYj6wCQKKujl4RB1BSfZWTmU16bDIGNibKCfgRDw7fw9DaCCc/Z1Wn8lWS41KZ0nwJAJP3D8D4O14/UaQ8LsXtGbqqK0tuT6BSi9LsmXuSPsUmsnr0bqJfyr9ruSw1mYS9f6JTsjI6RcvJbb+OpZwYevQX6o1owKU1F1jZchmh15/Lbf9fws6/CO32j8Xc04793RdyY/FhhS6zo66jhe/UfvgM6cCzjYe4PnQ22clpCosn+rGJBdYHCNk5pIZEoKwKKzU6rymenpWxUuJ9zOMzj/GpVbRQtjDITM9iWrvlJMemMmlff8ztVV+wir4vVs7m9JrdhuWPptC4f03Ob71B/9JTWDZ4m1wLrYSDqxBysjFu8bPc9vk3NQ01ag2swy8nR6Fnrs/SlovYP2kPWelZco/1KbpmhjRZPRD//g24vugwB3ouIi1Wca0lJBIJ7p0bUn7hSOLuhXCx+yRSI94qLJ7ox1X43kGV5e9TgzLlXNqc9u6vAkuB8xA+R2x4DO9Co/GqWfjaGAiCwNKBWwm7H8nYHX2wdftvryCRSF6MzA1oP64hyx/9SseJjbl+8N7/F1rhsd+078znD0i7dhyjRj1QMzKTU8b/ZeFmSee13Wg8oSlXNl1hTp2ZhN0MVVi8D5GqSSk3sBHN1g4i5skrtjWdxqsbTxUa07JCCaqsm4KQk8uFrhOJuRWk0HiiH49YYH3A35dk/z0XS9FS/yqwdM1VezrryflgpOrSQnn14Im1l7m48xYDFnfEo4yzqtMR/SB09LVoNrg2fz6YTMdJTbh+6B79fX9lyYAtvAl998X7E3KyiN++EE1nb/QqNlBAxv8kVZNSrU8Nhh8fgZ6JHkuaL2T/5L0qGc1yqOhF+/3jMHaxYm+X+dxcdlShy9EYuNhSZf2vGHk4cbXfDF7sOaOwWKIfj1hgfYBUPW/+vyDnRUM/JD0uBYmaFG0VN/V8djkEx1JOaBsobw1GeQh/FMXaMXsI6FGZyq2+j87zosJFW0+LZoNq8ef9yXSe0pTA4w8ZUGYqi37eyOvnn19oJZ/aSU5MFCZtByt1KRZLdysG7BtMw/FNuLLxMnNq/6GSuVl6lkY0WzeYMj/X59r8gxzqu4yMRMUtrKxppE/5RSNxalGD+7+vzmtKqqTXfdH3TSywPkDyV18WZT3RMuJT0DbWU+naVjKZjGdXQnCv9GW9dlQtMz2LOd3XYuNuQbdpzVWdjugHp62nRZMBNVl2fzLdpzXn3tknDPSfyrLB2z65uHT22wiSTm7DoGYrNGyclZHuP0jVpNToW5Phx0egb26QPzcrW8mjWVI1KeUHN6bxin68vhPK9hYzFLqWoVRDnRKju1N8VDde7DrF9UEzyUpSXFEn+jGIBdYHqGnlNXhT1vIKGQmpaBsr7nLvzxH9LJrUuFTcyrurNI8vtfnXg7x9EcOw1d3Q0lHe2pEi0cdo6WjSsG91ltyZSOcpTbh24C79S//K+vH7SI7775u3IAgk7FyEmok5hnU7qCDj/2fpbkX/PYPy5mZtvMy8BnOIfBip9DycqxWj7Z4xaBnqsLPtLB7vuarQeC5t6lB+8WgSHodxsdskUl5EKTSe6PsmFlgf8PcahH8v+qxoGYlpKj89GHYjFKmatFC1Z3hw4SmHlp6j06TGOHjZqDodkeg/tHQ0aTqwFsvuTaLZ4FocX3uJn0tOZsfMY6QnZ+TfLu3GSTKf3cek9UAkmloqzDjP33Ozhh79BTUNNRY2msvpRScV2kbhfYwczGm1bQSejf05NXoDZyduITdLca/LFmWLUmXDr0ikEi52nyxOfhd9NbHA+gDpXyNYuRmZSomXmZSOpoFqC6wXN0OxLWqHlp7qX9w/R0ZqJksHbKFoZXca/lxd1emIRB+la6hDu7ENWXZvEjU7lWfXrOP8XGoKB5ecISMmhsT9K9EtUxNtT19Vp/oP1p42DD40jOp9anD0j8MsabGQmLAvn7z/LdS1NKg1rTM1f+/E4z1X2dVuDkmvvu1KzY/Rd7CmytrJGHk5c7X/DF4eOK+wWKLvl1hgfYCadl6RkZuhnLkH2anpaOqrdmL5y7svcSxd8Nfo+tuOGUeJf5tEv4UdCmXPLtGPycjcgB7TW7Lk9gTKNijO+gn7OdN/MNlZORg27aXq9N5LXVOdBmMa02/PQJLfJTGn7kyubryMICinjc3firauRKvtI8hISGF78+mEX3iksFgaBnqUXzgSh0ZVuDtlBY+X7FDoFY2i74/4rvQB6n8VWDnpGZ+4pXxkpWSiqae6Ais9KZ3oZ29xKiQFVtj9SA4sOUvrkfWwcbNQdToi0RezcDCl36IOLNjVlBI2sWw7a8C4pqt5fFU1XdU/h2tZN4afHIVv8zLsGr2DVV2Wk/gmUak5WBZ1pO2eMViXcuFAryV5rRwUVOhJNdQpOf4nfAa3J2TtAQLHLFbah25R4VcgCqyEhARKlSqV/+Xh4YG6ujpxcXldkZ2dnfHy8srfvn379vz7hoSEULFiRTw8PChbtixBQfI5X67+V7GTk6acAis7PRMNJSwe+yGv/prAal9C+Yu/filBEFg1cid2RSxpOqiWqtMRib6akJWJ9MpGtNxL0Gj+eGS5MsbVm8+MjiuJehat6vTeS0tPi9Yz29JzfW9ePXzF7Np/8PDEA6XmoG2sR6M/f8a/X32uzTvA0UEryUpVzGu1RCLBvUsj/GcO5u3FO1zuPZWMmASFxBJ9XwpEgWVsbMzdu3fzv3r37k39+vUxNTXNv82uXbvyt7dt2zb/53369KF37948ffqUkSNH0rNnT7nkpK6Xt7BqTmq6XPb3KbmZ2flXLqpC1KNXqGtrYFEIup9f2h3I46uh9JjREnUNNVWnIxJ9taQTW8iNj8G49UCKVvHgj7O/MGRVV0LvRTC43O+s/GUHiTHJqk7zvXxqF+WX06NwLuPC2u6r2D12p1LbOUikea0cGizpw8tLQexqO4vEl4qbG2ZT059KqyeS/jaWi10nkhjyUmGxRN+HAlFg/dvatWs/q1CKjo7m9u3bdOrUCYCWLVsSFhbGixcvvjkHNS1NJBrq5KQop8DKychGXVuFI1iPXmHjaY2aesEuWDLTs9gwcT/lGpWgZA0vVacjEn217Kgwks/swrBOOzSs8kaOpVIpVVuXYfGtCXSc2JjzO27Rr9Sv7Ftwiuws5bSM+RL6pvr0WPsTLX5vxY3t15nfcA6vHyu3tYFbnVK02TmKnMxstrdQ7LwsY28Xqm74FQ0jfW6PWyLOyRJ9lLqqE/i3q1evEhsbS6NGjf7x844dOyKTyShXrhzTp0/HwsKCiIgIbG1tUf+r67pEIsHR0ZGXL1/i7Oz8wRgDBgzAyMiIFi1a0LJlyw/eTqqrReLbmPxTlYqUk5VNZnaWUmK9T+SjCCw9rOQWPz4+Xi77+bfjKy+T8DaJJsOrq+xYKZKijtuPoDAdO0GQkbllLhJTK7J9a7/3sVy1sy++jbw4sOAcm6Yc5MS6y7SbWJ9i1eTbp04ex827SVHMfSzYN3I38xrMptawOpTpUDZ/yTGFM9Wi7qo+XJ60gwO9llCybx2KdqmqmPgaEorOGkhWbCIJiYmf3Rz6f8/IiH4MBa7AWrNmDV26dMkvmgAuXLiAo6Mj2dnZjB8/nq5du3LkyBGA/zyBPmey4+LFi/H1/fSl0JqGeqjnyJTyxBByZegbGajkSSiTyYgLi8W/ZVm5xpf375KZnsXJVVep3r4c3r6Fq9v8lxBfiL9eYTl2KZcOkR4ZgsXA2WhZWn3wdqampgxY2InGfWqyetQu5nfbiH+D4nT/vTnWrvK7uEMex820rCnDjo3k8LSDnJhxjJc3wmk3twMGFkpaX9UUWqwZzPVFh7m55Agpoe+oPb2L4q7OtrMhLi6u0DzmRMpXoE4Rpqamsn37dnr06PGPnzs6OgKgoaHBkCFDuHjxIgAODg5ERkaSk5M3dC4IAhEREfm3/1bqBnpkJaTIZV+fIsuRIVVT0qe9f0mISiArPQurIh9+oS8Izm6+TlJMCi2H1VF1KiLRV8tNjCXx0Br0ytdDy63YZ93HqagtUw4O5Jd1PQi7H8mgctPYNPnAPxqVFgQa2ho0+7UFP23sQ+T9CGbX+oPHZ5TXqPOf87Ies7PtTIXOyxKJPqZAFVg7d+6kRIkSeHn9/9ya1NRUEhIS8r/funUrpUuXBsDS0pLSpUuzadMmAHbv3o2zs/NHTw9+CQ0jfbITlTPBVJAJKluHMCY07wXIwq3gFli5uTIOLD5D+Sal5PrJXfT5srNzyM7OITdXpvT+R9+ThD3LkKhrYtT4yy7IkUgkVGxemkU3x9NiWB0OLTvHgDK/cXbrdWQFbC6Qd00ffjk9GvuSDqzqvJxD0w6Qm628BZTz5mWNJDcrhx2t/iDy+lOlxRaJ/lagThGuXr36P5Pb3759S8uWLcnNzUUQBFxdXdmwYUP+9uXLl9OtWzemTZuGoaEh69evl1s+6oZ6ZEYq69OPAMqar/AvMWHvkKpLMbE3UUn8z3HzyAPehMUwdHU3VafyXREEgbev4gh9/Iqwp1HERieSFJ9KQlwKibEpJMankBiX95XxnivEpFIJUqkUiVSCuoYaxqb6GJsZYGxmgJGpPibmBn99r4+5lTH2LpY4uFqhq+KmuqqS/ug66fcuYdp5FFI9g6/ah5auJu3GNKBWp/JsmLifRX03cWr9FXrPbYuTj62cM/56BuYG9Fzfm/PLz3Jk+iFCrz2n87KumNgp55SaqbsNbXaO4ujglezvvoBqE9tRrF0VpcQWiaCAFVh/n/r7X66urty5c+eD9/H09OTqVcUsAKpprE/KQ2U1/VNNcQUQ+zIWE3vTAn0F4ZHl5/Es50IRv8LRCLUgehsVx9P7L3n+OJLQ4FeEBkcRGvyKtJS800xa2hqYWRljbKqPoYkeZpaGuHrbYWSih5GpPvqGukgkIJMJCIJAbq4MBAFByJvHl5WZQ1J8CgmxKcTHJhPzNoFnjyJIiE0mITaFnJz/H8EwtTDEwc0KBxcr7F3zii5XT1vcfOzRVGG7EkWSZaaTsGsJWp6+6PhW/+b9WTiYMnxtd+p2r8SKYdv5pcofNO5fkzaj6qFdQJa7kkql1Pi5Fi7+rmzqt545dWfRbm4HigUUV0p8bWM9mqwayKXpuzg7cQsxT15RZWxr1MT2LiIlKFAFVkGjYWJAZmySUmJJpBIEmWpOu8RFxGHqUHAnakYEv+bhxRCGru6q6lQKldTkdK6fe8TV0w+4ce4R4SFvANDR08LVyw5XLztqNfXHzccONy87bBzNFbbkkCAIxMckExkWTcTzN0SERRMZGs3L0LdcOXWfuHd5zzN1DTXcfezxLuWMVylnvEo641HMAR0VrnIgL0lHNiBLScSk/x9yvbqteFUP5l4ezf6FZ9g1+ziX9gTy08zWlG2gnCLmcziXcWHY8RFs/2Ura3usokrPajQa1wR1LcW/BalpqFFtYlvMPGw5/+s24p+/od6Cn9Ax0Vd47MIgMzOT4cOHc/z4cTQ1Nf8x7QZg/fr1dOvWjYMHD+Zf3Z+WlkbPnj25efMmUqmUGTNm0KJFCyDvw9bgwYM5cuQIEomEYcOG0a9fv/z9TZ06lbVr1wLQoUMHfvvtt/xtq1evZsaMGchkMmrVqsXSpUv/ccFbYVN4M1cCTRNDcjMyyUlNz288qigSqQQhV3lzFP5X/Ks4bLxsVBL7c5xYdwUjCwPKNyml6lQKNEEQeB4UyaUT97h84j53rj4hJzsXBzcrytcoxoBJbSjq54q1vanS126USCSYWhhiamFIibL/bTOQkpRGaHAUj++G8fjOC4LuvODg5kvk5OQilUpw9rChuL87vpW8KFPFC1snC+W1AJCDrIgQUi7sx7BhN9TN5f9c09DSoNWIACq38mPViJ3MaL+CMvWL0XNGS6yczeUe72vomujRbVVPLq29yMFf9xF24zmdl3XD3EU5cyqLtauCiasVRwasYEerP2j058+YFSk4p1RVZfTo0UilUp4+fYpEIuH169f52yIjI1m+fDnly5f/x31mz56NlpYWz549IywsjAoVKlCjRg1MTEzYtGkTQUFBPH36lMTERHx9falZsyZeXl5cuHCBrVu3cv/+fdTV1alUqRKVK1cmICCAsLAwJkyYwJ07d7C0tKRp06asXr2aPn36KPuQyI1YYH2EhpkRABkxCegruMCSqqshy1FNgZX4OgHvmj4qif0p2ZnZnN92g1qdKqChKT5c3yf2bSIHNl9kz7qzRDx/i7aOJmWqevPLjI5UqlsSB9eCe/HC3/QNdSlR1v0fxVdWZjbPgyIJvh/O47svuHv1KQc2XUQQBKztzfCt5IlfFW/KVPbC0d1ahdl/nJCbS/z2BWjYOGFQo4VCY1m7mDNuZ1+uH7zH6tG7GVxuGq1+CaDp4FoF4vkjkUio0qMqzmVc2PTzOuYGzKLN7PaUalJaKfHtynrQZvdoDvf7k51tZhIwpwcuNUsoJXZBlJqaytq1a4mMjMz/wGJj8/8fAHr37s28efMYNWrUP+63fft21q1bB4CLiwtVq1Zl//79dOvWje3bt9O3b1/U1NQwNTWlTZs2bNu2jcmTJ7N9+3a6deuGnp4eAD169GDr1q0EBASwa9cumjdvjpVV3utV3759mTlzplhgfa+0/i6w3sWj76TYER6puppSr7L5W25OLsnvkjGyNlJ67M9x88hDUuLTqNW5/Kdv/AMRBIF710PYuuwEp/fdRKompXYzf0bP7oJfFW+0dVS3KoC8aGpp4F3aBe/SLjT/6+xwUnwqd64+IfBiMLcuPebYzqvIZALmVkaUruxB7SblqFC7OIbGeqpN/n+kXNxP9qvnWAyeh0RN8S+5EomE8k1KUbKmNzv/OMq26Ue4tCeQfos64FHGWeHxP4dDCQeGHh/BzpHb2fjzOl7cCqXR+KaoK6EINHIwp9W2Xzg5Yh2Hfv6TyqNbUqpbzQI3IpoTFUa2qXw+2OdEhb3358+fP8fMzIypU6dy6tQpdHR0mDx5MrVq1WLZsmUULVqUcuXK/ed+L1++xMnp/+fDOjs78/Llyw9uu3XrVv62atWq/WPbrl27PrnPwkossD5C838KLEVT19IgVwVLYaTEpCDIBAwtldQM8Atd2HkTt9KO2HsW3BEKZcrOyuHE7mtsXnqcoNthOLhZMeT39jTuUBkj0+9/TomhiR7VGvhSrUFeo+CUpDTuXQvh5oXHXDh6m5O7F6OmJqVUBQ8qB5SiSr1SuHnbqezNMyc+mqQjG9Cr1AgtZ+Uu7aSjr0WX35pRpXUZlgzYwpjac2n4czU6jG9UICbBa+tr02lJF1z8XTgwZR8v776ky5/dMbY1VnhsTT1tGizuzZU5+7k0fRcJYW+pOqFtgZr8Hr9sDDFmuvLZV2zae3+enZ1NaGgoPj4+zJgxg3v37lG7dm2OHDnCypUruXz58gf3+b/PqX+3bVHEtsJILLA+Qk1HCw0DXdKjFb8ki7q2BrmZ2QqP828pfy0kq2/+dZeMK1JKfBq3Tz6m85Qmqk5F5bIys9m67AQbFx4h5m0i5WsWY+Hu4VSuW1Lp86kKEn1DXSrVLUmluiXpMqwumakyLh2/x8Vjd1k+bQ8LJmzDxtGcKvVKUadZWXwre6GmppzjJQgCCbuWINHRw6hRN6XEfB+XEvb8cWY4B5eeY9u0w9w4dJ++89tRqpa3ynL6m0QioXL3qjiUdGRDn7XMDZhJxyVd8Kyq+GJUIpVSaURzjJ0tOTdpC4kRMdRf8BNahvIpar6Vyc/TMS8mn6kbJg+D4Eir//zcyckJqVRKx44dAShZsiQuLi6EhIQQFRWFt3feY+TNmzf07NmTqVOn0qtXLxwdHXnx4gUWFnnz58LDw2nQoAFA/jZ/f//8bX83//57298+d1uhJfxAAgMDBUAIDAz8rNvHxsYKZ1qPFO7NWKvYxARB2NzoN+Hs5K0Kj/NvweceC8NsBwmxL2Pkut/Y2Nhv3sfpTVeFFkYDhdioBDlkVDi877hdPHZXaFR8mOBr0FmY3G+l8CwoUgWZFXz/PnbpaZnCxWN3henD1gn1PAcJJXU7CjWd+wnThq4Tbl18LOTk5Co0n9Q7F4SIwQFC2t2LCo3zJV4/jxYmNlooNDccIMzvtV5IeJckl+eqPCTHJgvLOywVhtsNFo7NOSLkKvjv879eXnksLPcbKmysN1lICI/+7Psp4th96fvUt+6zTp06wuHDhwVBEIQXL14I5ubmQlRU1D9uU61aNeHgwYP530+aNEno2rWrIAiCEBoaKlhaWuYfi7Vr1wq1atUScnJyhNjYWMHR0VEICgoSBEEQzp49KxQtWlRISUkRMjIyBD8/P+Ho0aOCIAjC8+fPBRsbG+HNmzeCTCYTGjduLCxbtkxux0AVftyPvp9Jx9qc9DexCo+jqadFznsaOSpaWkLe0LGuScGZs/K364fu41HWGVObgjk/TNFevYhmSNt5DGgxC2s7M7Zfm8akJT/h5m2n6tQKBW0dTSoHlGT0nK4ceTyfjecm06BtRc4dCqRnwFTqeQzij182cOfKE7l3Qpelp5KwZxnaxcqjXaKSXPf9LaxdLZh8YAD9l3Qk8PgjBvn/ztU99wrE6Rh9U31+2tCHusPrcXLucVZ2Xk5KrHKWKnOo4EXrHSOR5eSyo/VMom49U0rcguDPP/9k5syZFC9enKZNm7JixYp/THR/nxEjRpCeno67uzsBAQEsWbIkf03Gzp074+npiYeHB/7+/owYMSJ/JKx69eq0adOG4sWL4+3tTd26dalXrx6Q1/NyypQpVKpUCTc3NywtLf/TeLywkQgF4ZmlJLdv38bPz4/AwMDPWuw5Li6OyOX7ibv3lOrbpis0t/09FqKhp02DRb0VGuffLq+7yL5Je5j5Yq5c56l86yKoGamZdHUZTfvxjWg2qJbc8iro4uLiMDAwZN28w6z6Yx9GpvoMn9GRui3KFbhJuAXN5z7mZDIZ928848Tu65zce4N3r+OxsjOlUYfKNO1cFUe3b5/vF79zMWm3TmM1egXqJgVzaaeE6CTWjN7Npd238W9QnL7z22FiVTDmYj698ITNAzagpqFG15U9cPJ1Vkrc9PgUjg5cwes7YdT6vRNezf47wft/KWKx5y99n1LVPkWfJo5gfYKOrTlpUe8U/glPQ0+b7FTlL9yakZyBtoFOgXvzvn/+KdmZOQWqWaIyhDyMoFPVSfw5dTft+tZl351ZBLQsX+D+PoWZVCqlVHkPRs7qzPGnC1h7cgJV6pVi+4pTNCnxCz3q/sa+DefzO9x/qcywIFKvHMawQdcCW1wBGFsaMmxNd/ovb8fTmy8YXO53Lu66VSBGszyqejLs+AiM7UxY0nIh17YoZrWOf9Mx0afpmkF4NvHn5Mh1XJt/oEAcD1HhJBZYn6Bna0lOajrZSakKjaNloENmUrpCY7xPRkoGOoYFr0v2nZNBWLuYY+tuqepUlEIQBNbMPsDPjeYgyAQ2np/C0N/b/7Br9imLVCqldEVPxi/swanni5m2ph8amhpM6beKWq79mdhnOYGXgj/7TVbIzSF+x0I07N3Rr9JYwdnLR+m63iy4PpZSNb2Y13M9szqvJuGdcha5/xgjG2P67RxI2Tbl2DliGztHbicnU/FXWqtpqlNrWmcqDG/GzaVHOTlyvUqu8BYVfuJVhJ+ga5/3Bp/2KhpNI8VdBq9poENmsvILrMyUTDR1VX/J9r/dORWEX71iqk5DKTIzspjUZwXHdl2j44C6DPmtQ4FoCvmj0dbRpEHbijRoW5HXETEc3HyRA5vyvhzcrGjTqzZNO1XF8CPzFZPP7CLn7Usshy1EIi04l/x/iqGZPsPWdKd8k1KsGLaDwWV/p9fs1lRq4avS0VN1LXVa/dEW+5KO7Bm3k9ePo+i6ojtGNsYKjSuRSCjTJwBDO1NOjtpA6tt4GizuU2CuMBQVDuII1ifo2uUVWKmRbxUaR9tYj8yk9/cqUaSs9Cw0C1hTyrcvYoh+GUfJ6p6qTkXh4t4l0avBdM4eCmTWpkH0HNVILK4KABsHc3qPbs6B+7NZdWwcxfzcWDBhG3U9BvHbwNU8ffDfBog5MVEkndiCfrXmaNr/dzmgwqBis9LMvz42b33DHuvyRrOilbMe68eU71CB/rsHkRAVz7z6swm9/lwpcT0a+dNs3SDePY5kV/vZJEcpvmWP6PshFlifoGmoh6aRPqkRCi6wjHTJTExV+vn+7IxsNLQ1lBrzUx5cCEEqlVC0UuF8k/pcL55G0bn6JF6FRbPq+HjqNC+r6pRE/yKVSilTxZvpa/txLHgBPYY34sLRu7QpP5aeAVM5vvsa2dk5eYtZ71iEmr4xhvU6qzrtb2JsYcAv63vwy7oeBF19zpDy07lx5IGq08LJ15mhx37B0t2KZW0Wc3H1eaW8Xtr5F6HVthHkpGexo/UfRD8q3N3FRcojFlifQc/BipTwNwqNoW2sjyxHRpaSTxPmZGajrl2wRkyCrjzDubg9esbf73B88N0XdK8zFS0dTTaen0LxMm6qTkn0CebWxvQe3Zwjj+cxc+NAAEZ1WUx9z8EcmjSTzKd3MG49AKnW9zFvrmLz0iy4PhbPci7MaL+CpQO3kJ6SqdKcDCwM6bOtH5W7V2XfxD1sGbSRbCW0tzF1s6b1jpHoW5uwp+Ncws6qvuAUFXxigfUZ9JxsSY1QbIGlY5bXST09Tjl9X/4my5Ghpl6w5oo8uR6GV3lXVaehMHeuPuWnBtOwdTJnzfHx2Dqaqzol0RfQ0FCnbotyrD4+nl03phPQpDiu0ee5/EKbBasf8+pFtKpTlBsjcwNGb+nFzwvacWl3IMMrz+DJjfeva6csaupqNJ3cnE5Lu/LgyH2WtFxI4usEhcfVNTekxaZh2Ffw4vDPy7i/+bzCY4oKN7HA+gz6TtakhL9W6HC0zl/ryKXFKvfqndyc3AJVYCXGJPM69B2eZZ1VnYpC3LwQxM+NZ+BV0okVh8dgbFbwligSfT73og70LJeGkZE26WVac3zXNRoXH86orot5dDtU1enJhUQioU63Ssy5OBoDM33GBcxj6++HyVHB4vT/q3RTXwbsG0xSdDLzGswh/PYLhcfU0NGkweLelOxSg7DT95DlyrdBrej7IhZYn0Hf2ZbsxBSyEhRX/Oia5zX4S4tR7oRSQSYgkRacHkuhdyMBKOLr9IlbFj4Pbj5jYMs5lKrgweI9I9Az0FF1SqJvlPnsPmnXT2DcpCfdxnfkyOP5jJzdhUeBoXSsMpGf6v/OhWN35N4pXhVs3CyYdnwIbUbXZ/ecE4ypPYfIJ4od2f8U++IODD06HDNHM5a2WsStnTcUHlOqJqXK2NY0+rMfUiWtaykqnMRHx2fQd7YFICXslcJiaBvrIdVQU3qBBUABamIZ9iASXUNtLJ3NVJ2KXEW9jGFw67l4lXRi/o5haBewKzdFX07IySJ+x0I0XXzQq1AfAB1dLdr1qcP+e7OZvXkQmelZDGo5h7blx3Fy741CX2ipqavRZlR9ZpwaTkZaFr9UncnRlRdU2ozTwMKQn3cMwLdFGbYO2cyBKXvJzVH86JqaeLWv6BPEAusz6DtaI1GTkhyquAJLIpGga25IanSCwmJ8UAHqVBz+KApHH1uk0u/noZmZkcUvHRagravF3K1DxOLqO5F0cjs5sW8waTMIyb8er2pqUmo3K8uGs5NZc2I8ppZGjOi0kDblxnJiz/VCX2i5+zoy+8JIanWpwMpfdjKjw0qS4xTbjPlj1LXUaTOrHc1+bcHF1RdY1WVF/jqrIpGqfD/vYgok1VBHz8FaoQUWgL6VMalvExUa49+katIC9WIfGfwGB6+PLzRa2MwYvoHnjyOZu2UwphYFY6030bfJfhtB8qkdGNRshYaN8wdvJ5FI8K3kxfJDo1l3eiIWNiaM7LyI1mXHcnzXNXIL8RweLR1Nes1qzZhtvQm+FsrQSjN4dClEZflIJBKq9KxGr819ibj3kgUN5/DmqWpPYYp+bGKB9ZkM3OxIfh6p0Bh6VsakvIlXaIx/k0glyHILxgiWTCbjVchb7D2tVJ2K3OzfeIG9684xdn53vEo5qzodkRwIMhnxOxaibmKBYZ32n32/UuU9WHZgFOvPTOL/2LvrsKqy7oHj33Mv3SEgSgkKIqCiYnd3i90zdueEOtbMWDN2t2N3d3d3t5iIpHSd3x+88GMcnQHuuYGez/P4vK8c7trLO3DvuvvsvbZDfmtGdp5Dq9I/sGf9GZI1cEtLXQLq+fHnmR9wdM/DL41ms+7XPRq5RfclnpW8GLRnKHpG+sxuPJ37x+9pLRfZt00usLLI3MOZKDUXWOaO1kS/i1DrGJ/SM9AjJUk3ztkKfR1BYnwS+Qt9HecPBj15x6ShK2nSsTJNOlbWdjoyicRePEjik1tYBfZHMMj+MVPFyhRi3o6R/HV8LPnd7Pm5+3wCy/zIsd1Xcu3Bwrb5rBi7sz+BP9Znyx8HGVV/Ju9fhGotnzxueei/YxAFAtxZ2mkRZ1ac0lousm+XXGBlkUVBZxLDo4gPVd8tPDNHGz6+DdPoi6zSQE8jB6hmxbunIQDkLWCn5UxUl5SUzE/d5pPHwZKR0zppOx2ZRFI+RhCxcwkmATUx8vRXKZZfQEFmbxnGmlPjsctrzeDW0+lSczxXz9yXKFvNUioVBI6oy8R9Awl7G8mQSpM5veWK1vIxMjOi6/LvqNClIlt/3sz2MVvktgoyjZILrCyyKOQCQNQj9R2TYJ7PmuS4ROLDNddsVN9Qj6T4JI2N92/ePfuAIAjYudhoOxWVrZyxh3vXnvHbsj6YmH0dnb1lELF9IYKgwLLJ95LF9CnhzsI9PzJ/50gS45PoVnsifZtN5f6NF5KNoUmFy7jz56mR+Nfw5s9uK5jXfy0JGui2/jlKPSVNx7eg+a8tObPiNMu6LCb+Y7xWcpF9e+QCK4tMnexRGhsS9VB9BZaFU1pH76hXmpta1zc2IClONwqskFfhWDta5vrDjp89eMPC37bRaWB9/AK+7vMUvyXx9y4Td+UYlk2+R2lmKXn8cjX8WHNqPJNX9ePl02DalP+ZkZ3n8OJx7luobWplwpBlXegzux0nN17mp1rTefskRGv5VOhSie/+6smzS0+Z3XQGYS+1d/tS9u2QC6wsEhQKLAo6E/lQfZ8qLfKn9X7SZIFlYGJAYqx2zxdL9+FVOHZO1tpOQyWiKDK+3xIcXfLQ86fm2k5HJpHUxHjCN8/BsFBxTAJqqm0chUJBnRZl2XJ5EqPndOfa2Qc0LzGC34esJELDpzyoShAEanYqx++HhxAfm8CwKlM4u/2a1vLxqlKY/jsHkxSXyMwGf/LsknaP/JF9/eQCKxssvdyIUmOBZWhpgoG5MZEvP6htjE8ZmRqREKud6ftPhb2JwMZR+pkBTdqz7gzXzj5k1Myucr+rr8jHA2tJiQxNW9iugca8+vp6tOhajV23/qD/uED2rDtNo6JDWTN3P0k6siklqwr4OTH1+HD8a3gzrfMylozYTFKCdmbN83rmZcDuIdgXdGB+4GyubruslTxk3wa5wMoGy8JufHz2muQ49cz4CIKAlasdkS80d1isobkhCTqyJiH8/Ues8+beAis2Op4Zo9ZRq3lpSlf10XY6MokkvnnKx2ObsajdFn27/Bod29DIgC6DG7LzxjRqNy/DHz+soVXpHzm5/1qu2nFoYmHM0BVd+X5aKw4uP8NPtafz7pnmPkhmZmZjRs91ffBvXII1/f7i8KyDueq5lOUecoGVDZaF3SBVJOqx+tZhWbrYERmkubUKRuZGJMYlkqLlg1sBIoKjsLLPvYcfr19wkMjwGAZNzHpvJJluE1NTiNgwCz07J8yrt9JaHjb2loye3Z11ZyZil9eaAS3+oHfjyTy6/VJrOWWXIAjU+74yvx8cTHREHMOqTOH8zutayUXPUI82M9pTe2hd9k3ew+aRG7Tau0v2dcrdq4k1zNzDCYW+HpH3nmHjV0gtY1gVcODN5cdqif05JlamAMRGxmKeR3vFTUpKKtHhsVjmMdNaDqqIi03gr9n7adKxMvldc3+bCVmamDN7SHxxH7sB0xD09LWdDl5FXVm090eO77nK9J/X0brcTzTtXJV+v7TKNacEePinHbMzt99apnRcSuN+1ek4rjFKPaVG8xAEgTpD6mGd34ZNI9YT8SaCjgu6YKQju37jgoKINZfmNTkuSH2TArIvkwusbFAa6GNe0JmIO0/VNoaVmz0x7yNJjI7HQAO/6CbWJgDERmi3wIqNjEMURcxtTLWWgyq2rzxBVHg0XQY31HYqMomkRHwgcvcKTMvVw9DdV9vpZBAEgWoNS1KxdjE2LTnC/F+3cHj7RQaMC6R512q54hxPU0tjhq/qxu75x1k5ajtPb7xkyPKuWNlp/jWodOsyWDlaseL7pcxtPovvVvXEUgeWKrz4bQomFtIUzS+ioiSJI8seucDKJqsiBQi7/lB98d3SjomJePEeex8XtY2TztQ6raCJCYsGtHdETXR42sGsplYmWsshp1JSUlkzdz+1mpfBqcDX0YVeBhFb5yMYGGLZqJu2U/ksfQM92vWpQ92WZZk+aj0TByxn28oT/DSjCz4l3LWd3n8SBIFGfarhXsyZP7osY3iVKQxf1R3PUm4az8Wzshf9tw9icceFzGz4J9//1RNH73wazyMz159G4OUjzVrO2Dt3oFkzSWLJsk73P+roGGsfDz4+fU1yTJxa4tt4pBU54U800/vG1DbtllxMqOaam35O7P8W2ptYGGs1j5w4feA6r569p32/utpORSaRuNvniLt5BqtmPVGY6Pa6QBt7SyYs6snyQ6NJSkimQ+Vf+HXgciLDtPs7nVU+FQoy9cQI8uS3ZlS9mRxYdlori84dvfMxcNdgTG1Mmd10Bg9OaLejvrGLCyaFCknyx9hF/R/WZf8kF1jZZOXjAaJIxD319FAxMDPG1N6SsCdv1RL/UyZWJggKgegP2n0xjvtfgWVsnv2z3bRt3fyD+JbywK+Uh7ZTkUkgNT6WiM1zMSxcCmP/KtpOJ8v8y3ux9swEhk1uz94NZ2jqP5ytK46Rmqr7x8PY5rNi/J4B1OpcjoWDNzC3n3a6v1s6WtF36wDcS3uwpONCLm44r/EcZF8PucDKJvMC+VGaGBF++4naxrAp6EjYI80UWAqFArM85kSFaPceffz/mp0ameSuAuv1ixDOH71Nq+9qaDsVmUSi9q4iNeYj1q36aaTnlZT09JS071uX7demUr5mUcb3XUrn6uN4eEv3FznrG+jx/bRA+i/owOnNV7TWyiH9DMPSbcqyYcg6uY2DLMfkAiubBKUCax8Pwm+pb6efTSFHwh5rpsACsLC34ON77XaJTvzfcT0GRtrfqZUdO/46iam5EbWbl9Z2KjIJJAY9JPrUTizqdUDPNq+208kxO0drfl3am2UHRxETHU+7iqOZM24TCfG60VT431RrW4bfDw8hNiqeEVWncv2o5m/VKfWUtJwcmNHGYfuYrfJB0bJskwusHLD2K0j4rUdq+1RjWygfES9CSNbQi6GFgwWR7yI1MtaXJCWmdafWN8o9+y5EUWTPutPUblEWY1Pd2NotyzkxJYXwDTPRd3TDrMrXsSC4RIXCrD8zke9GNmHF9N0Elv2JK6e1u7YoK9K7vxcq5crEFvPYNe+YxmeR0ts4tJwUyJkVp1jdZyXJCbmri75Mu/6zwEpKSuKPP/5gwIABHDx48G/XRo4cqbbEdJm1X0ESQiOJfaOehqC2XvlBFDU2i2XlaEXUuwiNjPUl6Y1O9fQ12wtHFbcvP+H18xDqB5bXdioyCUSf3E7Sm6dYtx6IoMw9hf5/MTDUp9dPzdlw7jesbM3pXmci4/stJSoiRtup/SszaxN+2tiLRn2rs/zHrcztt1YrR+yU61iBzou7cefQbRa1n09clHo2OMm+Pv9ZYPXt25crV67g5ubGsGHDGDp0aMa1Q4cOqTU5XWVTNK3JaNgN9bRrsC2UDwSBD/dfqyX+pywdrYh4E6GRsb4kJTlt+l2hzD2Tqvs3nccurxUlKhbWdioyFSWHviNq3yrMKjbCwNVL2+mohYd3fpYfGs1PM7pwYPM5mpcYwcGtF3R6fZFSqaDzxKYMWNiRU5suM6bhbMK0MNvuV7coPdf34c3d18xtPkvrM/6y3OE/380uXLjA2rVrGTJkCBcvXuT169d07tyZ1NRUnf7FVCcDK3PM3PKprR+WvokhVm72hNzTzDEYVvmsiQ6NJkkLu3Yy/O9nKbcsKhZFkaO7LlO1UUmUuagolP2TKIpEbJmLwtgciwadtZ2OWikUCgK/r8nWq1PwK12QER1nM6rbYkLehms7tX9VtU1pJu4bSMjLMEZUncqjK881noN7aQ/6bRtIbEQssxtPJ/iRZlrpyHKvLN0iTGdkZMS6deswNTWlWbNmJCbq/oJJdbEp7knY9Qdqi29XxJmQO5opsKydrAEIf63bL7K65NHtl7wN+kC1BiW1nYpMRXHXTxF/9xJWLfqgMMqdJwlkl0M+G6avH8yf6wZy/8YLWgT8wL6NZ3X6Q3Ohkm5MOT6cPE5p/bKOrb2g8RzyejkyYOdgDM2NWPHdMnnhu+xf/WeB5ebmxunTpzP+LggC8+bNw8vLi/v3dX+xpLrY+hfm45NXJEaoZ/edvY8zH+6/0sgvsI2zDQBhL8PUPtYX/W/mSpdf4DM7uf8aJmZGlKrsre1UZCpIjY0mYtt8jPzKY1z021tLV71xAMsO/0jZ6r782HUewzvMIuy97t7+sslryYQ9A6jcqhSze69m2Y9bSNFwkWOVz4p+WwfQcX7nXLWkQaZ5n/3pyNyYbvXq1fh8pl3/lClTuHXrlvoy03G2JdPW3YReU88slr2vK0mxCYQ/Vf80tKWjFQo9BWFBoWof60uUemk/iulrsXTd+aO3CajsjYFh7morIfu7yN3LEBMSsGrRW9upaI2ljRlTVvVn8qp+XD51jxYBP3Bo20Vtp/VF+ob69JnTju+mtmTvwpP83mZhRqNiTTG2NCFfkfwaHVOW+3y2wGrUqBGxsWlnw9nY2GBtbf3ZBxcpUkR9mek4E0c7TPLZ8eHyXbXEt/dNO9rg/a0XaomfmVJPibWTDR9eaL6pX0YO/9s9mL6bUJfFxcRz/dxDylb303YqMhUkPL1DzNm9WDbojJ6VnbbT0bo6Lcqy5dJk/Mt7MbzDLEZ0mk34B+32x/sSQRCo36MKP2/sxf3zT/mpznRCtDkDL5N9xmcLrIcPH1K5cmWCg4P/cS0pKYk5c+aoPbHcwLZUEbUVWAZmxli75yX45nO1xP+UrWseQrVYYOkbpG2LT8oFfWZuXXpCclIKAfLtwVxLTE4ifONM9F28MK3YUNvp6AxbB0v+WDuQ35f34cKxOzQvOZKjOy9pO60v8q/pzW8HhxD3MZ6R1afx8PJzbackk2X4bIF14cIFjI2NKV26NHfvphUQKSkpLF68GA8PD4YMGaLRJHVVnlLefHz8koRw9Rwz41DUVWMFlp27HSFP1dPXKysMjNNutSXGa77PTXZdO/cQC2tT3L3lWwS51cejm0l+/yqt55Ui9/Re0wRBEKgXWJ4tlyZRrGwhhrSdybi+S4iN1uxtuKxy8XZk0tFhOLjlYUyDWZzZelXbKclkwBcKLBsbG44cOULFihWpUKECv/76K15eXvTp04dq1apx584dTeepk/IEpK1N+3BJPbNYDsUK8OH+K410dLcrYMeH5yFa2xVjaGwAQEKs7u9MvXH+IcXKFEKhkBe45kbJIW+IOrgWs6rNMcjvru10dFaevFZMXz+IMXO7s2/jOdpUGMXtK+o7g1UVVnbmjNvVnzKNivFH1+VsnLI/12yYkX29vvgOYWBgQNOmTUlKSmLMmDHY2Nhw//59Vq5cSaFChTSZo84ytrfBzNWRD5fUU3DmLV6A1ORU3mugXYN9QQdSElMIf6WddQzGZmlHzcTHJGhl/KwSRZG7157hU1J+Y86NRFEkfNMslBY2WNTpoO10dJ4gCDTvUo0NZydiZmFMl+rjWTxlh8Z37mWFgZE+gxZ3ou2oBqz/dQ8zvl+VK2bEZV+vzxZY69evx8/Pj7Zt21K3bl2GDx/OtWvXOHDggKbz03l5yvgScuG2emJ75UfP2IB315+qJX5m9gXtAQh+9M91d5pgbG4IQKyGdwNl15ugD0SERlOkRAFtpyLLgdjLR0h4eB3rVv1RGMrnR2aVayFHVh79hc6DGzBv/Ga+qzuR1y+0t6TgSwRBoNXwugxb2Y0Lu28wpuEsInV0ob7s6/fZAqtdu3YUKFCAy5cvs3nzZiZNmsSKFSsYMmQIw4YN03SOOs2utC+xr98T8+q95LEVekocirrx9qr6CyxLRysMTAwIfqydAsvEwhiAWB0/5+vhrSAAvIq6ajkTWXalREcSuX0xxv5VMPIupe10ch19fT36jw1k6YGfefcqjMAyP7JrzSmdvBVXvqk/E/YMJPh5KD/Vms7bJ7pXDMq+fp8tsM6fP8/OnTspXrx4xtfat2/PgQMHWL58OS1atNBUfjovT6kiCEoFIRfU0xPM0d+dt1efqP1FTKFQ4FDIgeAHmjlg+lNmVmkFVnRErFbGz6on915hbmWCvePnW5fIdFfkziWIqSlYNe+l7VRytRIVCrPx/G9Ua1iK0T0W8kOXuURH6d7vbaGSrvx+aAiCQuDHWn/KOwxlGvfZAqt06dKf/eYqVapw5swZrl+/rs6cchV9cxOsfD0IOa+mAquEB3GhH4nUwHR8Xi9H3j3Uzvla+ob6GBjrEx2uey/UmT299xoPb6dcc2bi1yw1NZWEhESio2OJjIgiOfnLLT7iH90g9uIhLBt3R2kuF8eqMrc0YeKSXkxe2Y/TB67TtuJo7l9/ru20/iFvgTz8fmgIjgXtGNNwFhd239B2SrJviF52H1C4cGHOnz+vjlxyLfuyRXmyZh+pySko9KTd8u1Ywh0EgTdXHmPlZi9p7H+MVTgfN3ZdJzUlVStHQFjYmvExNEbj42ZH0JNgPOT2DGoTH5/A82evePokiGdPX/L0SVDGn6ioaJKTkkn635/MJ06ks7K2IE8ea2xsrcmTJ+2Pva0FLeLPobB2JtXRF5PUVHkHqETqtCyLt78bIzvNoWO1sQyb3J7A72vq1AcQcxtTxu7ox6yefzGlw1K6TW5Bg55VtJ2W7BuQ7QILwM5O7nqcmX25ojxYuIXw24+xLe4laWxDCxPyeOXnzeXHFGmh3rPS8no7khiXSOiLD9i5q7eY+xwLWzMiP0RrfNzsePk0mKoNS2g7ja/G61fv2L/3BEcPn+XG9Xu8eR2ccTvc1NSYAu4uuHs407RFHWxsLNHX10dPTw99fT309JRp/6uvh56eHu/eBhMXl0joh3BCQ8P5EBLO7VsPqWsVhqGbSIs1T3g2uQGmpsZ4erlTuIgHXoXd8fRyp4hPQVxc8+tUYZBbuHjkZeXRX/jzp7X8Pngll07eY8yc7lhY6c7B2YbGBgxd0ZVVo3ewdMRm3geF0nlCU7nQlqlVjgosdXBzc8PIyAgjo7SdPT/++COtW7cG4NGjR3Tu3JkPHz5gZWXFihUrMo7p+bdrmmJVxB19SzNCzt6UvMACyBdQkOfH1bNT8W/jeOcD4M3dN1opsCztzIgMUU/TVinERscTGRZNPhf5A0ZOiaLI7VsP2bf7GPv2HOf6tbvo6elRumwxAts0wKOgKwU8nHF3d8Ehb55sFTxhYWHY2Nj87WtJ714QPLUvZtVbsWNEbe7ffcyD+0+5f/cJD+4/Ydf2w0RHp92WdnDIQ/mKJSlbvgTlK5akiE9B+Q04iwwM9fnhj84EVC7CL70X06b8KCav7ItfQEFtp5ZBoVDQ5ddm2LnYsGzkFkKCwhm4qGNGD75v3bhx4xg7diy3bt3C19eXy5cv079/f+Lj44mPj6dr166MGDECgNjYWLp3786lS5dQKBRMmjSJ5s2bA2m37gcOHMjevXsRBIEhQ4bQp0+fjHEmTpzI8uXLgbQNdRMmTMi4tnTpUiZNmkRqaio1atRg3rx56OnpTJmSfaKOcHV1FW/duvXZa9WqVROXL18uiqIobtq0SSxbtmyWrn3qypUrIiBeuXIlSzmFhoZmLXlRFC//OFs83v7nLH9/djzaf0WcVaiX+PFtmFriZ/ZL8VHi3km7VY6Tnecu3ew+q8UR1aepPLa6PH/4Rixm0l68dPKu2sbIyfOWG1y/ekccMeR30c+rjmhl7Cc6O5QTu3YcLm7asEeMCI+UZIxPn7vUlBQxeOYQ8e3EbmJqYsJnH5Oamiq+evlW3LfnuPjLqOli7WodRTsLf9HK2E90dSwvBjbrK874Y6l4+eJNMSUlRZI8dY3UP3Ovnr8XO1b9RSxp0Ulc9scunXzeLuy+IbZ2GCz+WPtP8WNYTI7jqOP3NbvvU1LEvHLlili3bl3RxcUl4324ePHi4o4dO0RRTPt32tnZiXfu3BFFURTHjRsndu7cWRRFUXz69Kno4OAghoWlvT+tXLlSrF69upicnCyGhoaKrq6u4r1790RRFMUTJ06IRYoUEaOjo8X4+HixZMmS4v79+zPiODo6iu/evRNTU1PFRo0aiQsWLJDsOdAGnf949v79e65evUqHDmlNAVu0aMGzZ894/vz5v17TNPvyxYi894z40EjJY+cPSGvs+urCQ8lj/2Msn/y8vv1K7eN8jrWDBeHB0j9/Unn/NhwAu7xW2k0kF7lx7S6tmvahaoU27N5xmDr1KrN110IeB51g2aoptAysj6WVhVrGjrlwgMSnd7AKHICg//lZCkEQyO+Ul7r1qzB2wiAOHF3Fi3dn2bV/KX37dyIxMZGpvy+kZpX2+BSsxeD+Ezi4/xTx8brdEFeb8rvasfTgKDoOqMfM0esZ2OpPosJ1a21l6QZFmbBnAK8fBvNzvRmEvonQdkpak5CQQN++fZk3b94/ZowjIiIAiImJwcDAIGOGeMOGDfTt2xeAAgUKULlyZXbs2JFxrVevXiiVSmxsbAgMDGT9+vUZ17p06YKpqSmGhoZ069aNdevWAbB582aaNWuGg4MDgiDQq1evjGu5lU7NvbVv357U1FTKlCnD77//jp2dHS9fviRfvnwZ04SCIODi4kJQUBCmpqZfvObm5vbFcfr164elpSXNmzf/15YT4eHhWc5d39sFBIFnh87iULtMlh+XVZYeDjw9eQv7Surtom9T0JYb264TFqZaR/fsPHfpjCz1CX8byYcPH3Ty1szL52ktLAS9FJWfny/JyfOmix4/esGMacvYt+cE7h7OTJ8zmvoNq2T8rkZHS9/8MfNzJ0ZHELdjMcpilYm1dSY2m/+9ivh6UMTXg+49W5GUlMy1K3c4dOA0hw+eYcXSTZiYGFGxcgA1apenWo1y2NpaSfyv0Rx1/cx1HFwbz+JO/NZ/FW0q/My4xd11aoOIbQELRmzsyvROfzGyxjQGr+qIo0f2bv9n57n79Pb1f/n47DURxtLseP347PUXr40ZM4YOHTpQoMDfmycvX76cJk2aMGrUKEJCQli0aBF58+YFICgoCFfX/+8F6ObmRlBQ0BevXb58OeNalSpV/nZt8+bN/xkzt9KZAuvkyZO4uLiQlJTEqFGj6Ny5M3v37gX4R1UtZuoJ9W/XvmTOnDmUKJG1hcpZ/qWwscGqiDsx1x5h06Ze1h6TDa7lvXl+7Fa2f0mzq1BAIc4uPo1ekhILB0uVYmU3VxfP/KQkp6JI1scmr2pjq0NygohSqcDZTb2LodX931idXr58y6QJ81i/dhf5nfIyZ8F4WrdrqLF1FOnPXeiuhSiU+tgH9kNpqvoMWd369tStXw1RFHlw/yn79hxn357j/DB0CgDlK5akbfvGNG5WC3Nz3VncnVXq+pmr16IifiU8GdpuJv2bTGf0nO40aFNBLWPlhI2NDZMOD2VC83lMCVzOqM29KFTSLdsx1OHqqHlEmkgT+0ns5z9gnDt3jkuXLjFp0qR/XJs6dSpTp04lMDCQp0+fUrVqVUqXLo2XV9o648yvgZ++76rjWm6kMwWWi4sLAPr6+gwaNAhPT08AnJ2defXqFcnJyejp6SGKIi9fvsTFxQUTE5MvXtMGh4rFebJ6L6lJySj0pX1qncp4cfOv40S9CsXCyVbS2H8bp1jac/fyxkt8amu2yMmTP+3T2odX4TpZYEWGx2BhbSbvNPuMhIREZv6xjBl/LMPc3JTfp46kc7cWGBpqfgFx/L3LxF07gXW7YZIUV5kJgkBhbw8Ke3sweFh33geHcmDfCbZs2ke/XmMYPvg3GjSuTpt2jahavSxKpbRtW3IjpwL2rDgyhl8HLufn7vO5efExQ39vh4GhvrZTA9JedybuG8RvbRYypuFshv/VnRI1NbtR6nNKTOxDsSK+ksSyvHsbWu7/x9dPnDjB/fv3M2avXr16RZ06dZg0aRLbtm1jzZo1ALi7u1OmTBnOnj2Ll5cXLi4uPH/+PKOjwIsXL6hfvz5AxrWAgICMa+nvyenX0mX1Wq6ltdVfmURHR4vh4eEZf//jjz/ESpUqZfy9SpUqf1vIXqZMmSxd+5Q6F7mLoiiG330q7ijRTgy5eDtbj8uKuIhocbZXb/H2xtOSx84sNTVVHOP3k7hvyh6V4uRk8Wd0eIzYzKKfeHqLdIs7pTT953ViQ9/Bah0jNy5yDwp6I1av2Fa0s/AXfxk1XYyKitZKHqGhoWJKfJz4Zlwn8f3ckWJqaqpGxw8KeiP+MWWxWLp4Y9HK2E8sXKC6OOqHqeKtmw80mkd2aepnLjU1Vdy05LBYyqqz2KHKGPHtyw8aGTer4mMSxF8DF4gtbQaIx9dfzNJjvpZF7unSN5slJyeL1tbW4vHjx0VRFMWQkBDRyclJvHgx7Xn55Zdf/rbI3d7ePuO5WL58uVijRo2MRe4uLi7i3btpG4OOHTsm+vj4/G2R+759+0RRFMUnT578Y5H7/PnzJXsOtEEnFroEBwdTrVo1ihYtip+fHydOnGDVqlUZ1xcuXMjChQvx9PRk0qRJLF26NEvXNM2ysBtGdta8O3VN8thGlqbY+bjw8ux9yWNnJggCzsVdCLr+Qq3jfI6plQkmlsYEvwjV+NhZERMdh4mZsbbT0Clnz1yhWoU2hISEcfDYasZOGKTVW2RRB1aTEhWGVav+Gp9pdHZ2ZMjw7zh/dTtHTq6lcbNarFuzi0plWlK9YlvWr9lJQkKiRnPSJYIg0LJ7DZYfHs2HdxG0rTCKc0fUcwJGThiaGDByzXdUaVOamT1WsWP2EW2npDVKpZKNGzcyZMgQihUrRuXKlRk2bFjGrNTw4cOJi4ujYMGC1KlTh7lz52bcKu3YsSNeXl54enoSEBDA8OHD8fb2BqBq1aoEBgbi5+eHt7c3tWvXpm7dukDaLNm4ceOoUKECHh4e2Nvb0717d+08AVLRdoWnSeqewRJFUbw+cYl4qPFgtXx6PjNtm7i4zDAxVc3bng/+uV/82XukSturc/rJbkiFSeL8getyPK46je6xQOxUfaxax8hNM1hbN+8X7S1LiA3rdBNDP4RrOx0x5M4V8eXgemLkgbXaTiVDQkKiuGfnUbF5o56ilbGfWNClsjhx7Gzx9at32k4tgzZ+5sI/RIm9G08Si5t2EJf9sUvjs43/JjU1Vfxr7A6xmUU/ceXo7f+a29c2gyWTlk7MYH1N8lYuQeyrYKKfv5E8tkvFIsSFRfPh/pd3hEjBLaAAcZFxvH8UrNZxPievex7ePVX/uYs5kRifhKGOrBvRJlEUmT1jBd06DqdJ89ps2bkAGy3vohNTU0jcvQQ9e2fMq7fUai6ZGRjoU79RNbbsXMDF6zto1qIuC+aupph3Pbp1GsH5c9e+isW82WVla87srcPpPrwxM0ev5+fu84mP043ZPUEQ6PBLY7r+3pztMw+zaMjGzx7LJJP9F7nAklieAB+URoa8O35F8tiO/gXQMzYg6PRdyWNn5uLvikKp4NmlZ2od53PyFsjDG10tsBKT0TfQmX0hWiGKIr9PmMeYn/5k8LDuLFz6GwYG2i86Y07vJvXNU6wDByDoaT+fzynkWYApf/7InceH+XXyMG7duEe9Gp2pXDaQdat3kJSUpO0UNUqpVNDvl1ZMXtmPozsv073ORILfqKf9SU406lONvnPacWjFGWb1/IvkpBRtpyTLZeQCS2JKIwPsyvnx7oT0BZbSQB+nMp4Enb4neezMDE0Nye+bn2cXnqh1nM/JV8iB0FcRJOjIp9nMUlNFrRyCrUsmTZzH1EkLGTtxEGPGD9SJHZXJESFE7lmBXskaGLr7aDud/2RhYUaP3u24cG0Hm3fMJ19+B/r0GE1AscasWLr5m1unVadlWZYfSluX1b7iaG5ceKTtlDLU6FiOwUu7cGbrVaZ1Xkpi/LdVBMtU822/W6iJY9VShN96THyI9A38XCoW4c2VJyTGxEseO7MCAe48vfhUrWN8Tv5C9oiiyJvH7zU+9n8RU1NRKLRfUGjL1N8XMuX3hfwyYRADh3TTdjoZIrbMRzA0Qr9GG22nki0KhYIatSqwYescTp7fRImSvgwZMIESPvVZMHc1MTGx2k5RY7z9C7D21ASc3B34ru6vbF91QtspZajQvAQ/rOvB9SP3+S1wAXHRchd/WdbIBZYaOFTyR1AqeHfyquSxXSv7kJqUzGs1H5tToIwH4a/CCH+t2Sl7J8+0TsGvHrzT6LhZIQgC3+ByGQC2bt7PbxPm8vMv/Rg0VHeKq7ibZ4m/dRarZr0RjHJfg890fkW9WPbXVM5f3U6lqqUZ9cMfFPOux9TfFxIRrrsHoEvJ1sGSxXt/olH7SoztvZjJw1aRlJSs7bQAKFnbh9FbevPoahDjms7hY5huHf0j001ygaUGBpZm2Jbw5u2Ri5LHtnS1w8I5Dy9O3pE8dmbuZT0AeHJOs7cJzaxNsMlnRdDdtxodNysUSgUpKd/eYtcXz18xqN94mrWsy9AR32s7nQyp8TFEbJmHUZEAjItX0nY6kvD0KsCCJb9x9fZumrWow59Tl+DnVZvfJ8zl48ev/01d30CPMXO68/PMrmxafITejScTESr9sUo54VOxEON29uftkxDGNJxFePC3UfjKck4usNTEsXoAHy7fJTFC2hcHQRBwq+LL8xO31br7yMzGjLyFHXlyTvPrIVy8HXlxV/pdmKpS6im+uYWuqamp9Oz+M9bWFkyfPVon1lyli9qzktS4j1i16KtTeUnBxTU/U6f/xI17++n6fSAz/1yO//9uHX4La7RafVeDRXt/5MndV3SqPo4Xj3VjRrtgCRcm7hvIx7AYxjWdQ0ryt/V6IMseucBSE8fqAYipIm/VsJvQraovH1+HEfZYvbM8BcsX4vHZx2od43PcfPLx/LZ6W1HkhKGhAYnfwJtbZksXbeTCuWvMWzQRS0tzbaeTIfHFA6JP78KiXif0bPNqOx21sXewZfyvQ7h8azcNGlbj55HTKFW0EWv/2kFKytf95l6iQmFWHRuLQiHQqdpYrp5Rb5PlrHIu7Miv+wfRaUJTlHryUUiyL5MLLDUxymOFbYnCvDl0XvLY+ct4om9iyLMjNyWPnVnBCoUICwol7KVmO6u7FXXiw8twnVvnYGisT0Lct7OL6NWrd4wfM4Mu3VtRoVIpbaeTQUxJJnzDTPTzu2NWuam209EIJ6e8zJw3lnNXtlGylC99e46mYumW7N5x5Kvuo+Xs7sCqo2Mp5OtMz4aT2LPutLZTAsDBLY9OnFco021ygaVG+WqV5cOlOySES3ubUM9QH+cK3jw7qt4Cy6NsQQSFwKPT6l1Q/6kCfvkBeH7rlUbH/S9GxobExX47O4jGjpqOqakJYycO0nYqfxN9YhtJb59jHTgQ4Rs7TNnTqwAr1vzBkZNryetoR8e2g6lZuT3nz0l/PJeusLA2Zf6OkdQLLMfP3y1g7vhNcuNPWa4gF1hqlK9GAKIo8vbYJclju9csxrsbz4l5Hyl57HQmViY4+TlpvMDKV8gBQxMDntzQrQLL1MKYmI9x2k5DIy5fvMmWjfv4+Zd+OnVrMDn0HVH7VmNWqTEGLp7aTkdrSpTyZdvuRezctwRRFKlXozM9u//E2ze6195ECvoGeoxb0IMB4wJZPHkHP3SZqzOd32WyL5ELLDUytLEkT4APbw6ckzy2W1VfBIWg9lmsQpW8eHT6oUY/MSqVCtz88vP0epDGxswKM3NjoqO+/gJLFEXG/PwnPn6etOvYRNvpZBBFkfBNc1CYmmNRv5O209EJlaqU5vDJNcyaN5ajh89Qunhjpk9bSnz81zfTKggC3YY1ZtqaAZzce43v6/1KaLD6PmDKZKqSCyw1y1+7HB+u3JO86aixtRn5Awry5NB1SeN+yrOSF9Efonl3T7NtEwqWcOXJtZcaHfO/WFiZEhsdrzO9edTl9MlLnDtzldFjB6DUoVtwcddOkHD/MlYt+6IwMtF2OjpDoVDQsUtzLt/YRYfOzfht/FzKlmj61a7Pqtm0NEsO/MzboA90qPoLzx7o3o5jmQzkAkvtHKsHICgVvDl8QfLY7jWL8+r8AxLUeNuqQIA7BsYGPDip2R08hUq68vZpiE4tdLe0NQPgY7ju5KQOUyctpGixwtSuqzu9pVJjPxKxdQHGRStg7FtO2+noJEsrC36fOpIzl7ZQyLMAHdsOpkn977h9S7O3+DXBt6QHf50Yh7GpIV1qjtep43VksnRygaVmBham2Jcvxuv9ZyWP7V6rGKlJKTw/dkvy2On0DPXwKFeQ+8fUe/7hpwqVcAXg0ZXnGh3331jZpq1FCg+N1nIm6nP96l1OnbjE0JHf61RvqchdyxCTErFq3lvbqeg8T68CbNo+j43b5vLubQhVygUy+qc/iI39um5vOzrnYcWhMXh456dH/d84vkf6ljgymSrkAksDnOqWJ/z2E2JeSbsA1dzRBoeibjw+oN4dRF7VvHl26SkJMZpb15HXPQ/mNqY8vPRcY2P+F1t7CwDC1LixQNuWLFyPk7MjDRpV13YqGRKe3ibm3D4sG3ZBaZVH2+nkGrXqVOLMpS2MGtufJQvWU75Uc44dkX49qDZZWJsyf+dIKtUtzpA2M9i89Ii2U5LJMsgFlgY4VPZHaWzI6/1nJI/tUcefoFN3SFJj+4DCVQuTkpjC4zOam4YXBAHPADceXHyusTH/i629JQAfgiO0m4iahIdFsmXTPrp+10pn1l6JyUmEb5yFgWthTCs00HY6uY6+vj6Dh3Xn9MXNuLjmo3mjnvT67ic+hGj2jFF1MjQyYPKq/gT2qMnEAcuZO37TV7n2TJb7yAWWBugZG5G3aile7Tsr+S9+wTr+JMcn8fz4bUnjZpangB22bnm4f+yu2sb4HK/SBXh4+bnOnP9nYmaEqbkR799Iu2FBV2zfepCkpGQ6dGqm7VQyfDy6ieT3r7FqPQBBoRtFX27kUdCVHXuXMHv+OA7sO0lp/yb8tWLrV9NPSqlUMHJaJwaOb83iyTsY03PRV78ZRab75AJLQ5zrVyD6+Rsi7z+XNK6lix12Ps483n9V0riZCYKAd/Ui3DtyV6OfDL3LeRD3MZ4gHTmXUBAEHJxsefdKs53tNWXThj1UrVYGewdbbacCQNL7V0QdXId5tRYY5HPXdjq5niAIdOjcjIvXdlC7biUG9BlLg9pdefTwubZTk4QgCHQd2ohfl/Zm38azDGjxxzfTt06mm+QC6wuSwsIIXbSUpA/SvJnmKe2LgY0Fr/ZJf5uwYN2SPD9+S623Cb1rFCH8dTjvHmiuXUPBEi7o6Su5d+6Jxsb8L45OtrzV8NFBmvDubQjnzlylRWA9bacCpPW8itg0G6WlLeZ12mk7na+Knb0tC5b8xo69iwl5H0bjut8za/ryr+ZswwZtKjBv+whuXXrMd3V/JSwkStspyb5RcoH1BYKBATEnThJ68JAk8RR6SvLXLsfr/WdJlfgE9kL1Sqj9NqFH2YIYmBhw9/AdtY3xKUNjAzxKuHD3jO4UWPnc7HjzPETbaUjuxPG0NiI1alXUciZpYi8dJuHRDaxb9UdhYKTtdL5KlauW4fTFzXTq2pyxo2bQqG53XjzXrdMTcqp0VR+WHhjF+zfhdK8zkeDXX9+HIpnukwusL9AzM8OkXBlC9x9AlGidgnODiiSERvLhorSFkKWLHfa+rjzae1nSuJnpG+njWdmLu4c0V2AB+FQoyN2zj3Vm0aqTmz0vnwXrTD5SOXnsAkV8C+nE7cGU6EgidyzGuGQ1jAqX1HY6XzUjI0N+HN2bXQeW8vrVOyqWbsnKZZu/ip9vr6KuLDs0mvjYBLrUnEDQk3faTilbwp685f2dIEn+hD3RbKNoWRo9bSegy8yqVyP45Gmib97CvHgxleNZehfArEA+Xu45jX151eNlVqhBKc7P2ElidBwGZsaSxk5XpKYPm4ZvIDo0GrP/Nd1UN58Khdj65yFePwrGyTOvRsb8N84eDsTFJBAaHEmevFbaTkcy589do0atCtpOA4DIHYsRxVSsmvbUdirfjAoVS3HqwmZGjZzKoH7j2bX9MDPnjSW/k/Z/51ThWjAvK46MoVejyXStOYF5O0bgVdRV22llycGhy7lnZCdJrJfxX9+se24gF1j/wtC7MIbOToTu2SdJgSUIAs4NKvFw8TaSomPRN5PuuI9C9UtwZvIWnh65SeEmZSSLm1mRmj4A3D18h9Kt1TPGpwqXdUepp+D2yUc6UWC5FXIE4Pmjt19NgRUWGsHTJ0H8MEr7TTzjH14j9tJhrNsMQmlupe10vikWFmbMmj+ORk1rMrDPOMqVas7vU0bQrmMTnWo6m10O+W1ZemAU/ZpNpXvdX5m9ZRj+5XT/oPDaf3SlaBE/SWLdvHuLqYFbJIklyzr5FuG/EAQB2/r1iDh9huRIaZpLOtWvQEpiEm+PXJQkXjpzRxscS3jwcLf6bhOa21ngUsKVOwfV1zn+U8ZmhhQs4crtU7pxFIZTAXuUSgXPH+rGzkYpXL2Sdsu6VEBRreYhJiYQsXE2Bh5+mJSpo9VcvmW16lTi7OWtNGxcnX69xtA+cCBhoRHaTkslNnYWLNr7I15FXejdaBKnD9zQdkr/ycbDEXsfF0n+2Hg4avuf802SC6z/YFu7JgBhhw5LEs/YwRa70j683H1KkniZeTYsxcszd4kLU99RLr51i/Lg+H0S4xLVNsan/Kp4cuvkQ53o2WNgqI+Tuz1P7389Bdad2w8xMzPBrYCTVvOIOrSO5PAQrAMH5OoZk6+BlbUF8xZNZM2GmZw/d41KZVtx9kzuPorGzMKEudtGULa6L4MC/2TfRumPL5PJMpMLrP+gZ2mJZcXyfNizT7KFn84NKxN69T4xL4MliZeuYL0SiCI83q++F0K/On4kxSfx8OQDtY3xqWJVvfgYFsPzW681Nua/8fB24sk93chFCnfvPMa7SEGtFTWxsbEkvX3OxyObMK8ZiL6Ds1bykP1T/UbVOHV+E65u+WlUpzvTJi3K1e0cjIwNmLZ2IHUDy/FTt/lsXCzNB2eZ7HPkAisL8jSoT8LLV0TflObWWN5qpdAzNeblrpOSxEtnYmuBc/nCPNh1SdK4mdl52ONQyIFbezU3xe4Z4IahiQE3jmmuqPs3BYs48fjOS22nIZlHD57hVdhDK2PPnTsXCwsL/ujfDT3bvFjUbK2VPGRflt8pLzv3LWHoiO/5bcJcmjbowetXuWtHXmZ6ekrGL+xB2961+W3QCtbM3a/tlGRfKbnAygKzYkUxdMpP6O69ksTTMzYkf91yBO06gSjxMTBejUvz9soTotTYbbxow+LcPnib5ATNHEWhb6iPT8WC3Dh2XyPj/ZdCvi6Evo/8ag59fv78FW7umr89OHfuXPr164e3jQk/bjnG+kR7BH0Djech+296enr8NKYvO/ct4enjF1Qq24o9O49qO60cUygUDJ/SgS6DGzJ1xGpWTN+t7ZRkXyG5wMoCQRDI07A+EadOkxQRIUlM16bViH8fzvtzNyWJl869ZjH0jA14sEvaRfSZFW/kT3xUHA9OaK7gKV7dm3vnnpAQq7m1X1/i6Zt2C+vBrSAtZ6K6yMiPhIdF4uqWX6PjphdX3/m7srdtOb7zd2Xw+EnMnTtXo3nIsqdi5QBOXdhM+Qol6dBmEEMGTCAuLl7baeWIIAgMnNCa70c2Ycao9SyeskPbKcm+MnKBlUU2tWqBIBC2/6Ak8Sy9C2Dh6cKLbcckiZfOwNQIj1rFebDjotqaBeb1csTBMy83dl1TS/zPKV6jMEkJydw+rf3dhM4eDpiYGXH/+nNtp6Kyt2/eA2i031Hm4mpMJS8EQWBMJS++83elX79+cpGl42xsrfhr/XT+mDmKdat3UrtqR54/y50d4AVBoO+YVvQe1YK54zYxb8LX0WRVphvkAiuL9CwtsK5ahQ+790rS2V0QBFybVSf41FXiQ8IlyPD/FW5ahvCn73h/64WkcTPzb1yC2wdukaSh3YT5Czlg72LDtcP3NDLev1EoFBQu5sq9G8+1nYrK3gd/AMDBIY9GxouNjWXgwIH42llkFFdARpHla2fBwIEDiY2N1Ug+spwRBIFu3wdy+OQaYmJiqVqhNQf3S78zWlN6/tiMgeNbs2jSdmaO3iAXWTJJyAVWNuRpVJ/Ed++IuizNLj2nehVQ6OkRtPOEJPEy4pYrjKmDFXe3qG8bcvHG/iTEJHD3yF21jZGZIAj41yzC1YN3dOLFr4h/Ae5ceartNFQWEhIGpB0ArAkmJibMnDmT2yFRjD/1IOO/pSiKjD/1gNshUcycORMTE+ma8MrUx8fXk2On11G2nD9tWvRj8q/zdaKdSk50HdqIYZM7sGL6bqYM/0snXmdkuZtcYGWDibc3xh4efNglzYJIfXMT8tUpx4ttxyRd7K5QKvBuVpaHuy+THK+eGSY7D3uc/Jy4tkNzvXFK1vHh3bMPvHn8XmNjfolPSXdePw8h/MNHbaeiksiIjyiVSswkPFXgv/Tt25c5c+aw5NqLjCJr/KkHLLn2gt8alee7BjU0lotMdZZWFqzdNIufRvdl8m8LaN28H+FhuXMDSId+dflpRhfWzT/IrwOX59piUaYb5AIrGwRBIE+jBkSdv0hisDQ9rNyaVyfu7Qfen5d2sbt3i3IkfozjycHrksbNzL9pSe4duUtcVJzaxsjMt1Ih9A31uHJAswdOfzaXUmltDW5ffqLlTFQTFRWNuYWpxntgZS6y6q87z5JrL5j523i6VS1JyMwhRO5ejpis/Q0NsqxRKBQM+6EHm7bP48rlW1St0Job1zQzuy21wO9rMnb+92xZdowJ/ZbKRZYsx+QCK5usa1RDYWzMB4laNlj5emDh5cqLLdJuebZytSdfQCHublbfbUL/JiVISUzh1j7N9MQyMjXEr7Inl/ff1sh4/8apgD3Wecy5demxtlNRSVxsHCYm6jkc/L+kF1n3wmKYM2cOA34cjf3A6VjU78THY1sI/mMAiS+1v6lBlnU1alXg+Jn12NhYUad6J1Yt35Irb7U17VSFCYt6sn3VSX4fvDJX/htk2icXWNmkNDbGtk4tQvftJzVR9U/YgiDg1rw6705dJS5Y2t5VRVqW59X5B0QGqeckdUtHKzzKFeTKFvWdf/ipgHp+3D37hI9hMRob83MEQaBYmULcOJ+7C4CExCQMDbXXe6pv375ERUXRt29fAASlEotabbAfOgtBoeT99IFE7vsLMTlJaznKssfFNT/7jqykXccmDOw7jsH9xpOYmPv++zVsV5Ff5n7HpiVHmDxslVxkybJNLrByIE+jhiRHRBJxQppO7E71KqA0MpS8ZUPBuiUwMDNS62L3Ei1K8eTsYyLfRqhtjMwC6vuRmpLK5QPan8UqVqYQNy89Jjk59x4dkpSYhIGBvlZz+NyCdoN87tgPmYl5rbZ8PLSe99MHkfgm928q+FYYGRny56zRzFkwnrWrd9Cica9ceWB0085VGDW7G+sXHOKPH9bIRZYsW+QCKweMXJwxL1mCkB27JImnZ2qMU70KvNh2jNQk6bqj6xsb4NW4NPe2nCNVTUVA0frFUBrqcXW7Zha72zha4lW6AOd3au6oni8pXt6LuJgEHtxUXzuMb5mg1MOyXkfsB89ATE3h/R8DiDq4DjEXn4X3rWnfqSnb9y7m7p1H1KragYcPnmk7pWxr2a06P07vzOo5+5kxar1cZMmyTC6wcsiuaWNi7z8g5q40fZncWtUk4UME705IW6gUaVWBmPeRPD+hnhkfYwtjfGr5cmWL+s4//FS5JsW5fuQecR+120Hap0QBDI30uXpGN85IzAlBEHT+DcPAuRAOQ2dhXq0FUfv+4v2MQSS9k4va3KJ8hZIcObkWAwN9alXtwLEj57SdUra17lGLEVM7snLGHmaP3ajzvzMy3SAXWDlkUaY0Bvkceb9tuyTxLAu5YFPMk+ebj0gSL529jwt2Ps7c2XhG0riZlWpRirf33vL6tma6OZdtXJykhGSt3yY0MNTHr3RBrpzWjTMSc0KppyRJwllTdRH0DLBs2BX7QdMRE+IJntaPj0c3IabKs1m5gVsBJ/YfXUXpMsVo1bQPC+flvttt7frUYejv7Vg2bZfc8V2WJXKBlUOCQoF9s6ZEnDhFYog0i8jdWtXkw6U7fHz2WpJ46XxbV+LFidt8fBsmadx0XlW9MctjxuXNmpnFsnexoVBJV85u09xRPV9SqpI3V8/cz7VbuY2NDImPS9B2Gllm4OqFw7A5mFVqTOSuZYTMGkbS+9x5TMu3xtLSnPVbZtO7fwd+GDaZgX3G5rrF7x0H1GfQxDYsnryDBb9t1XY6Mh0nF1gqsKlTC4WRESHbpVmL5VijNAY2FjzfdFiSeOk8GwagZ2zA3U3qWeyu1FdSomlJrm67TEqSZmYUyjfz5+qhu8RqqAfXlwRULkJUeAwPbuTOW1bGJkbExeeuw3oFA0OsmnyPXf9ppEZH8n5qXz6e2I4o5s4i91uiVCqZ8NtQ5i2awIZ1u2lS/ztCP0h7VJi6dRnckAHjArl54THJGnq9k+VOcoGlAqWJCbb16xK6dy8pEpworzTQx7VZNV7uPklyjHSFg4GZEZ4NA7iz6YzaFrsHBJYh+kM0949p5qzA8k39SUpI5tI+7d4m9AvwwMjEkAvHtd/8NCfMzc34GBWTK293GLr7YD9iHqbl6hK5bQEJKyeS/OGtttOSZUHbDk3YdWAZTx6/oE71Trx4nrtmIbsNa8zsrcPQ01dqOxWZDpMLLBXZN2tCSkwsYQcPSRLPrXkNkuMSeLlH2oNTfdtUIiY4Qm2L3fP55CefT34ubbyglvifsnO2oXBZd05t1lwPrs8xMNSnZAUvzh/VftuInLCwNCMlJYUYCQt6TVIYGGHVvDd5+k5GjAoleEpvok/vkuRAdpl6lS5TjANH/yI1NZXaVTvmus7venpycSX7d3KBpSIDBwesKlYgZOt2SV7UjfPa4li1FM82HpJ0VsHexwV7P1dur1PfifelW5fh7uE7RIdGq22MzCq2KMGNo/e13nS0TDVfrp19QIKazn1UJ2trSwDCwiK0m4iKjAoVw6jXZExK1SBi81w+LPiJ5DBpjrOSqU8Bd2cOHF1Ffqe8NKzTjSOH1LcZR/Z5tWvXpmjRohQvXpxKlSpx/fp1ALp164aXlxfFixencuXKGV8HiI2NpW3bthQsWBBPT0+2bv3/9Wipqan0798fDw8PChYsyLx58/423sSJE/Hw8MDDw4PRo0f/7drSpUspVKgQHh4e9OjRg+Rk3d+A82/kAksC9q1akPD6NVHnpZm9KdC6NtHP3vDhorS3nfzaVubFqbtEvvwgadx0JZqVAgGubtXMrFL5pv6IIpzdrt3F7uVr+pEQn5Qr2zXY2dkA8OG9ejZAaJJgYIR1YH/y9P6N5PevCZ7cm5hz+3Ll7c9viZ29LbsOLKVchZK0adGfdat3aDulb8rGjRu5efMm169fZ+jQoXTr1g2Apk2bcufOHa5fv86IESMIDAzMeMy0adMwNDTk8ePHHDhwgD59+hAenraWbvXq1dy9e5eHDx9y8eJFpkyZwv37aTutT548ybp167h58yZ3795l3759HDhwAIBnz54xevRoTp8+zePHj3n37h1Lly7V8LMhLbnAkoCpd2FMfYrwfrM0u0psS3pjXtCZp+v2SxIvXaEGpTA0N+L2evXMYpnamOJb248L689r5E3Nyt6ColU8ObVZM01Ov8SjiBN2jtacO3xLq3nkRJ7/FVjv30t7TJM2GXmVwGHkAoz9KxG+YSYfFo4mOUI9x0XJpGFqasLaTTNp16ExfXqMZtqkRXJhrCFWVlYZ/z8yMhKFIq0saNy4MXp6egCULVuWFy9eZOyW3rBhQ8bxVgUKFKBy5crs2LEj41qvXr1QKpXY2NgQGBjI+vXrM6516dIFU1NTDA0N6datG+vWrQNg8+bNNGvWDAcHBwRBoFevXhnXcis9bSfwtbBv0Zxn4ycS++AhJl6eKsUSBAGPdnW5Pn4x0S/eYubqKEmO+sYGeDcvx93NZyk7sCFKNRyRUrptWRa3X8Cb22+wrWIrefxPVQosxexeqwl5GYads43ax/scQRCoUKsopw/dYMjv7bSSQ07ZO9iiUCh4++a9tlORlMLYFJs2gzEuWoHwDTMJntQLq+a9MQmogSAI2k5P9hl6enrMmPsLTs6O/Dp+DkEvXvPHrFHo62v3KCdtCX70jlf6LyWL9W86derEsWNpR7Xt3//PD/YzZ86kfv36GcVXUFAQrq6uGdfd3NwICgr64rXLly9nXKtSpcrfrm3evPk/Y+ZWcoElEcsK5TBwdCR48xYK/PyjyvHy1y3P3TkbeLpuP0V/6CpBhml821Ti+oqjPN5/Da/GpSWLm86zkhfW+a25tvkKflX8JI//qbINi7HQeAOnNl2m+ZDaah/vSyrWKcb2VSd4E/SBfC55tJZHdunp6ZHX0Y7Xr/79BTi3Mi5SGsORC4jYuoDwtdOIu3EK69YDUVpopxiX/TtBEBj+Y0+cXRzp33ssb14Hs2Ltn5iZ/fO8yq/dmn5/4WBgL0ms4MR//wC1atUqAFauXMnw4cPZu3dvxrXVq1ezceNGTp36+52PzB9UPp1tVMe13EgusCQiKJXYt2jGq3kLSPyuGwYODirFUxoaUKBVLR6v2EXhXi0xsDKXJE9r97w4ly/Mjb+OqaXAUigVlGlbjiNzDxEXGYuxpXpfGI3NjSjToCgnNlyi2eBaWpudKFPNFz09Jaf2X6N1j1paySGnnF3y8fLl19veQGFijk2H4RgXq/i/2ayeWLXsi7F/FXk2S0e1ad8Yx3z2dGg9iBaNe7Fx6xwsrSy0nZZGtZ/TEb8i0nxIvXX3FmvarP/P7+vcuTO9evUiNDQUW1tbNmzYwLhx4zhy5Aj29v9f7Lm4uPD8+XPs7OwAePHiBfXr1//btYCAgIxrLi4uf7uWLqvXcit5DZaEbOrURmlqyvut2yWJ59aqJiIiz7celSReuqIdqhJ84znBN59LGjdd6bZlSU5M5vIWzSx2r9ImgJf33/H0hvZ66ZhbmlCighcn913XWg455VYgP8+eSnMrQpcZ+5XD4YeFGHqVIGzVJMJW/EpKdIS205J9QZVqZdm+ZzEPHzylcb3v+BCS+zdiZIdDobw4+TlL8sehUN7PjhEVFcWbN28y/r5t2zZsbW2xsbFh48aNjBo1isOHD/+j0GnVqhVz584F0hannzhxgsaNG2dcW7hwISkpKYSFhbFhwwZat26dcW3lypXExMSQkJDAsmXLaNOmDQAtWrRg27ZtBAcHI4oiCxYsyLiWW8kFloSUxkbkadyQ0L37Sf74UeV4htYWODeoxLP1B0mR8EgJt2p+WDjZcn2ltIVbOsu8lnhV9+bcqtMameYtVq0wVvbmHF+nmR5cX1Kpnj+XTtwlNjp3dUYvUMCZ58++/gILQGlmiW3nH7Hp8hMJj28RPKknsTdOazst2ReUDPBj1/5lvH37noZ1uvHmtdx6Q0qRkZE0bdoUPz8/ihUrxty5c9m9ezeCINC+fXvi4+Np0qQJxYsXp3jx4oSGpm2GGT58OHFxcRQsWJA6deowd+5cbGzSbrt37NgRLy8vPD09CQgIYPjw4Xh7ewNQtWpVAgMD8fPzw9vbm9q1a1O3bl0A3N3dGTduHBUqVMDDwwN7e3u6d++unSdGKuI35MqVKyIgXrlyJUvfHxoamu0xEsPCxGt1G4pv167P9mM/J+rpa3FHiXbiix3HJYmX7uqyw+Ic7z7ix3fhksZNd2XfZXFIvgHiozMP1RL/U8t+2iJ2LvCDmJiQpJHxPifoyTuxmEl78eDWCzmOkZOfOVVtXL9btDL2EyPCIzU+tpSy+9wlR4WJIUvHiS8H1hE/rPxdTI7O3f/+nNLGz1x2PXzwVPQpVEss5l1XfPb0pbbTyaCO5y6771Paiin7b/IMlsT0ra2xqVWTkG3bSU1UvfGkeYF8OFTy58nqvZLOBvm0Ko/S0IBba05IFjMz1wA3HAo5cGaFZmYHqrUtQ1RoNNcOaa8btLO7A15FXTmy/aLWcsgJLy93AB49fK7dRDRMaW6NbdfR2HQcSfz9ywRP7knc7fPaTkv2GYU8C7DvyEr09PSoV6Mz9+4+1nZKMtl/0okCKz4+nqZNm+Lp6Unx4sWpW7fu3xa7ubm5Ubhw4Yxpyg0bNmRce/ToEeXLl8fT05PSpUtz9672j1uwb9Wc5PAIwg4fkSSeR8cGfHzyipBzNyWJB2BgZoxPq/LcXn+KpDjpO5ALgkD5zhW5vf8mkW8jJI//KTff/LgXc+boGu2+QdZsVpoT+64Rr4bnVF08CrkiCAIP7j/VdioaJwgCJiWrkXfkQgycPQldMpawNdNIjdXMaQSyrHN2dmTvoRXY2lnTsE43rl7OncdTyb4dOlFgAfTo0YMHDx5w/fp1GjZsSI8ePf52ffPmzVy/fp3r169nLJgD6NmzJz169ODhw4eMGDFCJ+7ZGjk7Y1m+HO83bkZMUf1wZdsShbEq4s7jVXskyO7/Fe1YjYSoWO5vV09RUqplafSN9Dm35qxa4n+qWvsyXDlwh4gQ1de/5VTtZqWJi0ng9IHrWsshu0xNTSjg7szdO4+0nYrWKC1tsf1uLNZthxB36yzBk3sRf0+751zK/snewZbd+5fhUdCVJvW/49SJ3DVbLPu26ESBZWRkRP369TO2TJctW5anT//70/T79++5evUqHTp0ANJ2ITx79uxvs1/a4tC2NQmvXhNxRvXiQhAEPDo24MOlO0TceyZBdmksnfPgXqs411ccVcvhuEbmRpRqVZrzq8+SnKj+M6UqtyqFoFBwYr32XnRdCzniVdSVA1ty160mH99C3L6V+476kZIgCJiWqY3DyIXo5XXhw8JRhK+fQWq8ds+6lP2dlbUF23YvJKBMMQKb9eX40dz1uyb7duhkH6xZs2bRqFGjv32tffv2pKamUqZMGX7//Xfs7Ox4+fIl+fLly2jnLwgCLi4uBAUF4ebm9sX4/fr1w9LSkubNm9OiRYsvfl/62Uo5Ym+HkZ8Pb/5aQ6pPEZX77Rj5e2CY15a7S7ZS+GfpGo96tAjgSY9F3Np9HqeKhSWLm/7c+Tbz48yKU5xdfxrfhkUli/8lxWt5cXDFGSq2K661HkeVGxRl5Z/7eRX0BhMzo2w9VqWfORV4FHRhxdIthIaG5treUNI9d0oUgUMxuHaMmIOrib13GYNGPVC6+0oUX7do62dOVXMXjaPP92No06Ifi1f+ToWKJTWeQ3aeu/RddrJvh84VWL/99huPHj1iwYIFGV87efIkLi4uJCUlMWrUKDp37pzRafbTN4OsLASfM2cOJUqUyFI+qvxS6HfuxONhI9F78hTL0gE5jpPOs3NDbk1dheGQjpjml6bDr3UVa24WL8DjTRco2ri8JDHT2djYYGNjQ6FKnlzbeJXKnapKGv9zGvWsxi+N5/Dufjg+FQqqfbzPadapBot/38WNM09p0LZith+vjRfisuVLMuOP5cREx+Piml/j40tF0ueuZkuS/SsSvn46Cat/w7RiQywbdUdhaCzdGDoit775r9s8mw6tB9Gz689s2DqHSlWkb578X3LrcydTP524RZhu2rRpbN26lX379mFi8v8dwNObnOnr6zNo0KCMlv3Ozs68evWK5OS020+iKPLy5Uud6f5qVqwoJt6FCV6zTpIdgM6NqmBgbsrTNfskyC6NIAj4d6vJ6wsPeX/7hWRxM6vYrTJB117w4upztcTPzLeyJ/kK2nNgqXoOtM6KfC55KF7Ok70bz2kth+zyL+EDwNUrd7SciW7Rs81Lnt6/Y9WiD7EXDxE8pQ8JT3Lfod5fKyMjQ1ZvmEG5CiVo3bwfp09e0nZKMlkGnSmw/vzzT9atW8ehQ4f+drp3TEwMERERGX9ft24d/v7+ANjb2+Pv78/q1asB2LJlC25ubv96ezA7xI9hKq1NEgSBvO3bEnPnLtE3VX9R1jM2pECb2gRtP05CeJTK8dK51yqOhZMt15YdlixmZkVq+GDrasupZSfVEj8zQRCo060C53feIOK9dM9RdtVvXZ7zR24R9j5Sazlkh72DLW4FnDh/9qq2U9E5gkKBWaXGOAyfj9LShpA5I4jYuoDUxNzVUPZrlV5klS3vT+vmfTlzSt6cINMNOlFgvXr1iqFDhxIREUG1atUoXrw4ZcqUASA4OJhq1apRtGhR/Pz8OHHiRMbBlAALFy5k4cKFeHp6MmnSJJYuXSpJTilhwSSOb0/8ZdWKDosypTH2cCd4zTpJ8ioQWBsEgWcbDkoSD9LODyzetSaP9l0l6nWoZHEzx6/QpRI3dl0j8p36C46qbcugUCo4vFJ7M0i1m5dBEAT2b849C3DLVSjBuTNygfUlenb5sOs3Bcsm3xN9bi/vp/Yl4Zn228LIwNjYiDUbZ1K6bHECm/WRiyyZTtCJAsvJyQlRFHny5ElGK4YLF9KOPXF3d+fatWvcvHmTW7dusWPHjr/NUHl5eXHu3DkePnzI5cuX8fHxkSQnpY0Dgrsf0dsXqTyL5dCuDR+vXiPm3n2V8zKwMselaVWebTxEcqx0n6CLtCiHgZkRN9R0fE7pNmXRN9Tn7Cr1Nx41tzGlYsuSHFxxhpRk1dtk5ISVrTkV6xRj97rccwxL+QoluXXzARESzo5+bQSFEvOqzXEYNheFiTkhs4YRsXMpYlLu6Xv2tTI2NmLtplkZRZZ8u1CmbTpRYOkqvbqdSH71mPjLqjUMtapUESMXF96tXitJXh4d6pEcHccLCQ+B1jcxxK9dZe5sPEN8pPTb0o0tjCndpgzn/jqjlsamn6r3fWU+vArn0j7tNSNs2K4id68+48m911rLITsqVy2NKIqcPX1F26noPH0HZ+wG/oFlw65En9hO8LR+JAZ9220udEF6kVWmXNrtQrlPlkyb5ALrXygK+GLgW5bo7QtVm8VSKHBo15qoCxeJfaR6M0cTRzucGlTk8V97SEmQrlgp1rEaqckp3FqrnrVSFbtVITY8litb1T9971HcGa/SBdi3SP3rvr6kcj1/LKxN2bVGewvus8PFNT8urvk4cVy7h2bnFoJCiXmNVjgMm41gYMj7GYOJ3LMCMVmezdKm9NuFZcuXoG3L/ly6eEPbKcm+UXKB9R/Mm/aUZBbLulpVDPI58k6itViFujQiISySoB3SnSVokscC7+bluPnXcZITkiSLmy6PWx6K1Pbl5OLjkp6r+CX1elTm1smHBN17q/axPsfAUJ+6rcqxZ91pkrV0qzK7qlUvx/GjuWf3oy7Qd3TDftB0LOp24OPRzbz/YwCJr55oO61vmrGxEX+tn45fscIENuv7TZ9SINMeucD6Dwae/tLMYimV5G3bhsjTZ4l7qno3djNXR/LXKsvjFbtITZKuS7p/t5rEhn7k/jb1LM6u0qMqwY+CuX/snlriZ1auSXGsHCy0OovVpGNlQt5FcO5w7tjaX61mOR4+eMbLl9opSnMrQamHRe122A+ZBYKC938OIGr/GsQU9Z9gIPs8ExNj1m+ejZOTIy0a9eL5s1faTkn2jZELrCwwb9Y7bRbr0iGV4tjUqoFBXgfpZrG6NyXufRgv90i3kNrKzZ6Cdfy5uuQQqWqYdXEv44FzcReOz1fPYvrM9A30qNOtAsfXXyQ6PFbt431OEf8CFCzixI6/pJtpVKcqVcuiVCo5cvCMtlPJlQzyu2M/ZCbmNVsTdXAN76cPIuntc22n9c2ytLJgy84FmJqZ0KxhD969DdF2SrJviFxgZYFBoWIY+pX/3yxWzosOQU8PhzatiTh5ivgXQSrnZeHhhGP1AB4t2y7pLFbJnnWIDArh0T7pFzsLgkD1PjV4fPYRQdfV09g0s9pdK5KSlMKR1dq57SUIAk07V+X4nquEhej+7jwrawtKly3Gwf3am/XL7QQ9fSzrd8J+0AzE5ESCp/Un6tB6SQ5+l2WfvYMtW3cvJDExieaNexIeljt608lyP7nAyiKz5r1Jfv2U+Auq9Z+yqVML/Tx5JJvF8vyuKbGvQ3i1T7oZB3sfF1yr+HJ5/n61HALtW7coeQrYcXSuehqbZmbtYEGFFiXYu+ik1lo2NGhTAYA963PHrFDtupU5cew88fEJ2k4lVzNw8cRh6BzMqzYjau8q3s8cQlLwS22n9U1yccnHtt2LeB8cSqumvfn4UT7AW6Z+coGVRQYefhgWq8hHFWexFPr6OLRtTfjxE8QHqf5ia+npSt6qpXi0fKekt/QC+tQj7PFbnhy6LlnMdAqlgmp9anB73y2CHwdLHv9TDXtVJSQojIt7tLMOyjqPOdUbl2LbimMaWdyvqjr1KhMbGy9vcZeAoG+AZaNu2A38AzE+huCpffh4bItKryGynPH0KsCWHfN5+PA5HVoPlD9AyNROLrCywaxZb1LePifu3H6V4tjWrY2+jY1kfbE8v2tKTNA7Xh+U7jaYo787TmW9uDRvn1qKglItAjB3sODYPNV2Z2aFh78LRcp7sHv+MbWP9SXNu1Tj6f03XD+v+7uZCnt7UMDdmb27j2s7la+GoZs3DsPmYlaxEZE7lxAyezhJIbmjP9rXpJh/EdZvmc2lCzfp2mEYSUnS75aWydLJBVY2GLj7YOhflejtC1TaHaQwMMChXRvCjx0n7vlzlfOy8i6AQ+USPFqyHTFFult6AX3r8+HeK54fk37mR89QjyrfV+XKlkuEvw6TPP6nGvapxr1zT3l0Rf3rvj6ndNUiOBWwZ8tS9S/uV5UgCNRvWI19u4+RqoZbxN8qwcAQq6Y9sOs3lZSP4byf0ofokzvUchte9mXlK5Rk1bo/OXLoDAP6jM0Vs8qy3EkusLLJvHkvUoJfEnd6t0pxbOvVwcDejnerVkuSl9f3zYh+8VbSWaz8pQuRr1RBLs7dq5YXoXIdK2BoZsSJheqfWQqo74eDWx52z9POLJZCoaB5l6oc3HqBiNCPWskhOxo2qUFw8AcuXpCbNErN0MMXh+HzMSlbh4it8/kw7weSQ99pO61vSs3aFZm3eCLr1+xi0sR52k5H9pWSC6xs0nctjFFATaJ3LEJMzvn0skJfn7wd2hNx8jSxj1VvSmhVxB2HisV5uHibZLNYgiAQ0Lc+72+94MXJO5LEzMzQ1JBK3Stzfs05Pn5Qb9GhVCpo2LsKZ7Zd48OrcLWO9SVNO1dFFEW2rdT9lg2lyxQjb147dm1X/0aEb5HC0AjrFn3I02cSyaHvCJ7Sm+gze+TZFA1qGVifMeMHMuX3haxZtV3b6fzDywfveHL9pSR/Xj6QC3ht0NN2ArmRWbNefPi5FbEnt2NavVWO49jUrknw+o28XbEKj4njVM7Ls0dzTnUaw+uD53CqV0HleADO5QuT19+dS3P34lrZB0EQJImbrlLXypxYcIxTi49T/8dGksb+VPUO5Vj/2152zz9Ol1+bqXWsz7Gxs6Buq3JsWHiIjgPqoaen1HgOWaVQKGjYpAbbtx5kwu9DUSjkz2LqYORZHIeRC4jcsZiITbOJu3kG6zaD0bO203Zq34RBQ7vx4vlrBvUbT778DlSrUU7bKWWY+f1KrJT2ksSKSHkvSRxZ9sgFVg7oOxXEqGxdoncsxqRiIwQDoxzFEZRK8nbqwIvfJxNz9x6mRbxVysvaxyNjFit/7XIIStXfFAVBoHTf+uz8bg4vz9zDpWIRlWNmZmJtSrlOFTiz8jTV+tTA2NJE0viZGZsZUqd7RfYuOknLYXUws1bfWF/Svk8ddq05xbFdV6jVrLTGx8+OZi3rsGThei5dvEmZssW1nc5XS2FkgnXrgRgXq0j4+ukET+6JVdOemJSpLfkHGtnfCYLAtBk/8frVOzq3G8Lewyvx9fPUdloADFzcGV9vP0li3b53i2PtNkoSS5Z18sfSHDJv3pvUqDBiDm9QKY51tSoYubnxZvlKSfLy7NE8bS3WAenWYrlUKoJDUTcuzFbPLYwqPaqRnJTC6WXqPxS5Ye+qpCSlsG+JdhppFi7uRsmKhVkzV7WdqJpQtpw/jo72bN2k+7l+DYwKl8RhxAKMi1YgfP10QhePISUyVNtpffX09PRY9tdUCrg707pZH16/0o3bac5eefEo7izJH2evvNr+53yT5AIrh/QcXDCp3JToXctIjc35+iFBocCxS0eir13n43XVFxRb+3jgUMmfB0u2SdYXSxAESvdvwLtrT3l59r4kMTOzsLegTNuynFxynPjoeMnjZ2Zlb0GNjuXYPe848THa6YPTvm8drp97yO0run0gsEKhoFnLOmzbsp/kZPlMPU1QmJhh024ott+PI/HVY95N6knM5SPy2iw1Mzc3ZcPWuSiUSgKb9yUyUvc3osh0n1xgqcCsaQ/ExHhi9qo2+2RZoTwmnoV4u2yFJC+kXj1bEPPiLa/2SndGoWtlHxyKunFx9m61vNhX612dhJgEzq5Sf7fzpgNrEhsVx6EV2umsXqVBSZwK2LN6tu7PDLUMrE/I+zBOHLug7VS+KcY+Zcg7chHGRQIIXz2V0GUTSPmonc0Z34q8jnZs3DaXVy/f0aX9UBIT5R5ZMtXIBZYKlNb2mNZuR8z+1SpN5QuCgGO3LsTcvUfUBdW7Z1t5F8CxRmkeLNpKikQvEumzWG+vqmcWyzq/DaValebEwqMkxiVKHj8zexcbKrcOYMfsoyQlaP5FVKlU0K5PHQ5tvcDblx80Pn52FC9RhIKFXNm0YY+2U/nmKEzNsek4Ettuo0l8dofgST2JvSafEalO3kUKsnr9dM6cuszgfuPlmUOZSuQCS0VmDbuCnj7ROxapFMe8ZAnMivrxdvlKSRoPFu7dkrjgUIK2Sdf3ybWyDw7F3LgwSz2zWDX61SQ2PJbzq89KHvtTzQfXIvxdFEfXaGdmpmmnKpiYG7FunmpnW6qbIAi0btuI3TuOEB0dq+10vknGRSvg8MNCDAsVI2zlb4Su+JWUaPnAYnWpVKU0cxZOYO3qHfwxebG205HlYnKBpSKFqQVmDbsRe2wLySoc5Jo+ixX35CkRJ1T/lGpeID/ODSrxcOl2kuOkWdckCAJl+jfk3bWnBJ2+J0nMzGxd81CyRSmOzT9CUrx6Z5byF3KgfDN/tk0/RHKS5s+FMzEzolX3GmxZfpSPkbpduAS2bUBMTBy7d8g9sbRFaWaFbZefsen0IwkPrxM8qSdxN9X/QeRbFdimAT+O6sOv4+ewZ6fun74g001ygSUB01ptUFhY83HLXJXimPn6YFE6gLcr/kKUYFGxV8/mJEZG82zdAZVjpXOpVIS8/u6cn7FTPbNY/WsR/SGac6vVvz6q5bA6vA8K4+TGS2of63Pa9K5NQnwSW5bp9gu4i2t+KlYOYO3qHdpO5ZtnUqIKDj8sxMDNm9Bl4wn7azKpMfKCbHUY9kMPGjetSa/vfuLe3cfaTkeWC8kFlgQEQ2PMm/Yi/vx+kp6rtj7JsVsXEl6/JvTAIZXzMnG0w61FDR6t3E1iZLTK8SBtFqvsoEa8v/WCp4ekP0bFzt2eki0DODrnMAmx6t3l5+qTj9INi7Llj4OkSHiGY1bZO1rToE0F1sw9QFKibu/Sa9+xCadOXOL5s1faTuWbp7Swwbb7GKw7DCfu7iXeTe5J3B15E4LUFAoFcxdNxMUtP+0DBxIeJt+WlWWPXGBJxLhyE5SObkRtnKlSHJOCHlhVq8K7v9aQmqB6gVGoe1PElBQer1Tt7MTMnMsVxrl8Yc7P2EmqGgqT2oPrEBsRy5kV0u2C/JJWw+rw9kkIZ7ZeVftYn9NpYANC3oazd4Nu3+5p3KwWFpbmLF+6SdupyEj7oGNaqgZ5Ry7AIL8HoYt/IWztn6TGxWg7ta+KmZkJazfOJCIiiu6dR8jtSmTZIhdYEhGUeli0GkDi7XMkqPhpMl+XziSFhxOyY5fKeRnZWuLRrh5P1+8nPkS6bd5lBzch7PFbHuyQ/pOzjbMtZdqW5djcw8RFxUkePzMPfxdK1vFh89QDWpnF8vDOT5X6/qycsZtUCTY3qIuJiTEdOjVl9cptxEm0pk+mOqVVHmx7jMe6zWDibpwmeHJP4u9f0XZaXxVXNydWrJ7GyeMXGTtqhrbTkeUicoElIcOS1dD3KMrHDTNV2glomD8feerXI3jdepI/qr6+wqNjA5RGhjxYvFXlWOnyFnPDvVZxLszeLVkriMxqDqxDYnwSJxcflzz2pwJH1uXVg3ec235N7WN9TpchjXh6/w0n92ln/Kzq3qM1YaERcmd3HSMIAqZl6+DwwwL07J35sOBnwjfOIjVetzdP5CaVq5bhtynDmTtrFevX7NR2OrJcQi6wJCQIAuatB5L0/C7xF1VbQ5W3U3vEpGSC165XOS99cxMKdW1M0PbjRL94q3K8dOUGNyb6bTi310t/K88yryUVOlfkxKJjxISp97ZHoZJu+Nf0ZtOU/VqZRfIv54l/eU+W/aGe9hdScfdwoVadSiyct1an8/xW6Vnbk6f3b1i16k/s5aMET+lN/CPp10l+q77v1ZaOnZsxqN94rly6pe10ZLmAXGBJzLBwSQyLV+bj5tmIyTmf2dG3tsa+dStCtu8k4Z3qZ2MVCKyFYR4r7s+Xbg2NTUFHCjcry6V5e0lUwxE31fvVBBGOzlN/e4DAH+rx8v47zm2/rvaxPqfr0EbcvPCImxd0+/icXn3bc+vmfc6ekW9D6SJBEDCr0ACHkQvQs3Hgw9yRhG+ZR2qCfFtXVYIgMHXGzxTzL0KH1oN4++a9tlOS6Ti5wFID88ABpIS8IfaoasWMfcvmKM3NeCvBQdBKQwMK92zBm0MXiLj7VOV46cr0b0hidDzXVxyRLGY6MxszKveoyunlp4h8p94dPF4BBfCv6c1GLc1iVapTnEI+zqyZrduNR6vVKIdXYXfmz16t7VRk/0LPNi95+kzCqnlvYs8f4P3UPiQ8va3ttHI9Q0MDVq39E4VCoGObQSQkqPfUCVnuJhdYaqDvVBDjSo35uH2RSgdBK42NcezcifAjx4h9+EjlvJwaVMKsQD7uztmgcqx05vls8GtfhatLDxEXJn0/nio9qmFgpM+hGdL18vqS1j/W5+W9t5zdqvm1UIIg8N2IJlw+eZ+bF3W3544gCPTq24G9u4/x7GnOG+vK1E9QKDCr3AT7EfNQmFsRMns4EdsXISb+c3dybKy8XiurHPLmYfWGmdStXxV9fT1tpyPTYXKBpSbmLfpAYjzRu5aqFMe2bm2MXFx4vWiJyuteFHpKvPu25sOF27w/L90aglK96iIIApfm75MsZjpjC2Oq96vJhXXn+PBcvef2eZZyo0TtIqz/fS8pyZrv7l6zWWlcPfOy4NctGh87O1q3a4i1jSUL5q7RdiqyLNC3y49d/6lYNv6O6NO7CJ7Wl4RM/fqWLFmChYUFc+eq1ij5W+Jf0odhP/RAoZDfQmVfJv90fIGYkozy1gbEmJy9qSut7TFt0IWYA2tIDnmd4zwEpZJ8PboTff2GJAdB561aEuuihbg3a70kZx4CGFubUeL72txae5JINRxeXLFLJczymLN/2l7JY3+q3aiGvHn8XitnFCqVCjoPqsvZw7e4fv6hxsfPKmNjI7p/35o1q7bJzRdzCUGhxLxaCxyGz0MwMiVk5hAidy1jzqyZjBw5Em8bU/r16ycXWTKZhOQC60viI9E7NY2kY9NyHMK0fmcU5lZ83DhLpVQsypTGrFhR3ixeipii2syKIAgUGdiWyAfPebVPuuNoineujpGVKRdmqt6761P6xgbUHlyX69uv8uZuzovVrHAv5kzFFiXYMGkfCXGaX19RuUFxPH1dmD9Bt2exvu/VhuTkFJYt2ajtVGTZoO/gjP3AP7Go34nZM/6k/8BBfOfvyt62ZfnO31UusmQyCckF1hcIprYkl+lF8uWVpL5/kKMYCkNjzFv2J/7CARJV2C4tCAL5e35P/IsgQvep3oPItrgXjtUDuDd3I8lx0hxHo29iSJn+DXmw6xIhd6Vfm1O6dRls3fKwd5J0Hem/pO3PDYl8H8W+Raofup1dCoWCXqOac+H4HS6dvKvx8bPKzt6WNu0bs2jeWuLj1XukkUxaglLJXw9DGX30Dt/5uzKmkheCIDCmkpdcZMlkEpILrH+RUqwjgqUTiQfG5jiGcYWG6Ll5E7V2mkq35Ew8C2FdszpvV64mRYIFqd4D2pAQGsnTtdKtm/JuUR4rNzvO/rFdspjplPpK6g6vz70jd3mq5lYGjh521OxUnq1/HiImQvOLf6s1LEkR/wLMm7BZp/tN9RvYiZCQMDaslX7WUqY+sbGxDBw4EF87i4ziCsgosnztLBg4cKC88F0mU5FcYP0bPQP06/xC6qMjpDzMWRsCQaHAou0Qkp7cIv68arNP+bp2ISU6muANqveyMnPOS4HWtXm0YhfxHyJUjgdpRVC5IU0IOnWXd5ekL4KKNSpOfl8ndv+6U+2FR6uRdUlKTGbbTPX34PqUIAj0HdOSa2cfcvbQTY2Pn1UFC7nRqEkNZs9YSYqKt65lmmNiYsLMmTO5HRLF+FMPMn6XRFFk/KkH3A6JYubMmZiYmGg5U5ksd5MLrP+g9G6Awq08iQd+QUzJWeNQQ+8ADEtWI2rjLMTEnDf8M3Cwx75FM95v3kpiSEiO46Tz/K4ZCn09HizYrHKsdB61/cnr787V2fskPwhaoVDQ4OdGvLjynFv71Ft42OS1pGHvquyef5ywt5pfyF2+VlGKl/Nk7njdnsUaOKQbTx6/YPdO6fugydSnb9++TOvXlSXXXmQUWeNPPWDJtRfMmTOHvn37ajtFmYYMGDAANzc3BEHg9u3/75UmiiJjx47F09MTX19fqlatmnEtNjaWtm3bUrBgQTw9Pdm69f+PYUtNTaV///54eHhQsGBB5s2b97fxJk6ciIeHBx4eHowePfpv15YuXUqhQoXw8PCgR48euf5wbbnA+g+CIGBQbwLih0ckX8p5w0+L1oNIjfxA9P6/VMrHoW1rlMZGvF2xSqU4AAYWpnh934wXO44T+ShI5XiQ9nxV+rEF4Q/fcn/7eUliZuZVuTCFq3mz59edJCeq95ev6cCaGBjps2GS9O0n/osgCPT7pRV3rz3j6M7LGh8/q0qU8qVKtTJMn7pUpwtB2d8lh7yhtWEIU3q0Y8m1F9Rfd14urr5RLVu25PTp07i6uv7t67NmzeLWrVvcvn2b27dvs27duoxr06ZNw9DQkMePH3PgwAH69OlDeHg4AKtXr+bu3bs8fPiQixcvMmXKFO7fT2sLcvLkSdatW8fNmze5e/cu+/bt48CBtB6Hz549Y/To0Zw+fZrHjx/z7t07li5Vrc2RtskFVhYoHP1QlmhP0rEpiLHhOYqhl9cV01ptidm1jJSInM8+KU1NyduxA2EHDxP7SPXmo24ta2LqnJc709dI9gaZt7g7rrWKcn76ThJjpD+io9HoJoQGhXJ2pfRnIGZmamlMq+F1OPLXOV49VP24ouwqVcmbstV9mTt+EykSzwZKafCw7ty4fo8jh6TblSpTH1EUCd80C6WlLUNnL2Xy5MncC4uRi6tvVOXKlXFycvrH16dOncrkyZMxMDAAwNHRMePahg0bMn5WChQoQOXKldmxY0fGtV69eqFUKrGxsSEwMJD169dnXOvSpQumpqYYGhrSrVu3jMJt8+bNNGvWDAcHh7SGxr16/a2oy43kAiuLDGr8AKnJJB2bmuMYZk2+B31DPm5WbYdOnob1MXJx5tW8hao3H9XXw2dg27Tmo6evqxQrs+J9ahMfEcPVxdIf/ZLXy5Gy7cpxcMYBYsPVexB03e8qkSe/FavHaWchd/9xgTy9/4bda9VbTKqictUylArwY9rkxfIsVi4Qe/kICQ+vY92yHwoDI7777juioqLk4krHPLv/mnvXnkny59n97LW3iYqKIiQkhG3btlG2bFnKli3Lhg3/fwJIUFDQ32a83NzcCAoKUtu13Eru859Fgpk9+pUHk3TkN/QCOqOw98p2DIWpBebNexH112RMa7ZB361wznJRKsnfpxdPRv5ExIlTWFetnKM46RwqlyBPqSLcmb4Gu7J+KCQ4/sHM0ZriXWtwdelhfAIrYp7PRuWYmdUZVo+r265wcPoBmo5vLmnszPQN9Wk7uiEzv1/FvfNP8S7rrraxPsenhDs1mwaw4Nct1Assh4GhvkbHzwpBEBj2Q0/atOjH8aPnqVajnLZTkn1BSnQkkdsXY1yiKkbepTK+Li9o1z0/dp+PiUKa183Y1LBsfX9SUhKJiYnExcVx/vx5goKCKFeuHD4+Pvj6+gJk7D4F/vHBSh3XciO5wMoGvXI9SL68isT9YzDsuP5vPwxZZVKtJbGHNxK1dio2Py7JUQwAi5IlsChXhteLlmBZtjQKI6McxYG0H2qfIe050X4Uz7ccwb1NnRzHyqxUz7rc23KOs9O2UefP7pLETGduZ0GN/rXYP20vFTpXxM7DXtL4mVVqWZKds4+yavR2fjs4OMf/zXKq75hWtCg1ks1Lj9KujzT/baRWu24lAkoXZeLY2VStXlbjz5EsayJ3LkFMTcGqWU9tpyL7D78v7U0Rb19JYt29d5uW7bO+ltTW1hYzMzM6dOgAgIuLCxUqVODy5cv4+vri4uLC8+fPsbOzA+DFixfUr18/43ufP39OQEBAxjUXF5e/XUuX1Wu5lvgNuXLligiIV65cydL3h4aG/uNrSXf3iDGj7cTk+wdznEf8jTPim47FxNiLh3IcQxRFMf7Va/FanQbim1WrVYqT7tq4ReLeaj3EhMholWOlP3e3N54WZxXqJb65+kTlmJ9KjE0QJwT8Ii7tuljy2J+6fvSe2Myin3huxzW1jvO5nzlRFMWxvReJVV16i9FRsWodXxWnTlwUrYz9xJ3bVPu5zqkvPXeyNHEPr4svB9YRo8/u/dvX5ect59Tx3GX3fUqqmK6uruKtW7cy/v7999+Lc+fOFUVRFMPCwkRXV9eMx//yyy9i586dRVEUxadPn4r29vYZz8Xy5cvFGjVqiMnJyWJoaKjo4uIi3r17VxRFUTx27Jjo4+MjRkdHi/Hx8WLJkiXFffv2iaIoik+ePBEdHR3Fd+/eiampqWKjRo3E+fPnS/YcaIO8BiublIXroShQicT9YxCTc3aUimHR8hgWq8THdX+q1LbBMH8+7Fo0I3j9RhKD3+c4TrrCfVqRmpTMw8Vb//ubs8i7eTnyeDtx6rdNkp19mE7f2IAGPzfmzoFbPD6j+oL/f1OsWmGK1/Dmr7E7SU7SfM+nnj81J+ZjHH/N1vyOxqyqWDmAGjXLM2HsrFy/vfprIyYlErFxFgbuvpiU0c1ZUJl29O3bFycnJ169ekXNmjUpWLAgAL/99hv79u3D19eXSpUq8eOPP1KiRAkAhg8fTlxcHAULFqROnTrMnTsXG5u025kdO3bEy8sLT09PAgICGD58ON7e3gBUrVqVwMBA/Pz88Pb2pnbt2tStWxcAd3d3xo0bR4UKFfDw8MDe3p7u3aW986Fx2q7wNEmKGSxRFMWUd3fEmDEOYuLpeTnOJenNc/FNl5Ji1LYFOY4hiqKYHB0t3mzVRnw68TeV4qR7uHS7uDOgo/jx2WuV4mR+7l6efyDOKtRLvL/jgqrp/UNqaqo4s9Gf4rSak8WU5BTJ42f27NYrsbllf3H3/GNqG+PfPhH/8eMasUyebmLwmzC1ja+qG9fuilbGfuLKZZs1PrY8E/NlEXtWii+HNBAT3774xzX5ecu5r2kGSyY9eQYrBxQORdAL6EzS8WmI0TmbOdJzdMW0bgeidy0j+cObHOeiNDUlX/euRBw7QfSt2//9gP/g3r4exg423Jm+RuVY6ZzKeOJRuzhnpm4jKVbac+sEQaDJ2Ga8ufuaSxsvSBr7U26++anZqRwbft/HxzD17l78nO9GNMHYxIA5Y3X3gOWixb1pEViPSRPnExsbp+10vnmxsbEkvXvBxyMbMa8RiH7eXL6mRSbLReQCK4f0q48EhR6JByfkOIZZ4+9RmFrwcd2fKuViU6smJoW9eDVnPqKKR5YoDQ0oMqgdwaevEyxh24YKI5oTFxbNFTW0bXAt4YZ/s5Lsm7yH+I/S993KrO3ohqSmprLu1z1qHedzLKxM6T2qBTtXn+LO1acaHz+rRv3Snw8fwlgwV7oiXZZ9c+fOxcLCgj/6d0PPxgGLWm20nZJM9k2RC6wcEkxs0K/5EynXN5ASdClHMRTGpli0GUT8pcMk3Mn57IugUODUtzdxT54Quu9AjuOkc6weQJ4AH25PW0VKYs6OB/qUpYsd/l1rcHXJIT6+yd6W4axo8GMj4j/Gc2TOIcljZ2ZlZ06rEXU5uOw0L+7kfOYxp5p3rUbBIk5MHbFaZ7cxuxVwotv3gcz4YxmhH3LWmFemmrlz59KvXz+8bUz4cfNR1ifaI+gbaDstmeybIhdYKtAr2QHBsSiJe35ETM3ZzJFRufroe/oTtXoyYnLOixlT78LY1KrJm2UrSP74McdxIO22m9+ITsS++cDT1XtVipVZqV51MbQw5swU6RbRp7POb021PjU4ufg4oUGhksfPrH7PKjh62LF0pObPCdTTUzJ0Unuun3vIwS3qvSWqimEje4AoMm3yIm2n8s1JL66+83dlb9tyfOfvyuDxk5g7V7UGxzKZLHvkAksFgkKJQcNJiG9vknxldc5iCAKWHUeS/OY5MYfXq5RPvu+6IiYl8W5VznLJzNzdiQJtavNw6Q7igqUpWAzMjCg/tCmP9l7h9SXpd/1V7V0dU2tTdk3YLnnszPQN9Oj6e3Nun3rE+Z031DrW55Sr4UeV+v7MGLWO+Lic7WRVtzx2Ngwc2o2lizbw7OlLbafzzchcXI2p5IUgCIyp5MV3/q7069dPLrJkMg2SCywVKZ1LofRvS9Lh3xBjc3brS9+1MCbVWxK9dQEpER9ynIu+rS15O7QjZMcu4p49z3GcdF7fN0fP1Ig7M9aqHCtd4aZlcCjqxonxG0hNlrbdgaGJIQ1HNebW3ps8OHlf0tifKlHLh5J1fFgxahsJWihyhvzenpB3Eayaqfm1YFnVu18H7OxsGD9mprZT+SbExsYycOBAfO0sMoorIKPI8rWzYODAgcTGxmo5U5ns2yAXWBIwqDUKxBSSDv+a4xjmLfqCnj4fN8xQKRe75k0xzOfIq7nzVb59pW9uQpEBbXlz8DwfLt1RKVY6QaGgyi9tCH34hltrT0oSMzP/piVxL+vBtlFbSE5Uby+mrr83J/xtJNtnHlbrOJ/jWjAv7frUYdkfu3n3Sr23RHPKxMSYn3/pz/atB7l4QfMzfd8aExMTZs6cye2QKMafepDx+y+KIuNPPeB2SBQzZ86Uj8WRyTRELrAkIJjZoV/9B5KvrCbl9fUcxVCYWWLRqj9xZ3aT+PBajnNR6OuTv08voq/fIOK46gWMU/0KWBcrxK2pq0hNkqZgcfBzxbd1Rc7P3EXshyhJYqYTBIHmE1sS+vwDJ5eckDT2p/J52NOwTzW2TT/M+yDpF+7/lx4/NMXUzIgZo1S7taxOrds1xNfPi1E/TNPZRflfk759+zJnzhyWXHuRUWSNP/WAJdde8GvdknSrWuofj5FntGQy9ZALLInoBXRBsPcmafcPOe5YblylKfoFihC5alKOF80DWJYOwLJieV4vWESKii+egkJB0ZFd+PjsNc82SrdDr+zgxiiUCs5M3SZZzHSO3vmo0KUSh6bvJ+JNhOTxM2s1vA6mVsasHCX9v+O/mFmY0H9cIPs3nePa2QcaHz8rlEolEycN5dKFG+zYpt4dnrI0mYus+uvOs+TaC2ZNmUSPpvUIXfwLYWv/JDUurY/b9OnTcXNzk9dmyWRqIBdYEhGUehg0nETq66ukXMvZmiVBocSi048kBz0g9uhmlfJx6t2LlJho3kqw4N3Syw23FjV4sHAz8SHSbLs3tjaj3NCm3N92njdXnkgSM7M6w+phaGrIznHqLXyMzY3oNL4p53Zc5+ZxzRc5jTtUwqekO5OHrSIlRdqjiKRSpVpZ6tSrzJif/pSbj2pIepF1LyyGOXPm0H/4SGx7jMe6zSDibpwmeHJPWtarxZAhQzBKSZEXwMtkaiAXWBJSupZFWTyQxEMTEWNzVogYePhhXKUZHzfPISUq57edDBzscWjfjpCt24l7+izHcdIV7hOIQl+fu7PWqRwrnU+r8jgUdeP42HWSL3g3tjCm0egm3Nh9Xe0L3isHlqJwWXeWjtys8XMKFQoFI6d14v6NF2xbeVyjY2fHb1NG8D74A39OWaLtVL4Zffv2JSoqir59+wJpt89Ny9bFYeR8eu28wpb9aWsH088kkIssmUxaub7AevToEeXLl8fT05PSpUtz9+5dreZjUHsMpCSptuC9VX8APm6cpVIu9i2bY+iUn5ez5qh80LKBhSne/dvwau8ZQq9JU7BkXvB+c/VxSWJmVqJ5KdzLeLDt5y0kJ6hvwbsgCHw3pSWvHgSzb5F61319TtHSBWnUvhJzx20iKlzzR/hkhbuHC4OGdmPW9OU8fKB6wS/Lms8taG/Xqz87//c7rBSUKAUFSkEJyEWWTCalXF9g9ezZkx49evDw4UNGjBih9dO3BTN79Gv8QPKVv3K84F1pYYN54ADiTm5XecG7c/++xNy+Q9gh1Xe6uTSujLWvBzcnrZBsxsnBzxXfNhU5P3M3Me8jJYmZThAEmv/WktAXHzix6JiksT/lXsyZ2t0qsGHSPsLeSfvvyIqB41uTmJDEnPGbND52Vg0a1h0nZ0eGDZooL3jXkunTp7Np0///jJRwDqBXpSGUcA7I+JrcykEmk0auLrDev3/P1atX6dChAwAtWrTg2bNnPH/+XJoBUnPWWV0voGvagvddI3K8WN2kagv0PfyIXPGrSh3ezf2LY129Gm8WLSU5SsUO7woFfj905eOTVzzbKN2ZguUGN0FpoMfpyVski5nOsXA+KnWvzKEZBwh7pd6dfu1GNURPX48VP0nfqf6/5MlrRe9RLdm0+Ai3Lku/pk0KRkaGTJ3+E6dOXGLDut3aTuebExsby/Dhw4G0masAl7L80XwhbUp24o/mCynlUgaloCQlJUVu5SCTSUBP2wmo4uXLl+TLlw89vbR/hiAIuLi4EBQUhJub2xcf169fPywtLWnevDktWrT47PcIiWGYnGxElO8YkvPWyXZuQpVRGG5sR9SJeaQUa5/txwPQrD/Jf/QiZPsS9Kq3zlkMwLRNKyLOnefZvAXY9lBxhs/BkrwNK3B/3iZMSnpiaGf92W8LD8/eGrTifWtzfuJWXOoWxaGku2o5fiKgW1mubL/C5p820HJGzp/HrGj5Yy2WDdtGQGMffCoXzPbjs/u8ZVYnsCTb/zrOuD6LmL97GEo9ZY5jqYt/SW/qN6rGzyOnUrqMH1bWFpLFVuW5+1bUrl2bffv2ASKl3Sr+rRlpGbdKXHuZdq7qhAkTMtZuyb4sOz9zNjY2asxEppPEXOzy5ctikSJF/va1UqVKiSdOnPjs91+5ckUExCtXrvxn7NTUVDFuX30xeVNBMTXxY47yS9gxRIyZ6C6mRr3L0eNFURQjV08R33YvIyaFvM5xDFEUxfdbt4tXa9YVo+/eUymOKIpiYlS0uL9WH/HisOlf/J7Q0NBsxUxNSRE3tZ4q/lV3rJickKRihv90bcdVcUi+AeLdw7clj51ZamqqOLrBTLFX0bFifGxCth+f3eftU7evPBH9zTqIq2buUSmOOr15HSw6O5QTB/YdJ2lcVZ+7bwUgKgWlGOBSVjw56IZ4avBN8eSgG2IplzKiUlCKufxtQaPU8TOXnfcpbcaU/bdcfYvQ2dmZV69ekZyctoBZFEVevnyJi4uLyrEFQSDO91dI+IB4Y2KOYujXHAV6hiTuG53jPMya90EwNSfqr8k5jgGQp3FDjD3ceTlzNmKKauun9M1N8R3agbdHL/Hu5FWVYqUTFAqqjm1DxPP3XFt+RJKYmRVrVJxClTzZNnoLSWo82kYQBHpOb03omwg2Tz2gtnG+xKeEO6171mLuhC28Ccr5sUvq5JjPnlG/9Gflss1cOH9d2+l8c0RRJEVM4VLQeYZs7cH6K6sYsrUHl4MukCKmyOvjZDKJ5OoCy97eHn9/f1avTuv1tGXLFtzc3P719mB2iCYuCEV/Qrw3BzHsZrYfL5hYY1BnLCm3t5PyOGeLrBXGpli0H0HCtRPEX8n5Qm1BqcR50ADinjwlOrclSAAAF6pJREFUZOeuHMdJl692WezKFeXW5BUkx8WrHA8gT2EninWsxqW5e4iS+PgXQRBo8WsrIt5GcHi2ehte5i/kQPMhtdgx6whB996qdazP6fdLKyysTPh98AqdfbPs3iOQEiV9Gdx/PElJOV9jKMuZ9J+Lay8vs+DUn1x7eflvX5fJZKrL1QUWwMKFC1m4cCGenp5MmjSJpUuXShpfKDIQLDxJPd8fUcx+qwNlsVYoClQicdcIxKScNVk0CqiJYbGKRP41mdT4nO/uMS3sRZ4G9Xm7fBVJH1QrYARBoOgPXUkIj+LBQukWdZcZ0BAjKzOOj1sv+Yu9nYc91fvW5Ni8I7x7+E7S2J9qMaQW9q62LBy8nlQVW2Rkl6m5MT/82ZlT+69zaNtFjY6dVUqlkhlzxvDw/jPmzvpL2+l8k9JnslLEVHnmSiZTg1xfYHl5eXHu3DkePnzI5cuX8fHxkTS+oDRAUXY2fLiI+DD7TRIFQcCg0WTEqLcknZiRsxwEAYtOP5IaHUH0tgU5ipHOsXsXFAYGvJq/UKU4AKZO9nh914yna/cR+fCFyvEADMyMqPJLa16cuM2jvVckiZlZjX61sHGxZdNw9RY++ob69JrRhnvnnnJ45Tm1jfMl1RuVolqjkkwZtoqoCN3sjeVXrDC9+7Vnym8LeP7slbbT+SaJosj48ePl4komU4NcX2BpguBQAaFgF8SrYxDjsj/zochTEL1KA0g+M4fU9zk7TkXPLj/mTb4n5sAakoJyfiSLnrk5+Xt9T8SJk0ReUH12w6NjA8zc8nFj4lJEiY5qca9RDI/axTn16ybiI6UtDvSN9Gk1uTXPLz/j/F9nJY39Kd9KhajeoSyrftlBeLC0h1pnxQ9/dCIuNoFZYzZofOysGvlzH2zzWDNsoNwbS1vk3YIymXrIBVYWCSV/BaUB4qXhOXq8fqUBCFbOJO4anuOu6qb1OqHn6Erk8l9V6sxuXaM65iX8eTVrDilxqp0Np9DXo+hP3Yi484Tnm1VvZpqu8qjWJMcncmay9D2lPMoVpEy7cuz+bSeRbyMkj59Z5wlN0dNTsuwH6Xt8/ReH/Lb0HxvI5qVHdfYwaDMzE6bN+Jkjh8+yeeNebacjk8lkkpELrCwSDG0QSk5CfL4Z8XX2m2wK+kYYNJpK6ovzpFxfn7Mc9PSx7DKKpCc3iT2e8zdsQRBwHtSfpIhI3q5Uff2LbXEvXJtX597cDZIdBm2W14ryw5pyd/NZXl98KEnMzBr+3BgDYwO2jlLtUO3/Ym5jStffm3Nm61WuHLyj1rE+p9X3NfEL8GBC/6UkJujmYvI69SrTrGVdfhg2meB3urnzUSbTtIf3n3Lj2l1J/jy8/1Tb/5xvkiB+Q/PyV69epWTJkly5coUSJUr85/eHhYX9rTmcKIqkHqoP0c9RNL6CoJf9bscJW/qS8vAwxgPOIJjmyfbjASKWjCX+8mHsJm1HaZWzGADBGzbxZulyvGbPwMTLM8dxABKjYjjWcjg2xb0ImDLwH89dToipqWxp9wdx4dG03TkKPUN9leJ96sbu66zquZzOi7tRtH4xSWNnJooi45vN482T98w8/xNGpoZf/F4pnrdPPbr9krYVRvHdyCb0+qm5pLGlEvohnHKlmlGipC/rNs/OaICZHep47r4F8vOWc+p47tLfp8wMC6KnMJYkZnJqHNEJj7P83ieTRq7u5K5pgiCgKDuL1J0BiDd/RygxIdsxDOqOI+7hYRL3/4Jhi5wdqmrRehAJ104QtXoy1v2m5igGgH2LZoQfPU7QnzPxmjcLQZnzzt8GFqb4Du3IlZ/m8O7kVQx83XIcK52gUFB9YgfWNfmVy/P3UXZQY5VjZla0QTF8avuy9efNFKpQCGNL9RwPIggCPf8MZFC531n32x66/qrZIqeQrzOdBzdg6dSd1G5eBvfC+TU6flbY5rFmxpxfaB84kNUrt9Gxi24WgjKZpixe9jve3kUkiXXv3l3atm8lSSxZNmi+t6n2ZLeb7Ze69KZc/1VMXmUmpoblrCt40pU1YsxoOzH58ec7zmdF7Nm94puOxcS4K8dyHEMURTHm/gPxaq164rv1G1WKI4ppXczP9p0kHqzXX3z/6o3K8dKdm7FTnOPdR/zw4JVkMdOFvw4Xf/QcLm4cvk7y2J/a8udBsYVVf/Hh5Wdf/B51dSOPj0sQGxcbKnaoMkZMSkpWyxhS6NtjtOhkV0Z8/uxlth8rd3LPGfl5yzm5k7vs38hrsHJA8B0K5u6knu+bs95Y/m1RuJUncdcwxMSc9bUyKls3rTfWyl9Jjc35Ic4mXp7YNWvC21WrSXijWlNMQRAo+mNXEiM+8mK5dIf5BvSui6WLPUdHrSFVop2K6azyWdHwp8acX3OOx2cfSRr7U036V6dAUSfm9FlDkobXQxkaGTB+YU/uXHnKqhl7NDp2dvw2dQTWNlb06TFa4/3DZDKZTEpygZUDgtIQRbm5EHIB8cHi7D9eEDBoPC2tN9bxaTnLQRCw7PwzYmw0HzfOylGMdI5dOqFvZcnLGbNU3ipvmt8er94tebP9BGG3pClYlAb6VJ/YnnfXn3Fr7UlJYmZWtmN53AIKsGnEBrUeo6PUU9JvXgfePglh4+T9ahvnS4qVKUSngQ2Y/+tWHt95qfHxs8LCwox5iyZw9vQV5s9Zre10ZDKZLMfkAiuHBIeKCJ7fIV4bjRiT/TcrRZ6C6FcZSvLZ+aS+yf4xPADKPI6YtxpA7NFNJD64lqMYAEpjY5wG9ufj1WuEHVL9HED3tnUx83Tm+rhFpCRKM1OTr1RBfNtW4tyf2/n4NkySmOkUCgWBU9sQ/jqMgzPUe36gq08+Wo2sy7YZh3l8NUitY31O71HNcfZwYHSPhSQlJWt8/KyoWDmAPv07MuGXWdy7+1jb6chkMlmOyAWWCoQSE0HPlNQLg3I086NXsS+CnRcJ2wchpuSsEDGpGYi+R1Eilo1DTEzIUQwAy9IBWNeoxuv5C0kKj8hxHACFnpJCQ9sT8zKYR0u2qxQrs/LDmmFgasTxsdIfo+NQKC+1BtTh+PyjvL6t3q7izQbVws03P7P7rNbKrcKJi3vx8FYQS6fu1OjY2TF63AAKuDvTq/tPJEpUpMtkMpkmyQWWCgQDSxRlZsKrvYjPs99PSVDqY9B0BmLwXZLPzs9ZDgollt3HkPL+FdE7s3+UT2b5e/cEQeD1PNWO4wEwLZCPQt2a8GjFLsmO0TE0N6bq2LY8P3aLh7suSRIzs2p9a+Dg6cD6IWtJSUqRPH46PX0l/ea15+3j92yaot4Zs88p4l+A7sMbs2TyDu5de6bx8bPCyMiQBUt+5e6dx0z5TfWfR5lMJtM0ucBSkeDSGFybIV4aihif/QOUlfmLo1euJ0nHppH64UmOctB3KohZo+5E71lOUlDOm3LqW1nh1LsH4ceOS3KMjme3Jpi5OXJ97CJSk6UpWNxrFsOzYSlOTNhATEikJDHT6Rno0WZ6e97df8vh2dlvJpsdbr75aTmiLlunH9LKrcLvRzbFo4gTo75fqLMNSIv5F2HkT72YPm0pFy/c0HY6MplMli1ygSUBRek/ITUZ8fLIHD1ev/pIBHMHEncOzfEROGaNuqOX14XIZeMRU3NezFjXrIF5yRK8nDGLlBjVzgFU6OtR/JceRD56wZO/pNu5VnlUaxR6So7/sk7yW4VOfs7U6F+LwzMPqv1WYfPBtXD1yaeVW4X6BnpMXNyLF4/fsuBX6Y8jksqgYd0oWcqXXt1/Ijo6ZztuZTKZTBvkAksCgnFehFKTEJ+uQXx9KPuPNzDBoMmfpD4/S8rVnO2cEvQNsOz2C0nP7hBzcG2OYkDa7kSXIQNJiY7h9eKlOY6TztrHA48O9XmwaCsfn71ROR6AsY0ZVce25enhGzzac1mSmJnVHFgbh0J5WTdoDcmJ6lsIrqevpP/8Drx9/F4ruwoL+TrT++cWrJi+mxsX1NuiIqf09PRYsPQ3gt+F8MPQSdpORyaTybJMLrAkInh0hLzVSD3fDzEpOtuPV7pXQlmiPYkHxpEalbN+VAaFimFSsw3Rm+eS/D7nsy8GDg7k+747obv38vHa9RzHSVe4Z0uM89pyfcIiRIn6WBWs40+h+iU5MX4DsR+iJImZTs9Aj7Yz2hP86B2HZ2rmVuG26Yd4dEWatWrZ0XlwA3xKujO6x0LiYuI1Pn5WuHu4MHX6z6z5azvr1+7SdjoymUyWJXKBJRFBENJ6YyV8QLz2S45iGNQZi2BgQtLukTm+9WXeqj8KC2sil01Q6fZZnob1MStWlKA/ppMSF5fjOABKIwOKj/me8BuPeLZBuoKlypjWCAqBY2q4VZjf14maA2tzZPYhXt5Ub8+o5oNr4ebnxBwt3CrU01MyYVFP3r8OY+aYDRodOzvadmhMm/aNGDpgAg/kg2tlMlkuIBdYEhLMCyAUH4N4fz5iyPnsP97YEv0Gk0i5v5+U2ztylIPCyATLLqNJvHuBuOM5X1sjKBS4DB1MckQEb5Ysz3GcdLb+hSnQujb35m4k5mWwyvEAjG3M024VHrqunluF/Wvj6J2P9YNWkxSvvsJHT19J/wVpDUh3zDiutnG+xM0zHwPGt2b9gkOcO3JL4+NnhSAITJvxM84u+ejSYSixsaoV/bL/a+/+Y6K8DziOfw5OqaCoCDoIh1dbjPUHQS/pGImJdmqhi7MbyTY7FKarurUx+9Eas9U2ZpvrEoaLTTbTGRWj1cSKcWmprC4GbTeYE+00ikoAgTFFwEkVrPz47g/HTZSDu8cHD7n36y957u65r5/chY/f5/H7BTDYKFg2c0x7VYr1qPuvP5DpCnxdKuf0ryl8xmLdKfqZzK3A/1eiJEWkpGvU3CVq3Zuvribr299EJMQrfuX31HToT/r8M2uLod7rmVe/rZHjx+izX26zbcbp6Yw5ejpzcC4Vho8I19LffVfXqq7pz5sH9x6pydMT9K31mSp+91OdL330MzTfWbNQac/N1IaXt6rlmr052iUqKlI7dufpcvW/tO7Hvw72cACgXxQsH0zXLUVc/a262wJb9sARFq6wr/xBaq2U+ae1m3JHvrBJ6u7UnY9+bun1khT90k/lGBWlGzse7lJh3JKvK2rWzP9dKny4e3SckU8odcPLavrHOV0+8PArxveY99bgXSqMfyZBi36SoaO//4sun6yx9dz3+8aPFmjK7ERtWbVLba2PdoYmLCxMv3h3tbq6uvXWmndtz9Euz0x/Wnm/u3s/1t7d1mZ5AeBRoGD54hipsC8q1H11f+AvHT9TjlnrZCp3ynQEvtSBY8wkjXzhV+o6/5G6r1tbIyksKlpjV2zQF+f+rs4662tj9Vwq7GhuUWtp4Jc97xf35ZmanPWcqvYW27Y2Vs+lwsslZ/WfansuP95r/g+/qsQUl45vL7H93PcKd4br+/nf1I3mm/r0oPWtj6yKix+vjVtX6W9Hzuj86ZpH/v7+emnZEr2UvUR5v/mjOjqG5hpeAOAwQ/WfqoOgvLxcHo9HJ0+e1Jw5cwZ8/vXGSxoXN0UOR3jA72W67kgdN+R4Is7KUGWMkfn8isKi4y29vkdXy1WFx0x6qHNI0p1r1zQyzv+/S0tLi2JiYvp8rLPttkxXl0aMiXrocd3r5pXrGv2l8baes0drY6uixkcpfETgn4VAtLS0qOuWFOfqO7tH4d91TYp3xQbt/f3R1tauWzfbFDdxgvdYf585+EZu1g1GdoH+ngrWOTEwZ7AHMJQZ5wRL5UqSHOEjpXBr5Uq6e1Ov4yHLlSRbypWkgMrVQJyRT9h2rnsNVrmSpOiJ0YN27vsFs1xJGvLlSpIiI0cpMnJUsIcBAD5xiRAAAMBmFCwAAACbUbAAAABsRsECAACwGQULAIAQdenSJaWnp2vq1Kl69tlnde7cuWAPadigYPXjwIEDwR7CY4vsrCE368jOGnKzbjhkt3r1aq1atUoXL17UunXrtHLlymAPadigYPWjsND6Xn6hjuysITfryM4acrPucc+usbFR5eXlys7OliRlZWWpurpaNTU1wR3YMBFS62C1t9/dfuT8+fN+Pf/GjRsqLy8fzCENW2RnDblZR3bWkJt1gWY3bdo0RUZG+vXcoqIiv39XDaS6urrP43V1dUpISJDTebcKOBwOJSUlqba2Vm6325b3DmUhVbB6WnlPW/eHx+MZpNEMf2RnDblZR3bWkJt1gWTnz0rqsbGxioyM1IYNGx52aL1EREQoNvbBRYQdDkevn0Noc5dBF1Jb5TQ1Nam4uFhut1ujRrEKNADg0fF3Bqu2tlZNTU22vndsbKySkpJ6HWtsbFRycrKam5vldDpljFF8fLxKS0uZwbJBSBUsAADwf/PmzVNubq5yc3P1/vvvKy8vT6WlpcEe1rBAwQIAIERduHBBubm5am5uVnR0tAoKCjRjxoxgD2tYoGABAADYjGUaAAAAbEbBAgAAsBkFawAbN26Uw+HQ2bNnvcfYWsC3RYsWKSUlRampqZo7d65Onz7tfYzcfLt9+7ZefPFFTZ06VampqcrIyOi12B/Z+bZ27Vq53e4HvqcSufWHbPzHZwyWGPh08uRJk5GRYZKSksyZM2e8x+fPn2927NhhjDFm//79Ji0tLUgjHHquX7/u/fPBgwfN7NmzvT+Tm2/t7e3mww8/NN3d3cYYY9555x2zcOFC7+Nk51tJSYmpq6szkydP7vU9NYbc+kM2/uMzBisoWD7cvn3bpKWlmaqqql5fqqtXr5qxY8eajo4OY4wx3d3dZtKkSaa6ujqIox2adu7caTwejzGG3AJ14sQJ89RTTxljyM5f9//yIzffyMYaPmMIBJcIfXjzzTeVnZ2tJ598stfx/rYWwF3Lly+Xy+XSG2+8oYKCAknkFqgtW7Zo8eLFksjOKnLzjWzsQY7oT0htldNj7ty5Pvd4OnXqlOrr63XixAm9/fbbfT4nVLcWGCg3l8slSdq1a5ckqaCgQK+//rqKiookhW5ukv/ZSdKmTZt06dIlbd261XssVLMLJLe+hGpu/iAbe5AjfAnJgnX8+PF+H9+zZ48qKiq8s1f19fV6/vnntW3bNnk8HtXX16uzs9O7tUBdXd0DWxAMRwPldr+cnBytWbNGzc3NcrlcIZub5H92eXl5Kiws1JEjR7xbaoRydoF+5u4VyrkNhGzsQY7oD5cI+7B+/Xo1NDSopqZGNTU1SkxMVHFxsTIzMzVx4kTNnj1bu3fvliQdOHBAbrebfZsktba2qqGhwfvzwYMHNWHCBMXExJCbH/Lz87V37159/PHHGjdunPc42VlDbr6RjT3IEf1hJXc/uN1uffDBB5o5c6Ykthbwpa6uTllZWWpvb1dYWJji4uKUl5en1NRUSeTWn/r6erlcLk2ZMkVjxoyRJEVERKisrEwS2fXnlVde0aFDh3TlyhXFxsZq9OjRqqyslERu/SEb//EZgxUULAAAAJtxiRAAAMBmFCwAAACbUbAAAABsRsECAACwGQULAADAZhQsAAAAm1GwAAAAbEbBAgAAsBkFC0AvZWVlcjgceu+997zHmpublZycrMzMTHV2dgZxdADweGAldwAPWLx4saqqqnTmzBl1dHRowYIFunnzpo4dO+bdygcA4BsFC8ADTp06JY/Ho3379unQoUM6duyYysrKlJCQEOyhAcBjgYIFoE9ZWVk6fPiwnE6nPvnkE82aNcv72MqVK3X48GE1NDSoo6NDTqcziCMFgKGHe7AA9Ck5OVltbW167bXXepUrSVq+fLnKy8uDNDIAGPqYwQLwgD179ignJ0epqalqaWnRhQsXNGLEiAee53A4mMECgD4wgwWgl5KSEq1YsUKbN2/Wvn37VFtbq+3btwd7WADwWGEGC4BXRUWF0tPTlZOTo82bN0u6eznw6NGjqqysVERERK/nM4MFAH2jYAGQJDU2NiotLU0pKSkqLCxUWNjdCe6LFy9q+vTpys/P19q1a3u9hoIFAH2jYAGwjIIFAH3jHiwAAVu2bJkSExMlSW63W0uXLg3yiABgaGEGCwAAwGbMYAEAANiMggUAAGAzChYAAIDNKFgAAAA2o2ABAADYjIIFAABgs/8Cr1ZeK++xE1cAAAAASUVORK5CYII=" }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contour(x1_data,x2_data,z_data)\n", "plot!(X[1,:],X[2,:],label=L\"$\\mathrm{x}_k$\",marker=:diamond)\n", "scatter!([x0[1],],[x0[2],],label=L\"$\\mathrm{x}_0$\")\n", "scatter!([xs[1],],[xs[2],],label=L\"$\\mathrm{x}_\\mathrm{opt}$\")\n", "xlabel!(L\"$x_1$\");ylabel!(L\"$x_2$\");\n", "#xlims!(-4,4); ylims!(-4,4)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "What a dramatic improvement in the convergence rate!" ] } ], "metadata": { "@webio": { "lastCommId": null, "lastKernelId": null }, "kernelspec": { "display_name": "Julia 1.5.3", "language": "julia", "name": "julia-1.5" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.5.3" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "324.5px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }