
Matematická analýza 2
Ṕısemná část zkoušky (XX.XX.XXXX)

Jméno a př́ıjmeńı: ............................................. Podpis: ..............................

Př́ıklad 1. 2. 3. 4. 5.
∑

Body

Před zahájeńım práce

• Vyplňte čitelně rubriku Jméno a př́ıjmeńı a podepǐste se.

• Během ṕısemné zkoušky smı́te mı́t na lavici pouze zadáńı ṕısemky, psaćı potřeby,
pr̊ukaz totožnosti a paṕıry, na které zkoušku vypracováváte.

• Nepǐste obyčejnou tužkou ani červeně, jinak ṕısemka nebude přijata.

• Na konci každého př́ıkladu formulujte odpověd’.

• Veškeré své odpovědi zd̊uvodněte.

Soupis vybraných vzorc̊u

• sin(α± β) = sinα cos β ± sin β cosα pro každé α, β ∈ R.

• cos(α± β) = cosα cos β ∓ sinα sin β pro každé α, β ∈ R.

• sin2 α = 1−cos(2α)
2

pro každé α ∈ R.

• cos2 α = 1+cos(2α)
2

pro každé α ∈ R.

• Jakobián transformace do polárńıch souřadnic: r.

• Jakobián transformace do válcových souřadnic: r.

• Jakobián transformace do sférických souřadnic: r2 sin θ.



Zadáńı A

1. [10 bod̊u] Je dána funkce

f(x, y) =
√

1 + 2x cos(x+ 2y).

Nalezněte Taylor̊uv polynom druhého řádu funkce f v bodě (0, 0). Tento výsledek
využijte k aproximaci hodnoty f

(
1
10
, 1
10

)
.

2. [10 bod̊u] Nalezněte všechny body na křivce o rovnici

(x+ y)2 + 4(x− y)2 = 16,

které jsou nejbĺıže počátku.

3. [10 bod̊u] Vypočtěte integrál funkce f(x, y, z) = z2 přes množinu

M =
{

(x, y, z) ∈ R3
∣∣ 2x+ y + 4z ≤ 4, x ≥ 0, y ≥ 0, z ≥ 0

}
.

4. [10 bod̊u] Je dána plocha

S =
{

(x, y, z) ∈ R3
∣∣x2 + z2 = 1, x ≥ 0, y ∈ [−2, 2], z ≥ 0

}
.

Pomoćı Stokesovy věty vypočtěte křivkový integrál vektorového pole

F (x, y, z) =
(
x− y3z, sin

(
y2
)
, xy3 + ez

)
přes křivku C, kde C je okraj plochy S orientovaný proti směru hodinových ručiček,
d́ıváme-li se na něj shora.

5. [10 bod̊u] At’

f(x) =
1

x2 − x− 2
.

Nalezněte rozvoj funkce f do mocninné řady se středem v bodě 0 a určete poloměr
konvergence této řady.



Zadáńı B

1. [10 bod̊u] Je dáno vektorové pole

F (x, y, z) =
(
x− αze2x, 3y2, z2 − e2x

)
,

kde α ∈ R.

(a) Určete všechny hodnoty parametru α, pro které je vektorové pole F potenciálové.

(b) Pro hodnoty parametru α z bodu (a) nalezněte potenciál f vektorového pole
F tak, aby f(0, 0, 1) = 0.

(c) Pro hodnoty parametru α z bodu (a) vypočtěte křivkový integrál vektorového
pole F podél kružnice C = {(x, y, 0) ∈ R3 | (x− 1)2 + y2 = 1} orientované
proti směru hodinových ručiček, d́ıváme-li se na ńı shora.

2. [10 bod̊u] Jsou dány body u = (−2,−1), v = (0, 1) a w = (2, 2).

(a) Formulujte úlohu o proložeńı př́ımky body u,v,w metodou nejmenš́ıch čtverc̊u
(tj. uved’te, zda hledáte body minima nebo maxima funkce f na M a specifi-
kujte funkci f a množinu M).

(b) Vyřešte úlohu z bodu (a).

3. [10 bod̊u] Vypočtěte integrál funkce f(x, y) = y přes kompaktńı množinu M ⊆ R2

ohraničenou křivkami y = x2 + 1 a y = 3− x2.

4. [10 bod̊u] At’ kompaktńı množina M je část́ı kuželu z ≥
√
x2 + y2 lež́ıćı mezi rovi-

nami z = 1 a z = 2. Pomoćı Gaussovy věty vypočtěte plošný integrál vektorového
pole

F (x, y, z) =
(
xy2, x2y, ex − cos y

)
přes plochu S = ∂M orientovanou vněǰśım normálovým polem.

5. [10 bod̊u] Je dána funkce

f(t) = −t, t ∈ [−π, π).

(a) Nalezněte Fourierovu řadu funkce f .

(b) Určete součet Fourierovy řady funkce f na intervalu [5π, 7π).



Zadáńı C

1. [10 bod̊u] Je dána funkce

f(x, y) = x2 + 2xy + 3y2 − x+ 2y.

(a) Nalezněte bod a nálež́ıćı grafu funkce f , ve kterém je tečná rovina rovnoběžná
s rovinou 2x− 3y + z = 6.

(b) Nelezněte všechny jednotkové vektory h tak, aby ∇hf(0, 0) = 0.

2. [10 bod̊u] Klasifikujte všechny stacionárńı body funkce

f(x, y) = 4x2 − 2x3 − x2y +
1

2
y2.

3. [10 bod̊u] Vypočtěte integrál funkce f(x, y, z) = z přes kompaktńı množinu M ⊆ R3,
která je ohraničené plochami x = 0, y = x3, y = 8, z = 0 a z = 1.

4. [10 bod̊u] Pomoćı Greenovy věty vypočtěte křivkový integrál vektorového pole

F (x, y) =
(
−y3 + sinx, 3ey + x2

)
podél kladně orientované Jordanovy křivky C, která je hranićı množiny

M =
{

(x, y) ∈ R2
∣∣x2 + y2 ≤ 1,−y ≤ x ≤ y

}
.

5. [10 bod̊u] Nalezněte poloměr konvergence a na intervalu konvergence součet moc-
ninné řady

∞∑
k=0

(k + 1)(x− 1)k.

Konverguje zadaná mocninná řada v bodě −1?



Zadáńı D

1. [10 bod̊u] Je dána funkce

f(x, y) = ln(xy) + ex−2y+1.

Nalezněte Taylor̊uv polynom druhého řádu funkce f v bodě (1, 1). Tento výsledek
využijte k aproximaci hodnoty f

(
9
10
, 11
10

)
.

2. [10 bod̊u] Nalezněte všechny body minima a body maxima funkce

f(x, y) = 2x2 + 3y2 − 4x

na množině M = {(x, y) ∈ R2 |x2 + y2 ≤ 16}.

3. [10 bod̊u] Vypočtěte integrál funkce f(x, y, z) = y přes množinu

M =
{

(x, y, z) ∈ R3
∣∣ 1 ≤ x2 + y2 + z2 ≤ 4, y ≥ 0, z ≥ 0

}
.

4. [10 bod̊u] Pomoćı Greenovy věty určete obsah množiny M ⊆ R2, jestliže v́ıte, že
hranice M je Jordanova křivka s parametrizaćı

ϕ(t) =
(
t2 − t, t3 − t

)
, t ∈ [0, 1].

5. [10 bod̊u] Je dána funkce

f(t) =

{
−2, t ∈ [−1, 1];

0, t ∈ [−2,−1) ∪ (1, 2).

Nalezněte Fourierovu řadu funkce f a určete jej́ı součet na intervalu [−2, 2).



Zadáńı E

1. [10 bod̊u] Je dáno vektorové pole

F (x, y) = (g(y) sinx, 2y − cosx) ,

kde g : R→ R je funkce tř́ıdy C1.

(a) Určete všechny možné funkce g tak, aby vektorové pole F bylo potenciálové
(na R2).

(b) Pro funkci g z bodu (a) splňuj́ıćı g(0) = 0 nalezněte potenciál f vektorového
pole F tak, aby f(0, 2) = 0.

2. [10 bod̊u] Klasifikujte všechny stacionárńı body funkce

f(x, y, z) = x2 +
1

4
y4 + 2z2 − y2(2z − 1)− 2x+ z.

3. [10 bod̊u] Záměnou pořad́ı integrace spočtěte∫ 1

0

∫ √ y
2

0

e−x
3+3x dx dy +

∫ 2

1

∫ √ y
2

√
y−1

e−x
3+3x dx dy.

4. [10 bod̊u] At’ křivka C je pr̊unik kružnice x2 + y2 = 4 s polorovinou x ≥ 0.

(a) Nalezněte nějakou parametrizaci křivky C.

(b) Vypočtěte křivkový integrál funkce f(x, y) = x2 + y podél křivky C.

5. [10 bod̊u] Je dána mocninná řada

+∞∑
n=1

(x− 1)n

3nn
.

(a) Určete jej́ı poloměr konvergence a rozhodněte, zda řada konverguje v bodě −3.

(b) Na intervalu konvergence nalezněte jej́ı součet.



Stručné řešeńı

Zadáńı A

1. Snadno nalezneme, že

∇f(x, y) =

(
cos(x+ 2y)√

1 + 2x
−
√

1 + 2x sin(x+ 2y),−2
√

1 + 2x sin(x+ 2y)

)
,

Hf (x, y) =

(
−2(1+x) cos(x+2y)√

(1+2x)3
− 2 sin(x+2y)√

1+2x
−2 sin(x+2y)+2(1+2x) cos(x+2y)√

1+2x

−2 sin(x+2y)+2(1+2x) cos(x+2y)√
1+2x

−4
√

1 + 2x cos(x+ 2y)

)
.

Odtud plyne, že Taylor̊uv polynom druhého řádu funkce f v bodě (0, 0) je

T2(x, y) = f(0, 0) +∇f(0, 0) · (x, y) +
1

2
(x, y)Hf (0, 0)

(
x
y

)
= 1 + (1, 0)

(
x
y

)
+

1

2
(x, y)

(
−2 −2
−2 −4

)(
x
y

)
= 1 + x− x2 − 2xy − 2y2.

Proto

f

(
1

10
,

1

10

)
≈ T2

(
1

10
,

1

10

)
= 1 +

1

20
.

2. Hledáme bod minima spojité funkce f(x, y) = x2 + y2 na množině

M =
{

(x, y)
∣∣ (x+ y)2 + 4(x− y)2 = 16

}
.

Množina M je neprázdná a kompaktńı, a proto řešeńı existuje. Bod minima nalez-
neme pomoćı metody Lagrangeových multiplikátor̊u. Jestliže (x, y) je bod minima,
potom existuje λ ∈ R tak, že

x+ λ(5x− 3y) = 0, (1)

y + λ(−3x+ 5y) = 0, (2)

(x+ y)2 + 4(x− y)2 = 16. (3)

Odečteńım (2) od (1) dostaneme (x− y)(1 + 8λ) = 0. Proto x = y nebo λ = −1
8
.

• Je-li x = y, pak z (3) plyne, že 4x2 = 16, a proto x = ±2.

• Je-li λ = −1
8
, pak d́ıky (1) je x = −y. Dosazeńım do (3) obdrž́ıme x2 = 1, a

tedy x = ±1.

Body minima tedy muśıme hledat mezi body (1,−1), (−1, 1), (2, 2) a (−2,−2).
Protože f(1,−1) = f(−1, 1) = 2 a f(2, 2) = f(−2,−2) = 8, jsou body (1,−1) a
(−1, 1) hledané body minima.



Obrázek 1: Znázorněńı množiny M a jej́ıho
”
řezu“ M [z].

3. Pro každé z ∈ [0, 1] označme

M [z] =
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 2(1− z), 0 ≤ y ≤ 4− 2x− 4z

}
.

Množiny M a M [z] jsou načrtnuty na Obrázku 1. Z Fubiniho věty plyne, že∫
M

z2 dλ3(x, y, z) =

∫ 1

0

∫
M [z]

z2 dλ2(x, y) dz =

∫ 1

0

∫ 2(1−z)

0

∫ 4−2x−4z

0

z2 dy dx dz

=

∫ 1

0

z2
∫ 2(1−z)

0

4− 2x− 4z dx dz = 4

∫ 1

0

z2(1− z)2 dz =
2

15
.

4. Plocha S je načrtnuta na Obrázku 2. Za parametrizaci plochy S volme např́ıklad
vektorovou funkci

Φ(u, v) = (sinu, v, cosu), (u, v) ∈ [0,
π

2
]× [−2, 2].

Obrázek 2: Plocha S spolu s jej́ım okrajem C.

Potom
∂Φ

∂u
× ∂Φ

∂v
= (sinu, 0, cosu).

Odtud vid́ıme, že orientace plochy S indukovaná parametrizaćı Φ je souhlasná se
zadanou orientaćı okraje C. Podle Stokesovy věty máme∫

C

F · ds =

∫
S

(∇× F ) · dΣ

=

∫ 2

−2

∫ π
2

0

(3v2 sinu,−2v3, 3v2 cosu) · (sinu, 0, cosu) du dv = 8π.



5. Rozklad funkce f na parciálńı zlomky dává

f(x) =
−1

3

x+ 1
+

1
3

x− 2
.

Protože

1

x+ 1
=

+∞∑
k=0

(−1)kxk, pro |x| < 1,

1

x− 2
= −1

2

1

1− x
2

= −
+∞∑
k=0

xk

2k+1
, pro |x| < 2,

je

f(x) =
+∞∑
k=0

1

3

[
(−1)k+1 − 1

2k+1

]
xk

pro |x| < 1 (tj. poloměr konvergence je R = 1).



Zadáńı B

1. (a) Snadno nalezneme, že ∇× F (x, y, z) = (0, (2− α)e2x, 0). Tedy ∇× F = 0 na
R3 právě tehdy, když α = 2.

(b) Potenciál f muśı splňovat

∂f

∂x
(x, y, z) = x− 2ze2x, (4)

∂f

∂y
(x, y, z) = 3y2, (5)

∂f

∂z
(x, y, z) = z2 − e2x. (6)

Integraćı rovnice (4) dostaneme

f(x, y, z) =
x2

2
− ze2x + g(y, z)

kde g(y, z) je zat́ım neznámá funkce dvou proměnných. Dosazeńım do (5) máme

∂g

∂y
(y, z) = 3y2,

a proto g(y, z) = y3 + h(z). Máme tak

f(x, y, z) =
x2

2
− ze2x + y3 + h(z)

K určeńı neznámé funkce h využijeme rovnici (6). Dosazeńım obdrž́ıme rovnici
h′(z) = z2. Proto h(z) = z3

3
+ C, kde C ∈ R. Z podmı́nky f(0, 0, 1) = 0 plyne,

že C = 2
3
. Tedy

f(x, y, z) =
x2

2
− ze2x + y3 +

z3

3
+

2

3
.

(c) Protože pro α = 2 je F potenciálové na R3 a C je uzavřená křivka, je∫
C

F · ds = 0.

2. (a) Hledáme bod minima funkce

f(k, q) = (−2k + q + 1)2 + (q − 1)2 + (2k + q − 2)2

na množině M = R2.

(b) Protože f je konvexńı, je každý stacionárńı bod funkce f bodem minima. Z
podmı́nky ∇f = 0 máme

4k − 3 = 0,

3q − 2 = 0.

Tedy k = 3
4

a q = 2
3
. Hledaná př́ımka je tak určena rovnićı y = 3

4
x+ 2

3
.



Obrázek 3: Množina M .

3. Množina M je znázorněna na Obrázku 3. Využit́ım Fubiniho věty dostaneme∫
M

y dλ2(x, y) =

∫ 1

−1

∫ 3−x2

x2+1

y dy dx =
1

2

∫ 1

−1
(3− x2)2 − (x2 + 1)2 dx =

16

3
.

4. Množina M je znázorněna na Obrázku 4. Protože ∇ · F (x, y, z) = x2 + y2, plyne z
Gaussovy věty, že∫

S

F · dΣ =

∫
M

x2 + y2 dλ3(x, y, z) =

∫ 2

1

∫ 2π

0

∫ z

0

r3 dr dϕ dz =
31π

10
.

Obrázek 4: Množina M .

5. (a) Fourierovy koeficienty funkce f jsou

ak =
1

π

∫ π

−π
−t cos(kt) dt = 0, pro k ∈ N0,

bk =
1

π

∫ π

−π
−t sin(kt) dt =

2

π

∫ π

0

−t sin(kt) dt

=
2

π

([
t
cos(kt)

k

]π
0

−
∫ π

0

cos(kt)

k
dt

)
=

2(−1)k

k
, pro k ∈ N.

Fourierova řada funkce f proto je

+∞∑
k=1

2(−1)k

k
sin(kt).



(b) Součet Ff (t) Fourierovy řady funkce f na intervalu [5π, 7π) je

Ff (t) = Ff (t− 6π) =

{
6π − t, pro t ∈ (5π, 7π),

0, pro t = 5π.



Zadáńı C

1. (a) Protože∇f(x, y) = (2x+ 2y − 1, 2x+ 6y + 2), má tečná rovina v bodě (x, y, f(x, y))
normálový vektor

v = (2x+ 2y − 1, 2x+ 6y + 2,−1) .

Normálový vektor roviny o rovnici 2x− 3y + z = 6 je

w = (2,−3, 1).

Aby tečná rovina byla rovnoběžná se zadanou rovinou, muśı existovat reálné
č́ıslo λ ∈ R tak, že v = λw. Odtud plyne, že λ = −1 a nav́ıc

2x+ 2y = −1,

2x+ 6y = 1.

Tedy x = −1 a y = 1
2
. Protože f

(
−1, 1

2

)
= 11

4
, je

a =

(
−1,

1

2
,
11

4

)
.

(b) Z nulovosti směrové derivace plyne, že

0 = h · (−1, 2) = −h1 + 2h2.

Tedy h1 = 2h2. Protože h je jednotkový vektor, muśı platit

1 = ‖h‖2 = h21 + h22 = 5h22.

To znamená, že h2 = ± 1√
5
. Proto

h = ± 1√
5

(2, 1) .

2. Podmı́nka stacionarity (nulovost gradientu) vede na soustavu rovnic

8x− 6x2 − 2xy = 0, (7)

−x2 + y = 0. (8)

Zřejmě (8) právě tehdy, když y = x2. Dosazeńım do (7) obdrž́ıme

0 = −2x(x2 + 3x− 4) = −2x(x− 1)(x+ 4).

Stacionárńı body proto jsou (0, 0), (1, 1) a (−4, 16). Hessova matice funkce f v bodě
(x, y) je

Hf (x, y) =

(
8− 12x− 2y −2x
−2x 1

)
.

Protože

Hf (0, 0) =

(
8 0
0 1

)



je pozitivně definitńı (Hf (0, 0) má evidentně kladná vlastńı č́ısla), je (0, 0) bod
lokálńıho minima. Matice

Hf (1, 1) =

(
−6 −2
−2 1

)
a Hf (−4, 16) =

(
24 8
8 1

)
jsou indefinitńı (jejich determinant je totiž záporný), a tedy (1, 1) a (−4, 16) jsou
sedlové body funkce f .

3. Množina M je znázorněna na Obrázku 5. Podle Fubiniho věty je∫
M

z dλ3(x, y, z) =

∫ 1

0

∫ 2

0

∫ 8

x3
z dy dx dz =

∫ 1

0

∫ 2

0

z(8−x3) dx dz = 12

∫ 1

0

z dz = 6.

Obrázek 5: Množina M .

4. Množina M a křivka C jsou načrtnuty na Obrázku 6. Z Greenovy věty plyne, že∫
C

F · ds =

∫
M

∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) dλ2(x, y) =

∫
M

2x+ 3y2 dλ2(x, y)

=

∫ 3π
4

π
4

∫ 1

0

(
2r cosϕ+ 3r2 sin2 ϕ

)
r dr dϕ =

∫ 3π
4

π
4

2

3
cosϕ+

3

4
sin2 ϕ dϕ

=
3

4

∫ 3π
4

π
4

sin2 ϕ dϕ =
3

8

∫ 3π
4

π
4

1− cos(2ϕ) dϕ =
3

16
(π + 2) .

Obrázek 6: Množina M a křivka C.



5. Snadno nalezneme, že

+∞∑
k=0

(k + 1)(x− 1)k =

(
+∞∑
k=0

(x− 1)k+1

)′
=

(
x− 1

2− x

)′
=

1

(2− x)2

pro |x− 1| < 1 (tj. poloměr konvergence je R = 1). Interval konvergence je (0, 2), a
proto řada diverguje v bodě −1.



Zadáńı D

1. Snadno nalezneme, že

∇f(x, y) =

(
1

x
+ ex−2y+1,

1

y
− 2ex−2y+1

)
,

Hf (x, y) =

(
− 1
x2

+ ex−2y+1 −2ex−2y+1

−2ex−2y+1 − 1
y2

+ 4ex−2y+1

)
.

Taylor̊uv polynom druhého řádu funkce f v bodě (1, 1) je proto

T2(x, y) = f(1, 1) +∇f(1, 1) · (x− 1, y − 1) +
1

2
(x− 1, y − 1)Hf (1, 1)

(
x− 1
y − 1

)
= 1 + 2(x− 1)− (y − 1)− 2(x− 1)(y − 1) +

3

2
(y − 1)2.

Odtud

f

(
9

10
,
11

10

)
≈ T2(x, y) =

144

200
.

2. Z Weierstrassovy věty v́ıme, že existuj́ı body minima a body maxima funkce f na
M . Pokud takové body lež́ı v int (M), pak jsou to nutně stacionárńı body funkce
f . Protože ∇f(x, y) = (4x − 4, 6y), je ∇f(x, y) = (0, 0) právě tehdy, když x = 1 a
y = 0. Zřejmě (1, 0) ∈ int (M), a proto (1, 0) je podezřelý bod z extrému.

Jestliže (x, y) ∈ ∂M je bod extrému funkce f na M , pak nutně existuje λ ∈ R tak,
že

2x− 2 + λx = 0, (9)

3y + λy = 0, (10)

x2 + y2 = 16. (11)

Zřejmě (10) plat́ı právě tehdy, když λ = −3 nebo y = 0.

• Je-li λ = −3, pak z (9) plyne, že x = −2. Dı́ky (11) je potom y = ±
√

12.

• Je-li y = 0, pak z (11) máme x = ±4.

Podezřelé body z extrému lež́ıćı v ∂M jsou (−2,
√

12), (−2,−
√

12), (−4, 0) a (4, 0).

Protože f(1, 0) = −2, f(−2,
√

12) = f(−2,−
√

12) = 52, f(4, 0) = 16 a f(−4, 0) =
48, jsou (−2,

√
12) a (−2,−

√
12) body maxima funkce f na M a (1, 0) je bod minima

funkce f na M .

3. Množina M je znázorněna na Obrázku 7. Přechodem ke sférickým souřadnićım
obdrž́ıme∫

M

y dλ3(x, y, z) =

∫ π
2

0

∫ π

0

∫ 2

1

r3 sinϕ sin2 θ dr dϕ dθ = 2

(
4− 1

4

)∫ π
2

0

sin2 θ dθ

=

(
4− 1

4

)∫ π
2

0

1− cos(2θ) dθ =
15π

8
.



Obrázek 7: Množina M .

4. Využijeme-li Greenovu větu s vektorovým polem F (x, y) = (0, x), dostaneme

obsah(M) =

∫
M

1 dλ2(x, y) =

∫
M

∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) dλ2(x, y)

=

∫
∂M

F (x, y) · ds =

∫ 1

0

(0, t2 − t) · (2t− 1, 3t2 − 1) dt =
1

60
.

5. Fourierovy koeficienty funkce f jsou

ak =
1

2

∫ 2

−2
f(t) cos

(
kπt

2

)
dt = −

∫ 1

−1
cos

(
kπt

2

)
dt =

{
−4 sin( kπ2 )

kπ
, pro k ∈ N,

−2, pro k = 0,

bk =
1

2

∫ 2

−2
f(t) sin

(
kπt

2

)
dt = 0, pro k ∈ N.

Fourierova řada funkce f proto je

−1 +
+∞∑
k=1

−
4 sin

(
kπ
2

)
kπ

cos

(
kπt

2

)
.

Součet Ff (t) Fourierovy řady funkce f na intervalu [−2, 2) je

Ff (t) =


−2, pro t ∈ (−1, 1),

−1, pro t ∈ {−1, 1},
0, pro t ∈ [−2,−1) ∪ (1, 2).



Zadáńı E

1. (a) Protože R2 je konvexńı množina, je F potenciálové právě tehdy, když ∂F1

∂y
= ∂F2

∂x

na R2. Z uvedené rovnosti mezi parciálńımi derivacemi plyne, že g′(y) sinx =
sinx pro všechna x, y ∈ R. Tedy g′(y) = 1. Odtud g(y) = y +K, kde K ∈ R.

(b) Z bodu (a) a podmı́nky g(0) = 0 plyne, že hledáme potenciál f k vektorovému
poli

F (x, y) = (y sinx, 2y − cosx).

Podle definice potenciálu muśı platit

∂f

∂x
= y sinx, (12)

∂f

∂y
= 2y − cosx. (13)

Integraćı rovnice (12) obdrž́ıme f(x, y) = −y cosx + h(y), kde h je zat́ım
neurčená funkce. Dosazeńım do (13) máme h′(y) = 2y. Tedy h(y) = y2 + C,
kde C ∈ R. To znamená, že f(x, y) = −y cosx+y2+C. Z podmı́nky f(0, 2) = 0
plyne, že C = −2. Hledaný potenciál proto je

f(x, y) = −y cosx+ y2 − 2.

2. Z podmı́nky nulovosti gradientu obdrž́ıme soustavu rovnic

x− 1 = 0, (14)

y(y2 − 4z + 2) = 0, (15)

4z − 2y2 + 1 = 0. (16)

Z (14) okamžitě obdrž́ıme x = 1. Dále vid́ıme, že plat́ı (15) právě tehdy, když y = 0
nebo y2 = 4z − 2.

• Je-li y = 0, pak z (16) máme z = −1
4
.

• Je-li y2 = 4z − 2, pak z (16) plyne, že −4z + 5 = 0. Tedy z = 5
4

a y = ±
√

3.

Máme tak tři stacionárńı body, a to konkrétně
(
1, 0,−1

4

)
,
(
1,
√

3, 5
4

)
a
(
1,−
√

3, 5
4

)
.

Zbývá určit jejich typ. Hessova matice funkce f v bodě (x, y, z) je

Hf (x, y, z) =

2 0 0
0 3y2 − 2(2z − 1) −4y
0 −4y 4

 .

Protože

Hf

(
1, 0,−1

4

)
=

2 0 0
0 3 0
0 0 4

 .

je pozitivně definitńı (má evidentně kladná vlastńı č́ısla), je
(
1, 0,−1

4

)
bod lokálńıho

minima. Ze Sylvesterova kritéria snadno ukážeme, že

Hf

(
1,
√

3,
5

4

)
=

2 0 0

0 6 −4
√

3

0 −4
√

3 4

 , Hf

(
1,−
√

3,
5

4

)
=

2 0 0

0 6 4
√

3

0 4
√

3 4

 .

jsou indefinitńı matice, a proto
(
1,
√

3, 5
4

)
a
(
1,−
√

3, 5
4

)
jsou sedlové body.



3. Uvažovaný součet dvou dvojnásobných integrál̊u reprezentuje integrál funkce e−x
3+3x

přes množinu M , která je znázorněná na Obrázku 8. Podle Fubiniho věty máme∫ 1

0

∫ √ y
2

0

e−x
3+3x dx dy +

∫ 2

1

∫ √ y
2

√
y−1

e−x
3+3x dx dy =

∫ 1

0

∫ x2+1

2x2
e−x

3+3x dy dx

=

∫ 1

0

(1− x2)e−x3+3x dx =
e2 − 1

3
.

Obrázek 8: Množina M .

4. Křivka C je načrtnuta na Obrázku 9.

Obrázek 9: Křivka C.

(a) Parametrizace křivky C je např́ıklad

ϕ(t) = (2 cos t, 2 sin t) , t ∈
[
−π

2
,
π

2

]
.

(b) Využit́ım parametrizace z bodu (a) máme∫
C

x2 + y ds = 4

∫ π
2

−π
2

(2 cos2 t+ sin t) dt = 4π.

5. (a) Protože

lim
k→+∞

k

√∣∣∣∣(x− 1)k

3kk

∣∣∣∣ =
|x− 1|

3
,

plyne z odmocninového kritéria, že poloměr konvergence je R = 3. V bodě −3
uvedená řada diverguje, nebot’ |−3− 1| = 4 > 3.



(b) Protože (
+∞∑
k=1

(x− 1)k

3kk

)′
=

+∞∑
k=1

(x− 1)k−1

3k
=

1

3

+∞∑
k=0

(x− 1)k

3k
=

1

4− x

pro x ∈ (−2, 4), je

+∞∑
k=1

(x− 1)k

3kk
=

∫
1

4− x
dx = − ln(4− x) + C

pro x ∈ (−2, 4). Dosad́ıme-li do posledńı rovnosti za x hodnotu 1, dostaneme
0 = C − ln 3. Tedy

+∞∑
k=1

(x− 1)k

3kk
= − ln(4− x) + ln 3

pro x ∈ (−2, 4).


