Matematicka analyza 2
Pisemna ¢ast zkousky (XX.XX.XXXX)

Jméno a prijment: ........cccooiiiiiiiiiiis Podpis: ..oooviiiiiii
Piklad | L. 2. 3. 1. 5. S
Body

Pred zahajenim prace
e Vyplite citelné rubriku Jméno a piijmeni a podepiste se.

e Béhem pisemné zkousky smite mit na lavici pouze zadani pisemky, psaci potieby,
prukaz totoznosti a papiry, na které zkousku vypracovavate.

e Nepiste obycejnou tuzkou ani ¢ervené, jinak pisemka nebude piijata.
e Na konci kazdého pifkladu formulujte odpovéd.

e Veskeré své odpovédi zduvodnéte.

Soupis vybranych vzorca

e sin(a £ ) = sinacos § £ sin f cos a pro kazdé a, § € R.

e cos(a+ ) =cosacos S Fsinasinf pro kazdé «, 5 € R.

1—cos(2a

o sin®a =1 ) pro kazdé a € R.

1+cos(2a)

5 pro kazdé o € R.

o cos?a =
e Jakobian transformace do polarnich soutadnic: r.

e Jakobidn transformace do valcovych soutadnic: 7.

e Jakobidn transformace do sférickych soufadnic: 72 sin 6.



Zadani A
. [10 bodu] Je déna funkce

f(x,y) = V14 2z cos(x + 2y).

Naleznéte Tayloruv polynom druhého tddu funkce f v bodé (0,0). Tento vysledek

vyuzijte k aproximaci hodnoty f (%, %)

. [10 bodt] Naleznéte vsechny body na kfivce o rovnici
(z+y)* + 4z —y)* = 16,
které jsou nejblize pocatku.
. [10 bodu] Vypoctéte integral funkee f(x,y,2) = 2? pies mnozinu

M:{(:B,y,z)€R3‘2x+y+4z§4,x20,y20,220}.

. [10 bodu] Je déna plocha
S = {(x,y,z) €R3‘x2+z2 =1l,x>0,y€[-22],z> 0}.
Pomoci Stokesovy véty vypoctéte kiivkovy integral vektorového pole
F(z,y,z) = (x — 3z, sin(y2) L zyS + ez)

pres kiivku C, kde C' je okraj plochy S orientovany proti sméru hodinovych rucicek,
divame-li se na néj shora.

. [10 bodu] At
1

x?2—x—2

fz) =

Naleznéte rozvoj funkce f do mocninné fady se stfedem v bodé 0 a urcete polomér
konvergence této rady.



Zadani B
. [10 bodu] Je déno vektorové pole

F(z,y,2) = (9(: — aze®® 3y?, 27 — 6290) ,
kde oo € R.

(a) Urcete vsechny hodnoty parametru «, pro které je vektorové pole F' potencidlové.

(b) Pro hodnoty parametru « z bodu (a) naleznéte potencial f vektorového pole
F tak, aby f(0,0,1) = 0.

(¢) Pro hodnoty parametru « z bodu (a) vypoctéte kiivkovy integrél vektorového
pole F podél kruznice C = {(z,y,0) € R*|(x — 1)* + y* = 1} orientované
proti sméru hodinovych rucicek, divame-li se na ni shora.

. [10 bodt] Jsou dédny body w = (—2,—1), v = (0,1) a w = (2,2).

(a) Formulujte tilohu o prolozeni piimky body u, v, w metodou nejmensich ¢tvercu
(tj. uved'te, zda hledate body minima nebo maxima funkce f na M a specifi-
kujte funkei f a mnozinu M).

(b) Vyfeste ulohu z bodu (a).
. [10 bodu] Vypoctéte integrél funkce f(z,y) = y pres kompaktn{ mnozinu M C R?

ohrani¢enou kiivkami y = 22 +1 ay = 3 — 22

. [10 bodu] Af kompaktni mnozina M je ¢dsti kuzelu z > /22 + y?2 lezici mezi rovi-
nami z = 1 a z = 2. Pomoci Gaussovy véty vypoctéte plosny integral vektorového
pole

F(z,y,2) = (2y* 2y, " — cosy)

pres plochu S = OM orientovanou vnéj$im normalovym polem.

. [10 bodu] Je déna funkce

(a) Naleznéte Fourierovu fadu funkce f.

(b) Urcete soucet Fourierovy fady funkce f na intervalu [5m, 77).



Zadani C
. [10 bodu] Je déna funkce
f(z,y) = 2* + 22y + 3y* — o + 2y.

(a) Naleznéte bod a nélezici grafu funkce f, ve kterém je tetnd rovina rovnobézna
s rovinou 2z — 3y + 2 = 6.

(b) Neleznéte vsechny jednotkové vektory h tak, aby Vi f(0,0) = 0.
. [10 bodu] Klasifikujte vsechny staciondrni body funkce

1
fz,y) = 42* — 22° — 2%y + §y2.

. [10 bodu] Vypoctéte integral funkce f(z,y, 2) = z pres kompaktni mnozinu M C R3,

ktera je ohrani¢ené plochami x =0,y =22, y =8, 2=0a 2z = 1.

. [10 bodu] Pomoci Greenovy véty vypoctéte kiivkovy integréal vektorového pole
F(z,y) = (—y® +sinz, 3¢? + 2?)

podél kladné orientované Jordanovy kiivky C', ktera je hranici mnoziny

M= {(z,y) eR*| 2>+’ <1,—y <z <y}.

. [10 bodu] Naleznéte polomér konvergence a na intervalu konvergence soucet moc-

ninné fady
o0

D (k4 1)z -1~

k=0

Konverguje zadand mocninnd fada v bodé —17?



Zadani D
. [10 bodu] Je déna funkce
P, y) = In(ay) + =2,

Naleznéte Tayloruv polynom druhého tddu funkce f v bodé (1,1). Tento vysledek
vyuzijte k aproximaci hodnoty f ( 9 11).

10° 10

. [10 bodu] Naleznéte vsechny body minima a body maxima funkce
f(z,y) =22 + 3y* — 4x

na mnoziné M = {(z,y) € R?|2? + y* < 16}.

. [10 bodu] Vypoctéte integral funkee f(x,y, z) = y pfes mnozinu

M:{(x,y,z)€R3|1§x2+y2+22§4,y20,220}.

. [10 bodt] Pomoci Greenovy véty urcete obsah mnoziny M C R?, jestlize vite, ze
hranice M je Jordanova ktivka s parametrizaci

o(t) = (-t —t), tel01].

. [10 bodu] Je déna funkce

-2, te-1,1
ft) = {0, te[-2,-1)U(L,2).

Naleznéte Fourierovu radu funkce f a urcete jeji soucet na intervalu [—2, 2).



1.

\)

Zadani E
[10 bodu] Je déno vektorové pole

Flr,y) = (gly) sinr, 2y — cost)
kde g : R — R je funkce t¥idy C*.

(a) Urcete vSechny mozné funkce g tak, aby vektorové pole F' bylo potencidlové
(na R?).

(b) Pro funkci g z bodu (a) spliujici g(0) = 0 naleznéte potencidl f vektorového
pole F' tak, aby f(0,2) = 0.

. [10 bodt] Klasifikujte v8echny stacionarni body funkce

1
f(fl?alhz):3724';12/4“‘222—y2(22—1)—2x+z.

[10 bodu] Zaménou poradi integrace spoctéte

1 % 2 /%
/ / Tt gy dy + / / C et gy dy.
0 0 1 Vy—1

[10 bodu] At kiivka C' je prunik kruznice 22 + y* = 4 s polorovinou x > 0.
(a) Naleznéte néjakou parametrizaci kiivky C.
(b) Vypoctéte kiivkovy integral funkce f(z,y) = 22 + y podél kiivky C.
[10 bodt] Je ddna mocninnd fada

f (x —1)"

~ 3m

(a) Urcete jeji polomér konvergence a rozhodnéte, zda fada konverguje v bodé —3.

(b) Na intervalu konvergence naleznéte jeji soucet.



Struc¢né resSeni

Zadani A

1. Snadno nalezneme, ze

Vf(z,y) = (M — V14 2zsin(z + 2y), —2vV1 + 2z sin(z + 2y)) ,

V14 2z
_ 2(1+4x)cos(z+2y)  2sin(x+2y)  2sin(x+2y)+2(14-22) cos(x+-2y)
‘ Vit2z Vit2z
Hi(z,y) = V/ (1422)3 ‘
f . 251n(m+2y)+5ﬁr+211) cos(z+2y) —4mcos(x + 2y)

Odtud plyne, ze Tayloruv polynom druhého fadu funkce f v bodé (0,0) je

DO | —

Ty(r.y) = £(0.0) + V£(0.0) - (2.5) + ~(,5)H(0,0) (y)

=1+ (1,0) (z) + %(x’y) (:; :‘21) <§>

=14z —2® — 20y — 2°

11 11 1
— =)A=, — ) =1+ —.
f(m’m) 2(10’10) i

2. Hleddme bod minima spojité funkce f(z,y) = 22 + y? na mnoziné

Proto

M= {(z,y)| (z+y)* +4(x —y)* = 16} .

Mnozina M je neprazdné a kompaktni, a proto feseni existuje. Bod minima nalez-
neme pomoci metody Lagrangeovych multiplikdtoru. Jestlize (z,y) je bod minima,
potom existuje A € R tak, ze

z+ Abxr —3y) =0, (1)
y+ AN—3z+5y) =0, (2)
(z+y)* +4(z —y)? = 16. (3)

Odectenim (2) od (1) dostaneme (z — y)(1 + 8X) = 0. Proto 2 =y nebo A = —3.
e Je-li ¥ =y, pak z (3) plyne, ze 42* = 16, a proto x = +2.
o Jelli A\ = —%, pak diky (1) je z = —y. Dosazenim do (3) obdrzime 2% = 1, a
tedy ©z = +1.
Body minima tedy musime hledat mezi body (1,—1), (—1,1), (2,2) a (—2,—2).
Protoze f(1,—1) = f(=1,1) = 2 a f(2,2) = f(—2,—2) = 8§, jsou body (1,—-1) a
(—1,1) hledané body minima.
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Obrazek 1: Znazornéni mnoziny M a jejiho ,fezu* M,

3. Pro kazdé z € [0, 1] oznacme
M = {(z,y) eR*|0<2<2(1—2),0<y<4—2w—4z}.

Mnoziny M a MU jsou naértnuty na Obrazku 1. Z Fubiniho véty plyne, ze

(1-2) 4—2x—4z
/zd)\gxy, // zd)\gxde—// / 2 dydzdz
M [2]
(1-=2)
/ / —2x—4zdxdz—4/ 21— 2)? dz:ﬁ'

4. Plocha S je na¢rtnuta na Obrazku 2. Za parametrizaci plochy S volme naptiklad
vektorovou funkci

®(u,v) = (sinwu,v,cosu), (u,v) € [0, g] x [—2,2].

€
1

[ i ‘

[
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Obrazek 2: Plocha S spolu s jejim okrajem C.

Potom

o® 0P

o
Odtud vidime, ze orientace plochy S indukovana parametrizaci ® je souhlasna se
zadanou orientaci okraje C'. Podle Stokesovy véty mame

/CF-ds:/S(VXF)-dE

2 jus
= / /2 (3v?sinu, —2v?, 3v? cos ) - (sinw, 0, cos u) du dv = 8.

= (sinu, 0, cosu).



5. Rozklad funkce f na parcidlni zlomky dava

1 1
_ 73 3
f(x) x+1 +x—2
Protoze
Lo_ +m(—1)kxk pro |z| <1
ill'—l-l ) 5
k=0
1 11 X gk
T3 3T E g Prold <2
2 k=0
je
=1 1
k=0

pro |z| < 1 (tj. polomér konvergence je R = 1).



Zadani B

1. (a) Snadno nalezneme, ze V x F(xz,y,2) = (0, (2 — a)e?*,0). Tedy V x F = 0 na
R3 prave tehdy, kdyz o = 2.

(b) Potencidl f musi spliovat

af o 2z
g(x,y,z)—x 2ze™,
of a2
a_y(x7y7z) _3y 9

of

—(z,y,2) = 2* — e**.

0z

Integraci rovnice (4) dostaneme

f(xvyaz) -5

.CL’2

2

— ze* + g(y, 2)

kde ¢(y, z) je zatim nezndmé funkce dvou proménnych. Dosazenim do (5) méme

89 6 2
8—y(y,2) = 3y°,

a proto g(y, z) = y> + h(z). Mame tak

f(x7y7 Z) =

1‘2

2

— —ze® +yP+h

K uréeni nezndmé funkce h vyuzijeme rovnici (6). Dosazenim obdrzime rovnici
h'(z) = 2%, Proto h(z) = % + C, kde C' € R. Z podminky f(0,0,1) = 0 plyne,

ze C'= % Tedy

f(I,y,Z):7

(c) Protoze pro a = 2 je F potencidlové na R? a C je uzaviena kiivka, je

5(72

/F-ds:O.
c

2. (a) Hleddme bod minima funkce

flk,q) = (—2k+q+1)*+(¢g— 1>+ 2k +q—2)*

na mnoziné M = R2.

z 2
— ey +

(b) Protoze f je konvexni, je kazdy staciondrni bod funkce f bodem minima. Z

podminky V f = 0 mame

Tedy k = % aq= % Hledand piimka je tak urc¢ena rovnici y = Z%:1: +

4k -3 =0,
3g—2=0.

wno



Obrazek 3: Mnozina M.

3. Mnozina M je zndzornéna na Obrézku 3. Vyuzitim Fubiniho véty dostaneme

1! 16
/ yd)\g(x,y):/ / ydydx:—/ (3—2?)? — (2* + 1) do = —.
M “1Ja241 2/ 3

4. Mnozina M je zndzornéna na Obrdzku 4. Protoze V « F(z,y, z) = 2% + y?, plyne z
Gaussovy véty, ze

2 1
/F-dE—/x +y? ds(m,y, 2) // /rdrdg&dz-gl(;r
s

Obrazek 4: Mnozina M.
5. (a) Fourierovy koeficienty funkce f jsou

1 s
ap = —/ —tcos(kt)dt =0, prok € Ny,

™ —T
1 [7 _ 2 [T i
b = —/ —tsin(kt) dt = —/ —tsin(kt) dt
™) . 7 Jo
2 cos(kt) 1™ ™ cos(kt) 2(—1)k
™ ([ k L /0 2 Foo PORS

Fourierova rada funkce f proto je

100 5/ 1\k
22( D sin(kt).



(b) Soucet .#(t) Fourierovy fady funkce f na intervalu [57,77) je

6m —t, pro t € (5w, Tn),

Fi(t) = F4(t — 6m) =
() i ™) {0, pro t = 5.



Zadani C

1. (a) Protoze Vf(z,y) = (2o + 2y — 1,2z + 6y + 2), md tecnd rovina v bodé (z, y, f(z,y))
normalovy vektor

v=2v+2y—1,2x+6y+2,—1).
Normalovy vektor roviny o rovnici 2z — 3y + 2 = 6 je
w=(2,-3,1).

Aby te¢nda rovina byla rovnobéznd se zadanou rovinou, musi existovat realné
¢islo A € R tak, ze v = Aw. Odtud plyne, ze A = —1 a navic

20 4+ 2y = —1,
2v + 6y = 1.

Tedy r=—1a Yy = % Protoze f (_17 %) = %’ je

1 11
a= <—1, 5, Z) .
(b) Z nulovosti smérové derivace plyne, ze
0=h-(—1,2) = —hy + 2hs.
Tedy hy = 2hsy. Protoze h je jednotkovy vektor, musi platit
1= ||h|]*> = h? + h2 = 5h2.
To znamena, ze hy = i\/ig. Proto

1
h=t(21),

2. Podminka stacionarity (nulovost gradientu) vede na soustavu rovnic

8z — 61 — 22y =0, (7)
—2*+y=0. (8)
Ziejmé (8) prave tehdy, kdyz y = 2. Dosazenim do (7) obdrzime
0=—2z(2® +31v —4) = —2x(z — 1)(z +4).
Stacionarni body proto jsou (0,0), (1,1) a (—4, 16). Hessova matice funkce f v bodé
(z,y) je

8§ —12x — 2y —2x
e = (ST ).

Hy(0,0) = <§ (1))

Protoze



je pozitivné definitni (H;(0,0) ma evidentné kladnd vlastni ¢isla), je (0,0) bod
lokalniho minima. Matice

Hf(l’l):Cg _12) a Hf(—4,16):<284 ?)

jsou indefinitni (jejich determinant je totiz zaporny), a tedy (1,1) a (—4,16) jsou
sedlové body funkce f.

3. Mnozina M je znazornéna na Obrazku 5. Podle Fubiniho véty je

1 2 8 1 2 1
/zd/\g(x,y,z):/ / / zdydxdz:/ / z(8—x3)dxdz:12/ zdz = 6.
M 0o Jo Jas 0 Jo 0

Obréazek 5: Mnozina M.

4. Mnozina M a krivka C' jsou nacrtnuty na Obrazku 6. Z Greenovy véty plyne, ze

oF. oF
c m Oz

Ay M

T T2 3
:/ / (2rcosg0+3r251n2¢)rdrdg0:/ gcosgoJré—Lsianpdgo

s 0 s

3 [ 3 [T 3
:é_l/z sinQ(png:g/er 1—Cos(2g0)d<pzﬁ(7r+2).

g
@
>

Obréazek 6: Mnozina M a kiivka C.



5. Snadno nalezneme, ze

S (k+1)(z—1)F = (Z@f —~ 1)k+1) = (§:i> = ﬁ

k=0 k=0

pro |x — 1| < 1 (tj. polomér konvergence je R = 1). Interval konvergence je (0,2), a
proto fada diverguje v bodé —1.



Zadani D

1. Snadno nalezneme, ze

1 1
Vf(.f,y> — (E + egr:nyle7 5 . 26x2y+1) ’

1 z—2y+1 z—2y+1
—= te Y —2e Y
Hf(xa y) = ( x_26172y+1 _% + 4er—2u+1
Yy

Tayloruv polynom druhého fadu funkce f v bodé (1,1) je proto

T(x,y)=f(L,LH)+Vf(L1)-(x—1,y—1)+ ;( —1,y—1)Hs(1,1) (y—i)

g(y —1)%

=142zx—-1)—(y—1)=2x—-1)(y—1)+
Odtud

1010 200

2. Z Weierstrassovy véty vime, zZe existuji body minima a body maxima funkce f na
M. Pokud takové body lezi v int (M), pak jsou to nutné stacionarni body funkce
f. Protoze Vf(x,y) = (4o — 4,6y), je Vf(x,y) = (0,0) pravé tehdy, kdyz z =1 a

y = 0. Zrejmeé (1,0) € int (M), a proto (1,0) je podeziely bod z extrému.
Jestlize (x,y) € OM je bod extrému funkce f na M, pak nutné existuje A € R tak,

ze

20 — 24+ \x =0,
3y+ Ay =0,
2 +y* = 16. (11)

—
= O ©
— —

Ziejmeé (10) plati prave tehdy, kdyz A = —3 nebo y = 0.
e Je-li A = =3, pak z (9) plyne, ze x = —2. Diky (11) je potom y = ++/12.
e Je-liy =0, pak z (11) mame z = £4.
Podezielé body z extrému lezici v OM jsou (—2,v/12), (=2, —v/12), (—4,0) a (4,0).

Protoze f(1,0) = —2, f( 2,V/12) = f(—2,—V12) =52, f(4,0) = 16 a f(—4,0) =
48, jsou (—2,v/12) a (2, \/_) body maxima funkce f na M a (1,0) je bod minima
funkce f na M.

3. Mnozina M je znézornéna na Obrazku 7. Prechodem ke sférickym souradnicim
obdrzime

/yd)\gxy, / //r sin  sin 9drdgpd9—2(4——)/ sin® 0 df
(4——)/ 1 — cos(20)df = 157T
4/ Jo



Obréazek 7: Mnozina M.

4. Vyuzijeme-li Greenovu vétu s vektorovym polem F'(z,y) = (0, x), dostaneme

0F,

(:E7y) - —(l’,y) d/\Q(Zan)

obsah(M) = / Lds(x,y) = oy 5
)

M Mal’

1
1
= F(x,y)-ds:/(o,tQ—t)-(zt—1,3t2—1)dt:—.
oM 0 60

5. Fourierovy koeficienty funkce f jsou

1 [? ket ! ket _ ()
ak:—/ f(t)cos(i) dt:—/ cos(i) dt = kw0 pro k €N,
2/ 2 -1 2 -2, pro k =0,
1 [? kt
bk:§/ f(t)sin (%) dt =0, prokeN.
—2

Fourierova rada funkce f proto je

+o0 4 i km
-1+ Z—%m CcoS (%) .
k=1

Soucet .Z((t) Fourierovy fady funkce f na intervalu [—2,2) je

-2, prot € (—1,1),
Fit)={ -1, pote{-11}
0, prot e [—2,—-1)U(1,2).



Zadani E

1. (a) Protoze R? je konvexni mnozina, je F potencidlové pravé tehdy, kdyz 21 = 9&2

dy =~ Oz
na R2. Z uvedené rovnosti mezi parcidlnimi derivacemi plyne, Ze ¢’ (y)ysinx =
sinz pro viechna z,y € R. Tedy ¢'(y) = 1. Odtud g(y) =y + K, kde K € R.
(b) Z bodu (a) a podminky ¢(0) = 0 plyne, ze hleddme potencial f k vektorovému
poli
F(z,y) = (ysinz,2y — cosx).

Podle definice potencialu musi platit

% = ysinz, (12)
g—‘;j = 2y — cos . (13)
Integraci rovnice (12) obdrzime f(z,y) = —ycosz + h(y), kde h je zatim

neurcené funkce. Dosazenim do (13) mdme h'(y) = 2y. Tedy h(y) = y* + C,
kde C' € R. To znamena, ze f(z,y) = —ycosz+y*+C. Z podminky f(0,2) =0
plyne, ze C' = —2. Hledany potencial proto je

f(z,y) = —ycosx +y* — 2.

2. 7 podminky nulovosti gradientu obdrzime soustavu rovnic

r—1=0, (14)
y(y? —4z+2) =0, (15)
4z —2* +1=0. (16)

Z (14) okamzité obdrzime = = 1. Déle vidime, ze plati (15) pravé tehdy, kdyz y = 0
nebo y? = 4z — 2.

e Je-li y =0, pak z (16) mame z = _Zly

o Jeli 4> =4z — 2, pak z (16) plyne, Ze —4z + 5= 0. Tedy z = %

= +/3.

ay
Mame tak tii stacionarni body, a to konkrétnée (1, 0, —i), (1, V3, g) a (1, —/3, g)
Zbyvéa urcit jejich typ. Hessova matice funkce f v bodé (z,y, 2) je

2 0 0
Hi(x,y,2) =0 3y*—2(2z—1) —4y
0 —4y 4
Protoze
1 200
H, <1,0,—1> —lo 3 0
0 0 4

je pozitivné definitni (m4 evidentné kladnd vlastni ¢isla), je (1, 0, —}1) bod lokalniho
minima. Ze Sylvesterova kritéria snadno ukazeme, ze
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jsou indefinitni matice, a proto (1, V3, 2) a (1, —V3, ;51) jsou sedlové body.



3. Uvazovany soucet dvou dvojnasobnych integralu reprezentuje integral funkce e 3z
pres mnozinu M, ktera je znazornéna na Obrazku 8. Podle Fubiniho véty mame
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Obrazek 8: Mnozina M.

4. Krivka C' je na¢rtnuta na Obrazku 9.

Obrazek 9: Kiivka C.

(a) Parametrizace kiivky C' je napiiklad
p(t) = (2cost,2sint), te [—z z] .

(b) Vyuzitim parametrizace z bodu (a) mame

/ 2® +yds = 4/2 (2cos?t + sint) dt = 4.
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5. (a) Protoze
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plyne z odmocninového kritéria, ze polomér konvergence je R = 3. V bodé —3
uvedend fada diverguje, nebot |—-3 — 1| =4 > 3.



(b) Protoze
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pro x € (—2,4), je
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pro z € (—2,4). Dosadime-li do posledni rovnosti za x hodnotu 1, dostaneme
0=C —1n3. Tedy
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pro x € (—2,4).



