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Základńı informace

Stránky p̌redmětu:
https://moodle.fel.cvut.cz/courses/B0B01MA2

Obsah kurzu:

1 diferenciálńı počet;

2 integrálńı počet;

3 posloupnosti a řady funkćı.
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Euklidovský prostor

At’ n ∈ N. Označme

Rn = {(x1, . . . , xn) |xi ∈ R pro každé i = 1, . . . , n} .

Pro každé x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn a α ∈ R
definujeme

(O1) sč́ıtáńı: x+ y := (x1 + y1, . . . , xn + yn);

(O2) násobeńı č́ıslem: αx := (αx1, . . . , αxn);

(O3) skalárńı součin: x · y := x1y1 + · · ·+ xnyn =
∑n

i=1 xiyi.

Definice (n-dimenzionálńı euklidovský prostor)

Množina Rn vybavená operacemi (O1)–(O3) se nazývá (n-dimenzionálńı)
euklidovský prostor.
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Euklidovský prostor

Terminologie a značeńı:

Mı́sto R1 budeme psát R.

Prvky euklidovského prostoru nazýváme body nebo také vektory.

Reálná č́ısla x1, . . . , xn nazýváme složky (p̌ŕıpadně soǔradnice či
komponenty) vektoru x = (x1, . . . , xn) ∈ Rn

Mezi řádkovým a sloupcovým zápisem vektor̊u v Rn nebudeme dělat
rozd́ıl. Sloupcový však budeme využ́ıvat jen p̌ri zápisech s maticovým
násobeńım.

Definice (euklidovská norma)

Euklidovská norma (p̌ŕıpadně velikost) vektoru x ∈ Rn je č́ıslo

‖x‖ :=
√
x · x =

√
x21 + · · ·+ x2n =

√√√√ n∑
i=1

x2i .
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Vlastnosti euklidovské normy

V R je ‖x‖ = |x|.

Tvrzeńı (základńı vlastnosti)

Pro každé x,y ∈ Rn a každé α ∈ R plat́ı

1 ‖x‖ ≥ 0 a nav́ıc ‖x‖ = 0 právě tehdy, když x = 0;

2 ‖αx‖ = |α| ‖x‖;
3 |x · y| ≤ ‖x‖ ‖y‖; (Cauchyho-Schwarzova nerovnost)

4 ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (Trojúhelńıková nerovnost)

Důkaz: Vynecháváme. �
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Vzdálenost dvou bodů

Euklidovská vzdálenost bodů x,y ∈ Rn je č́ıslo ‖x− y‖.

x

y

−y

x− y

‖x−
y‖

Vlastnosti (euklidovské) vzdálenosti dvou bodů:

1 ‖x− y‖ ≥ 0 a nav́ıc ‖x− y‖ = 0 právě tehdy, když x = y;

2 ‖x− y‖ = ‖y − x‖;
3 ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.
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Úhel mezi vektory

Úhel mezi nenulovými vektory x,y ∈ Rn je č́ıslo ϕ ∈ [0, π] splňuj́ıćı

cosϕ =
x · y
‖x‖ ‖y‖

.

D́ıky Cauchyho-Schwarzově nerovnosti je úhel dob̌re definovaný.

Pomoćı skalárńıho součinu má smysl definovat kolmost dvou vektor̊u i
v p̌ŕıpadě, kdy některý z vektor̊u je nulový.

Definice (kolmost vektor̊u)

Řekneme, že dva vektory x,y ∈ Rn jsou na sebe kolmé (ṕı̌seme x ⊥ y),
jestliže x · y = 0.

‖x‖2 + ‖y‖2 = ‖x+ y‖2 právě tehdy, když x ⊥ y.

Př́ıklad

At’ x = (3, 4) a y = (−1, 7). Potom ‖x− y‖ = 5. Úhel mezi vektory x a
y je ϕ = π

4 . Dále x ⊥ v právě tehdy, když v = t(−4, 3), kde t ∈ R.
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Daľśı normy na Rn

Součtová norma: ‖x‖1 =
∑n

i=1 |xi|.
Maximová norma: ‖x‖∞ = maxi=1,...,n |xi|.
Neńı těžké ukázat, že se jedná o normy na lineárńım prostoru Rn.

ε

‖x‖1 < ε

ε

‖x‖ < ε

ε

‖x‖∞ < ε

Tvrzeńı (nerovnosti mezi normami)

Pro každé x = (x1, . . . , xn) ∈ Rn plat́ı

1 |xi| ≤ ‖x‖∞ ≤ ‖x‖ ≤
√
n ‖x‖∞ pro každé i = 1, . . . , n;

2 ‖x‖ ≤ ‖x‖1 ≤
√
n ‖x‖.

Důkaz: Viz p̌rednáška. �
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Posloupnost v Rn a jej́ı limita

Posloupnost (bodů) v M ⊆ Rn ... (xk)
+∞
k=1, kde xk ∈M pro každé

k ∈ N.

Pro všechny posloupnosti (xk)
+∞
k=1, (yk)

+∞
k=1 v Rn a pro každé α ∈ R

definujeme

(xk)
+∞
k=1 + (yk)

+∞
k=1 := (xk + yk)

+∞
k=1 ,

α (xk)
+∞
k=1 := (αxk)

+∞
k=1 .

Definice (limita posloupnosti)

Necht’ (xk)
+∞
k=1 je posloupnost bodů v Rn a x ∈ Rn. Řekneme, že x je

limita posloupnosti (xk)
+∞
k=1 (p̌ŕıpadně (xk)

+∞
k=1 konverguje k x) a ṕı̌seme

lim
k→+∞

xk = x (nebo xk → x pro k → +∞), jestliže

lim
k→+∞

‖xk − x‖ = 0.
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Limita posloupnosti

Terminologie:

(xk)
+∞
k=1 je konvergentńı posloupnost ... (xk)

+∞
k=1 konverguje

k nějakému x ∈ Rn.

(xk)
+∞
k=1 je divergentńı posloupnost ... (xk)

+∞
k=1 neńı konvergentńı.

Tvrzeńı (jednoznačnost limity posloupnosti)

Každá posloupnost bod̊u v Rn má nejvýše jednu limitu.

Důkaz: Viz p̌rednáška. �

Tvrzeńı (konvergence posloupnosti po složkách)

Necht’ (xk)
+∞
k=1 je posloupnost bod̊u v Rn, xk = (xk1, . . . , xkn) a

L = (L1, . . . , Ln) ∈ Rn. Pak lim
k→+∞

xk = L právě tehdy, když

lim
k→+∞

xkj = Lj pro každé j = 1, . . . , n.

Důkaz: Viz p̌rednáška. �
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Limita posloupnosti

Př́ıklad

1 Posloupnost (xk)
+∞
k=1, kde xk =

(
1, (−1)k

)
, je divergentńı.

2 Posloupnost (xk)
+∞
k=1, kde xk =

(
2k+1
1−k ,

k
√
k
)

, je konvergentńı a

lim
k→+∞

xk = (−2, 1).

Tvrzeńı (základńı pravidla o limitách posloupnost́ı)

Je-li lim
k→+∞

xk = x, lim
k→+∞

yk = y a α ∈ R, potom

1 lim
k→+∞

αxk = αx;

2 lim
k→+∞

xk + yk = x+ y;

3 lim
k→+∞

xk · yk = x · y.

Důkaz: Viz p̌rednáška. �

Martin Bohata Matematická analýza 2 Úvod 11 / 22



Omezené posloupnosti

Definice (omezená posloupnost)

Posloupnost (xk)
+∞
k=1 v Rn se nazve omezená, jestliže existuje R > 0 tak,

že ‖xk‖ ≤ R pro každé k ∈ N.

Př́ıklad

1 Posloupnost ((1, k))+∞k=1 neńı omezená.

2 Posloupnost
((

1
k , (−1)

k
))+∞
k=1

je omezená.

Každá konvergentńı posloupnost je nutně omezená.

Ne každá omezená posloupnost je konvergentńı (viz p̌ŕıklad výše).

Všimněme si, že z posloupnosti
((

1
k , (−1)

k
))+∞
k=1

můžeme vynecháńım
vhodných členů vytvǒrit konvergentńı posloupnost. Je to náhoda?
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Podposloupnosti

Definice (podposloupnost)

Podposloupnost posloupnosti (xk)
+∞
k=1 v Rn je posloupnost (xkl)

+∞
l=1 , kde

(kl)
+∞
l=1 je rostoućı posloupnost p̌rirozených č́ısel. Mı́sto (xkl)

+∞
l=1 budeme

také psát
(
xk(l)

)+∞
l=1

.

Př́ıklad

Podposloupnosti posloupnosti
((

1
k , (−1)

k
))+∞
k=1

jsou nap̌ŕıklad

1

((
1
l+1 , (−1)

l+1
))+∞

l=1
;

2
((

1
2l , 1

))+∞
l=1

;

3

((
1

2l+1 ,−1
))+∞

l=1
.
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Podposloupnosti

Tvrzeńı (konvergence podposloupnost́ı)

Konverguje-li posloupnost (xk)
+∞
k=1 bod̊u v Rn k x, pak k bodu x

konverguje také každá jej́ı podposloupnost.

Důkaz: Viz p̌rednáška. �

Věta (Bolzanova-Weierstrassova věta)

Každá omezená posloupnost (xk)
+∞
k=1 bod̊u v Rn má konvergentńı

podposloupnost.

Důkaz: Viz p̌rednáška. �

Předpoklad omezenosti v Bolzanově-Weierstrassově věta je
podstatný. Nap̌ŕıklad č́ıselná posloupnost (k)+∞k=1 nemá konvergentńı
podposloupnost.
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Okoĺı bodu

Definice (okoĺı a prstencové okoĺı bodu)

Necht’ x ∈ Rn a ε > 0. Množinu

U(x; ε) := {y ∈ Rn | ‖x− y‖ < ε}

nazýváme okoĺı bodu x o poloměru ε. Množinu

P (x; ε) := U(x; ε) \ {x} = {y ∈ Rn | 0 < ‖x− y‖ < ε}

nazýváme prstencové okoĺı bodu x o poloměru ε.

Nebude-li nutné specifikovat poloměr ε okoĺı a prstencového okoĺı,
budeme stručněji psát U(x) a P (x).
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Vniťrek, hranice a uzávěr množiny

Definice (vniťrek, hranice a uzávěr množiny)

Necht’ M ⊆ Rn. Řekneme, že x ∈ Rn je

1 vniťrńı bod množiny M , jestliže existuje U(x) tak, že U(x) ⊆M ;

2 hraničńı bod množiny M , jestliže pro každé U(x) plat́ı U(x)∩M 6= ∅
a současně U(x) ∩ (Rn \M) 6= ∅.

Vniťrek int (M) množiny M je množina všech vniťrńıch bodů množiny M .
Hranice ∂M množiny M je množina všech hraničńıch bodů množiny M .
Uzávěr M množiny M je množina M ∪ ∂M .
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Vniťrek, hranice a uzávěr množiny

Př́ıklad

At’ M = [0, 1) ⊆ R. Potom

int (M) = (0, 1),

∂M = {0, 1},
M = [0, 1].

Př́ıklad

At’ M = [0, 1)× {0} ⊆ R2. Potom

int (M) = ∅,
∂M =M = [0, 1]× {0}.
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Otev̌rené a uzav̌rené množiny

Definice (otev̌rená a uzav̌rená množina)

Necht’ M ⊆ Rn. Řekneme, že množina M je otev̌rená, jestliže
M = int (M). Množina M se nazve uzav̌rená, jestliže M =M .

Př́ıklad

1 Prázdná množina a Rn jsou množiny otev̌rené a současně uzav̌rené
v Rn.

2 Interval [0, 1) neńı otev̌rená ani uzav̌rená množina.

3 Každé okoĺı bodu v Rn je otev̌rená množina.

4 Množina
B(x; r) := {y ∈ Rn | ‖x− y‖ ≤ r} ,

která se nazývá n-dimenzionálńı koule se sťredem x a poloměrem r,
je uzav̌rená.
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Otev̌rené a uzav̌rené množiny

Tvrzeńı (charakterizace uzav̌rené množiny)

Necht’ M ⊆ Rn. Následuj́ıćı tvrzeńı jsou ekvivalentńı:

1 M je uzav̌rená množina v Rn.

2 Rn \M je otev̌rená množina v Rn.

3 Každá konvergentńı posloupnost bod̊u v M má limitu lež́ıćı v M .

Důkaz: Viz p̌rednáška. �
Lze ukázat, že:

Libovolné sjednoceńı a konečný pr̊unik otev̌rených množin jsou
otev̌rené množiny.

Konečné sjednoceńı a libovolný pr̊unik uzav̌rených množin jsou
uzav̌rené množiny.

M je pr̊unik všech uzav̌rených množin obsahuj́ıćıch M .

int (M) je sjednoceńı všech otev̌rených podmnožin množiny M .
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Hromadné a izolované body

Definice (hromadný a izolovaný bod)

Necht’ M ⊆ Rn. Řekneme, že x ∈ Rn je

1 hromadný bod množiny M , jestliže existuje posloupnost (xk)
+∞
k=1

bodů v M \ {x} konverguj́ıćı k x.

2 izolovaný bod množiny M , jestliže x ∈M a x neńı hromadný bod M .

Př́ıklad

1 Konečná množina nemá hromadné body, má jen izolované.

2 Každý vniťrńı bod množiny je jej́ım hromadným bodem.

3 Množina
{
1
k

∣∣ k ∈ N
}

má jediný hromadný bod, a to 0.

4 At’ M =
{
(x, y) ∈ R2

∣∣ (x2 + y2
) (
x2 + y2 − 1

)
= 0
}

. Hromadné
body množiny M jsou body na jednotkové kružnici se sťredem
v počátku. Množina M má jediný izolovaný bod, a to počátek.
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Hromadné a izolované body

Př́ıklad (pokračováńı)

5 Jediné hromadné body množiny M =
{(

k
√
k, cos

(
k π2
)) ∣∣∣ k ∈ N

}
jsou

(1,−1), (1, 0) a (1, 1).

Tvrzeńı (charakterizace hromadných a izolovaných bodů)

At’ M ⊆ Rn a x ∈ Rn.

1 Bod x je hromadný bod množiny M právě tehdy, když pro každé
P (x) je P (x) ∩M 6= ∅;

2 Bod x je izolovaný bod množiny M právě tehdy, když existuje U(x)
tak, že U(x) ∩M = {x}.

Důkaz: Vynecháváme. �
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Hromadné a izolované body

Hromadný bod může existovat, jen když je množina nekonečná.

Ne každá nekonečná množina však má hromadný bod.

Definice (omezená množina)

Množina M ⊆ Rn se nazve omezená, jestliže existuje reálné č́ıslo R > 0
tak, že ‖x‖ ≤ R pro každé x ∈M .

Tvrzeńı (existence hromadného bodů)

Každá nekonečná omezená množina M ⊆ Rn má hromadný bod.

Důkaz: Viz p̌rednáška. �
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