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Regulárńı plocha

Definice (funkce ťŕıdy C1 na uzav̌rené množině)

At’ D ⊆ Rn uzávěr neprázdné otev̌rené množiny. Řekneme, že funkce
Φ : D → Rm je ťŕıdy C1, jestliže existuje funkce Ψ : Ω→ Rm, kde
Ω ⊆ Rn je nějaká otev̌rená množina obsahuj́ıćı D, ťŕıdy C1 tak, že
Ψ�D= Φ. Pro každé a ∈ ∂D a pro každé i ∈ {1, . . . ,m} v takovém
p̌ŕıpadě definujeme

∂Φ

∂xi
(a) :=

∂Ψ

∂xi
(a).

Lze ukázat, že definice ∂Φ
∂xi

v hraničńıch bodech množiny D nezáviśı
na konkrétńı volbě funkce Ψ.
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Regulárńı plocha

Definice (regulárńı plocha)

Necht’ D ⊆ R2 je sjednoceńım Jordanovy ǩrivky a jej́ıho vniťrku. Množina
S ⊆ R3 se nazývá regulárńı plocha, jestliže existuje spojitá vektorová
funkce Φ : D → R3 splňuj́ıćı

1 Φ(D) = S;

2 Φ je ťŕıdy C1;

3 Φ je prostá na int (D);

4 pro každé x ∈ int (D) má Jacobiho matice JΦ(x) hodnost 2.

Zobrazeńı Φ se nazývá parametrizace regulárńı plochy S.

Pro každé (u, v) ∈ int (D) zavád́ıme následuj́ıćı terminologii:
∂Φ
∂u (u, v), ∂Φ

∂v (u, v) ... tečné vektory k S v bodě Φ(u, v).
∂Φ
∂u (u, v)× ∂Φ

∂v (u, v) ... normálový vektor k S v bodě Φ(u, v).
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Regulárńı plocha

Př́ıklad

1 At’ f : D → R, kde D ⊆ R2 je sjednoceńı Jordanovy ǩrivky a jej́ıho
vniťrku, je ťŕıdy C1. Pak

(u, v) ∈ D 7→ (f(u, v), u, v),
(u, v) ∈ D 7→ (u, f(u, v), v),
(u, v) ∈ D 7→ (u, v, f(u, v)).

jsou parametrizace regulárńıch ploch.
Tedy nap̌ŕıklad S =

{
(x, y, x2 + y2) ∈ R3

∣∣x2 + y2 ≤ 1
}

je regulárńı
plocha.

2 S =
{

(x, y, z) ∈ R3
∣∣x2 + z2 = 1, y ∈ [0, 5]

}
je regulárńı plocha.

Jedna z jej́ıch parametrizaćı je

Φ(u, v) = (cosu, v, sinu), (u, v) ∈ [0, 2π]× [0, 5].

3 S =
{
x ∈ R3

∣∣ ‖x‖ = 1
}

je regulárńı plocha. Jedna z jej́ıch
parametrizaćı je

Φ(u, v) = (cosu sin v, sinu sin v, cos v), (u, v) ∈ [0, 2π]× [0, π].
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Plošný integrál reálné funkce p̌res regulárńı plochu

Definice

Necht’ S je regulárńı plocha s parametrizaćı Φ : D → R3 a f je spojitá
reálná funkce definovaná na S. Potom plošný integrál funkce f p̌res
regulárńı plochu S definujeme p̌redpisem∫

S
f(x) dσ :=

∫
D
f(Φ(u, v))

∥∥∥∥∂Φ∂u (u, v)× ∂Φ

∂v
(u, v)

∥∥∥∥ dλ2(u, v).

Obsah regulárńı plochy S je č́ıslo

obsah(S) :=

∫
S

1 dσ.

Lze ukázat, že definice reálné funkce p̌res regulárńı plochu S nezáviśı
na zvolené parametrizaci plochy S.
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Plošný integrál reálné funkce p̌res regulárńı plochu

Př́ıklad

Je dána plocha S =
{(
x, y,

√
x2 + y2

)
∈ R3

∣∣∣x2 + y2 ≤ 1
}

. Potom

obsah(S) =

∫
S

1 dσ =
√

2π.

Př́ıklad

Necht’ S je horńı polosféra se sťredem v počátku a poloměrem 1. Potom∫
S
x2 + y2 dσ =

4π

3
.
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Plocha

At’ S je regulárńı plocha.

Řekneme, že x ∈ S je bod okraje regulárńı plochy S, jestliže neńı

”
obklopen ze všech stran“ body z S.

Množina všech bodů okraje regulárńı plochy S se nazývá okraj
regulárńı plochy S a znač́ı se O(S).

Jestliže Φ : D → R3 je parametrizace S, pak O(S) ⊆ Φ(∂D).

Př́ıklad

1 S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 = 1, z ∈ [0, 2]

}
, pak

O(S) =
{

(x, y, 0)
∣∣x2 + y2 = 1

}
∪
{

(x, y, 2)
∣∣x2 + y2 = 1

}
.

2 S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 + z2 = 1

}
, pak O(S) = ∅.
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Plocha

Definice (plocha)

Množina S se nazve plocha, jestliže existuje konečná posloupnost (Si)
m
i=1

regulárńıch ploch takových, že

1 S =
⋃m

i=1 Si;

2 jestliže i 6= j, pak Si ∩ Sj = O(Si) ∩O(Sj) je bud’ prázdná množina,
nebo oblouk;

3 jestliže i, j, k ∈ {1, . . . ,m} jsou ťri navzájem r̊uzné indexy, pak
Si ∩ Sj ∩ Sk je konečná množina.

Posloupnost (Si)
m
i=1 se nazývá rozklad plochy S. Okraj plochy S je uzávěr

množiny všech bodů x ∈ S, pro které existuje index i tak, že x ∈ O(Si) a
x /∈ O(Sj), kdykoli j 6= i. Řekneme, že plocha S je uzav̌rená, jestliže
O(S) = ∅.

Př́ıklad

Hranice krychle [0, 1]3 je uzav̌rená plocha.
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Plošný integrál reálné funkce

Definice (plošný integrál reálné funkce)

At’ S je plocha, (Si)
m
i=1 je rozklad plochy S na regulárńı plochy a f je

reálná funkce spojitá na S. Potom plošný integrál funkce f p̌res plochu S
definujeme p̌redpisem∫

S
f(x) dσ :=

m∑
i=1

∫
Si

f(x) dσ.

Obsah plochy S je č́ıslo

obsah(S) :=

∫
S

1 dσ.

Lze ukázat, že integrál nezáviśı na volbě rozkladu plochy S.

Alternativńı značeńı plošného integrálu:
∫
S f .
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Plošný integrál reálné funkce

Př́ıklad

Mějme plochu S zadanou rozkladem (S1, S2), kde

S1 je horńı polosféra se sťredem v počátku a poloměrem 1;

S2 je kruh v rovině z = 0 se sťredem v počátku a poloměrem 1.

Potom ∫
S
x2 + y2 dσ =

11π

6
.
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Orientovaná regulárńı plocha

Idea orientace: pomoćı spojitého vektorového pole jednotkových
normálových vektor̊u vybereme jednu stranu plochy.

Definice (orientovaná regulárńı plocha)

At’ S je regulárńı plocha. Spojité vektorové pole N : S → R3 se nazve
jednotkové normálové pole regulárńı plochy S, jestliže pro každé
x ∈ S \O(S) je N(x) jednotkový normálový vektor k S v bodě x. Každé
jednotkové normálové pole N regulárńı plochy S se nazývá orientace
regulárńı plochy S a dvojice (S,N) se nazývá orientovaná regulárńı
plocha.

Některé regulárńı plochy nelze orientovat (tj. neexistuje pro ně
jednotkové normálové pole). Př́ıkladem takové plochy je Möbiova
páska.

Nemůže-li doj́ıt k nedorozuměńı, pak orientovanou regulárńı plochu
(S,N) znač́ıme jen symbolem S.
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Orientovaná regulárńı plocha

Př́ıklad

1 Necht’ R > 0 a

S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 + z2 = R2

}
.

Potom
N(x) =

x

‖x‖
, x ∈ S,

je jednotkové normálové pole sféry S.

2 Je dána regulárńı plocha S parametrizaćı Φ(u, v) = (u, v, 1− u− v),
(u, v) ∈ D =

{
(u, v) ∈ R2

∣∣u+ v ≤ 1, u ≥ 0, v ≥ 0
}

. Potom

N(x) =
1√
3

(1, 1, 1), x ∈ S,

je jednotkové normálové pole regulárńı plochy S.
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Orientovaná plocha

Pokud máme plochu slepenou z v́ıce regulárńıch ploch, pak muśı být
jednoduché plochy orientovány

”
konzistentně“.

At’ (S,N) je orientovaná regulárńı plocha a (C, τ ) je orientovaná
ǩrivka, kde C ⊆ O(S). Řekneme, že orientace τ je souhlasná s N ,
jestliže p̌ri pohybu po ǩrivce C ve směru orientace τ s hlavou ve
směru N máme plochu S po levé ruce.

Definice (orientovaná plocha)

Řekneme, že (S,N) je orientovaná plocha, jestliže plat́ı:

1 S je plocha s rozkladem (Si)
k
i=1;

2 N = (N i)
k
i=1, kde N i je jednotkové normálové pole regulárńı plochy

Si pro každé i ∈ {1, . . . k};
3 kdykoli i 6= j, C = O(Si) ∩O(Sj) je oblouk, τ i je orientace C

souhlasná s N i a τ j je orientace C souhlasná s N j , pak τ i = −τ j .
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Plošný integrál vektorového pole

Definice (plošný integrál vektorového pole)

Je-li (S,N) orientovaná plocha, N = (N i)
k
i=1 a F spojité vektorové pole

na S, potom plošný integrál vektorového pole F p̌res orientovanou plochu
(S,N) definujeme p̌redpisem∫

(S,N)
F (x) · dσ :=

k∑
i=1

∫
Si

F ·N i dσ.

Mı́sto
∫

(S,N) F (x) · dσ ṕı̌seme také
∫

(S,N) F . Nemůže-li doj́ıt

k nedorozuměńı, pak ṕı̌seme jen
∫
S F (x) · dσ nebo

∫
S F .∫

(S,N) F (x) · dσ interpretujeme jako tok vektorového pole F

orientovanou plochou (S,N).
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Plošný integrál vektorového pole

Jestliže (S,N) je orientovaná regulárńı plocha a Φ : D → R3 je
parametrizace S splňuj́ıćı

N(Φ(u, v)) =
∂Φ
∂u (u, v)× ∂Φ

∂v (u, v)∥∥∂Φ
∂u (u, v)× ∂Φ

∂v (u, v)
∥∥

pro skoro všechna (u, v) ∈ D, potom∫
(S,N)

F (x) · dσ =

∫
D
F (Φ(u, v)) ·

[
∂Φ

∂u
(u, v)× ∂Φ

∂v
(u, v)

]
dλ2(u, v)

Př́ıklad

At’ S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 + z2 = 1, z ≥ 0

}
je plocha orientovaná

jednotkovým normálovým polem, které má v bodě (0, 0, 1) ťret́ı
komponentu kladnou. Jestliže F (x, y, z) = (y,−x, z), pak∫

S
F (x, y, z) · dσ =

2π

3
.
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Plošný integrál vektorového pole

At’ (S,N), kde N = (N i)
k
i=1, je orientovaná plocha taková, že S

hranićı oblasti Ω ⊆ R3. Řekneme, že (S,N) je orientovaná vněǰśım
normálovým polem, jestliže pro každé i ∈ {1, . . . , k} a každé
x ∈ Si \O(Si) je N i(x) vektor smě̌ruj́ıćı ven z Ω.

Př́ıklad

At’ F (x, y, z) = (xz, 0, 1) a S je hranice množiny{
(x, y, z) ∈ R3

∣∣x2 + y2 ≤ 1, z ∈ [0, 2]
}

orientovaná vněǰśım normálovým
polem. Potom ∫

S
F (x, y, z) · dσ = 2π.
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Gaussova věta

Divergence vektorového pole F je funkce

∇ · F :=
∂F1

∂x1
+ · · ·+ ∂Fn

∂xn
=

n∑
i=1

∂Fi

∂xi
.

Mı́sto ∇ · F se často ṕı̌se divF .

Věta (Gaussova věta)

Necht’ Ω ⊆ R3 je omezená oblast, jej́ıž hranice je uzav̌rená plocha S
orientovaná vněǰśım normálovým polem. Jestliže F : Ω→ R3 je vektorové
pole ťŕıdy C1, potom∫

S
F (x) · dσ =

∫
Ω
∇ · F (x) dλ3(x).

Důkaz: Vynecháváme. �

Protože λ3(S) = 0, je také
∫
S F (x) · dσ =

∫
Ω∇ · F (x) dλ3(x).
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Gaussova věta

Př́ıklad

At’ F (x, y, z) =
(
2x− ey−z, xy + z2, xz3 + sin y

)
a S je hranice množiny

M = [0, 1]3 orientovaná vněǰśım normálovým polem. Potom∫
S
F (x, y, z) · dσ = 3.

At’ p ∈ R, F je vektorové pole ťŕıdy C1 na nějakém U(p) a B(p; r)
je koule se sťredem v bodě p a poloměrem r. Jestliže S(p; r) je
hranice koule B(p; r) orientovaná vněǰśım normálovým polem, potom

∇ · F (p) = lim
r→0+

∫
S(p;r) F (x) · dσ

λ3 (B(p; r))
.
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Stokesova věta

Připomeňme, že rotace vektorového pole F je vektorové pole

∇× F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
Mı́sto ∇× F se často ṕı̌se rotF .

Věta (Stokesova věta)

At’ Ω ⊆ R3 je oblast, S ⊆ Ω je plocha s okrajem C, kde C je ǩrivka, a
F : Ω→ R3 je vektorové pole ťŕıdy C1. Jestliže ǩrivka C a plocha S jsou
souhlasně orientované, potom∫

C
F (x) · ds =

∫
S
∇× F (x) · dσ

Důkaz: Vynecháváme. �
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Stokesova věta

Př́ıklad

At’ C je okraj čtverce s vrcholy (0, 0, 0), (1, 0, 0), (1, 1, 0) a (0, 1, 0), který
je orientován proti směru hodinových ručiček p̌ri pohledu shora. Jestliže
F (x, y, z) = (ex + y, ey − x, sin z), potom∫

C
F (x, y, z) · ds = −2.

Př́ıklad

Mějme polosféru S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 + z2 = 4, z ≥ 0

}
orientovanou jednotkovým normálovým polem s ťret́ı komponentou
nezápornou. Jestliže F (x, y, z) = (x, x+ yz, arctg(xyz)), potom∫

S
∇× F (x, y, z) · dσ = 4π.

Martin Bohata Matematická analýza 2 Plošný integrál 20 / 21



Stokesova věta

Jsou dány bod a ∈ R3 a rovina % procházej́ıćı bodem a. At’ n je
normálový vektor roviny % a K(a; r) ⊆ % je kruh se sťredem a a
poloměrem r > 0 orientovaný jednotkovým normálovým polem
N(x) = n. Položme C(a; r) = ∂K(a; r). Jestliže C(a; r) je
orientovaná souhlasně s K(a; r), potom

n · [∇× F (a)] = lim
r→0+

∫
C F (x) · ds

obsah (K(a; r))
.
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