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Posloupnost funkćı

Necht’ D ⊆ Rn a fk : D → R pro každé k ∈ N. Posloupnost (fk)
+∞
k=1 se

nazve posloupnost funkćı na D.

Definice (bodová konvergence)

At’ D ⊆ Rn, M ⊆ D a f :M → R. Řekneme, že posloupnost (fk)
+∞
k=1

funkćı na D konverguje bodově k f na M , jestliže pro každé x ∈M je

lim
k→+∞

fk(x) = f(x).

Terminologie a značeńı:

fk → f na M ... (fk)
+∞
k=1 konverguje bodově k f na M .

(fk)
+∞
k=1 konverguje bodově na M ... existuje f :M → R tak, že

fk → f na M .
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Posloupnost funkćı

Př́ıklad

Necht’ fk(x) = xk, x ∈ R. Potom fk → f na (−1, 1], kde f(x) = 0 pro
každé x ∈ (−1, 1) a f(1) = 1.
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Posloupnost funkćı

Př́ıklad

Necht’ fk = k2xχ
[0, 1k ]

(x) + k2
(
2
k − x

)
χ
( 1
k
, 2
k ]
(x). Potom fk → f na [0, 1],

kde f(x) = 0. Snadno ukážeme, že lim
k→+∞

∫ 1
0 fk(x) dx 6=

∫ 1
0 f(x) dx.
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Posloupnost funkćı

Př́ıklad

Necht’ fk(x) =
1
k sin(kx). Potom fk → f na R, kde f(x) = 0. Snadno

ukážeme, že nap̌ŕıklad lim
k→+∞

f ′k(0) 6= f ′(0).
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Stejnoměrná konvergence

Definice (stejnoměrná konvergence)

At’ D ⊆ Rn, M ⊆ D a f :M → R. Řekneme, že posloupnost (fk)
+∞
k=1

funkćı na D konverguje stejnoměrně k f na M , jestliže

lim
k→+∞

sup
x∈M

|fk(x)− f(x)| = 0.

fk ⇒ f na M ... (fk)
+∞
k=1 konverguje stejnoměrně k f na M .

(fk)
+∞
k=1 konverguje stejnoměrně na M ... existuje f :M → R tak, že

fk ⇒ f na M .

fk ⇒ f na M právě tehdy, když pro každé ε > 0 existuje K(ε) ∈ N
tak, že pro každé k ≥ K(ε) a pro každé x ∈M je |fk(x)− f(x)| < ε.

Je-li N ⊆M neprázdná a fk ⇒ f na M , potom fk ⇒ f�N na N .

Je-li fk ⇒ f na M , potom fk → f na M .
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Stejnoměrná konvergence

Př́ıklad

1 Necht’

fk(x) = xk

pro každé k ∈ N. Posloupnost (fk)
+∞
k=1 nekonverguje stejnoměrně na

(−1, 1].
2 Necht’

fk(x) =
1

k
sin(kx)

pro každé k ∈ N. Potom fk ⇒ f na R, kde f(x) = 0.

Věta (spojitost a stejnoměrná konvergence)

At’ (fk)
+∞
k=1 je posloupnost spojitých funkćı na M ⊆ Rn a fk ⇒ f na M .

Potom f je spojitá.

Důkaz: Viz p̌rednáška. �
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Stejnoměrná konvergence

Věta (záměna limity a integrálu)

Jestliže fk je spojitá funkce na intervalu [a, b] pro každé k ∈ N a fk ⇒ f
na [a, b], potom

lim
k→+∞

∫ b

a
fk(x) dx =

∫ b

a
f(x) dx.

Důkaz: Viz p̌rednáška. �

Věta (záměna limity a derivace)

Jestliže fk je ťŕıdy C1 na intervalu (a, b) pro každé k ∈ N, fk → f na
(a, b) a f ′k ⇒ g na (a, b), potom f ∈ C1((a, b)) a f ′ = g.

Důkaz: Vynecháváme. �
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Řady funkćı

At’ (fk)
+∞
k=1 je posloupnost funkćı na D ⊆ Rn a a ∈ D.∑+∞
k=1 fk ... (nekonečná) řada funkćı na D.

(sm)+∞m=1 := (
∑m

k=1 fm)+∞m=1 ... posloupnost částečných součt̊u řady∑+∞
k=1 fk.∑+∞
k=1 fk konverguje (resp. absolutně konverguje) v bodě a, jestliže

č́ıselná řada
∑+∞

k=1 fk(a) konverguje (resp. absolutně konverguje).∑+∞
k=1 fk diverguje v bodě a, jestliže č́ıselná řada

∑+∞
k=1 fk(a)

diverguje.

Konverguje-li řada absolutně v bodě a, pak konverguje v bodě a.
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Konvergence řady funkćı

Definice (konvergence řady funkćı na množině)

At’
∑+∞

k=1 fk je řada funkćı na D ⊆ Rn, (sm)+∞m=1 je posloupnost jej́ıch
částečných součt̊u a M ⊆ D.

1 Řekneme, že
∑∞

k=1 fk konverguje (bodově) na M , jestliže konverguje
v každém bodě množiny M .

2 Funkce f :M → R se nazývá součet řady
∑∞

k=1 fk na M , jestliže

f(x) = lim
m→+∞

sm(x)

pro každé x ∈M . Ṕı̌seme f(x) =
∑∞

k=1 fk(x), x ∈M .

3 Řekneme, že
∑∞

k=1 fk konverguje absolutně (bodově) na M , jestliže
absolutně konverguje v každém bodě množiny M .

4 Řekneme, že
∑∞

k=1 fk konverguje stejnoměrně na M , jestliže
(sm)+∞m=1 konverguje stejnoměrně na M .
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Geometrická řada

At’ fk : D ⊆ Rn → R pro každé celé nezáporné č́ıslo k. Potom pod∑+∞
k=0 fk rozuḿıme řadu

∑+∞
k=1 fk−1 funkćı na D.

Př́ıklad (geometrická řada)

Uvažme řadu
∑∞

k=0 x
k, kde klademe x0 = 1.

1 Pro každé x ∈ R splňuj́ıćı |x| ≥ 1 řada diverguje.

2 Pro každé x ∈ R splňuj́ıćı |x| < 1 řada konverguje (dokonce
absolutně) a plat́ı

∞∑
k=0

xk =
1

1− x
.

Řada
∑∞

k=0 x
k nekonverguje stejnoměrně na (−1, 1). Ale konverguje

stejnoměrně na každém intervalu [−a, a], kde 0 < a < 1.
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Důsledky stejnoměrné konvergence řady funkćı

Věta (záměna řady a integrálu)

Jestliže
∑∞

k=1 fk je řada spojitých funkćı na [a, b] konverguj́ıćı stejnoměrně
k f na [a, b], pak f je spojitá funkce a

+∞∑
k=1

∫ b

a
fk(x) dx =

∫ b

a

+∞∑
k=1

fk(x) dx.

Důkaz: Viz p̌rednáška. �

Věta (záměna řady a derivace)

Jestliže fk je ťŕıdy C1 na intervalu (a, b) pro každé k ∈ N,
∑+∞

k=1 fk
konverguje na (a, b) a

∑+∞
k=1 f

′
k konverguje stejnoměrně na (a, b), potom(
+∞∑
k=1

fk

)′
=

+∞∑
k=1

f ′k

Důkaz: Viz p̌rednáška. �
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Stejnoměrná konvergence řady funkćı

Věta (Weierstrassovo kritérium)

Jestliže (fk)
+∞
k=1 je posloupnost funkćı na D ⊆ Rn a pro každé k ∈ N

existuje λk ∈ R tak, že |fk(x)| ≤ λk pro každé x ∈M ⊆ D. Jestliže∑+∞
k=1 λk konverguje, pak

∑+∞
k=1 fk konverguje stejnoměrně na M .

Důkaz: Vynecháváme. �

Př́ıklad

Řada
+∞∑
k=1

cos(kx)

k2

konverguje stejnoměrně na R.
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Mocninné řady – motivace

Taylor̊uv polynom řádu k ∈ N0 funkce ex v bodě 0 je

Tk(x) = 1 + x+
1

2
x2 + · · ·+ 1

k!
xk.

Lze ex psát jako
”
nekonečný polynom“ ex = 1 + x+ 1

2x
2 + . . . ?

-3 -2 -1 1 2 3

x

5

10

15

20

y

T0(x)

T1(x)

T2(x)

T3(x)

T4(x)

e
x
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Mocninné řady

Definice

Řada tvaru
∞∑
k=0

ak(x− x0)k,

kde klademe (x− x0)0 = 1, se nazývá mocninná řada se sťredem x0 ∈ R a
koeficienty ak ∈ R.

Každá mocninná řada konverguje ve svém sťredu. Konverguje ještě
v jiných bodech?

Konverguje mocninná řada stejnoměrně na nějaké množině?
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Poloměr konvergence mocninné řady

Definice (poloměr konvergence)

Poloměr konvergence mocninné řady
∑∞

k=0 ak(x− x0)k je č́ıslo

R = sup

{
r ≥ 0

∣∣∣∣∣
∞∑
k=0

|ak| rk <∞

}
∈ [0,+∞].

Je-li R > 0, pak (x0 −R, x0 +R) se nazývá interval konvergence
mocninné řady

∑∞
k=0 ak(x− x0)k.

Tvrzeńı (význam poloměru konvergence)

Necht’ R je poloměr konvergence mocninné řady
∑∞

k=0 ak(x− x0)k.
Potom

∑∞
k=0 ak(x− x0)k

1 konverguje absolutně pro každé x ∈ R splňuj́ıćı |x− x0| < R.

2 diverguje pro každé x ∈ R splňuj́ıćı |x− x0| > R.

Důkaz: Viz p̌rednáška. �
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Č́ıselné řady – opakováńı

Tvrzeńı (pod́ılové kritérium)

Necht’
∑∞

k=0 ak je řada nenulových reálných č́ısel a

lim
k→+∞

∣∣∣∣ak+1

ak

∣∣∣∣ = L ∈ [0,+∞].

1 Jestliže L < 1, pak
∑∞

k=0 ak konverguje absolutně.

2 Jestliže L > 1, pak
∑∞

k=0 ak diverguje.

Tvrzeńı (odmocninové kritérium)

Necht’
∑∞

k=0 ak je řada reálných č́ısel an a

lim
k→+∞

k
√
|ak| = L ∈ [0,+∞].

1 Jestliže L < 1, pak
∑∞

k=0 ak konverguje absolutně.

2 Jestliže L > 1, pak
∑∞

k=0 ak diverguje.
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Poloměr konvergence mocninné řady

Př́ıklad

1
∑∞

k=0 k
kxk. . .R = 0.

2
∑∞

k=0 x
k. . .R = 1.

3
∑∞

k=0
x2k

4k
. . .R = 2.

4
∑∞

k=0
xk

k! . . .R =∞.

Věta (stejnoměrná konvergence mocninné řady)

Jestliže R > 0 je poloměr konvergence mocninné řady
∑∞

k=0 ak(x− x0)k,
potom pro každé δ ∈ (0, R) tato řada konverguje stejnoměrně na intervalu
[x0 − δ, x0 + δ].

Důkaz: Vynecháváme. �
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Integrace a derivace mocninné řady

Věta (Derivováńı člen po členu)

Necht’ řada
∑∞

k=0 ak(x− x0)k má poloměr konvergence R > 0 a součet
f(x) na (x0 −R, x0 +R).

1
∑∞

k=1 kak(x− x0)k−1 má poloměr konvergence R.

2 Funkce f je ťŕıdy C∞ a nav́ıc

f ′(x) =

∞∑
k=1

kak(x− x0)k−1

pro každé x ∈ (x0 −R, x0 +R).

Důkaz: Vynecháváme. �
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Integrace a derivace mocninné řady

Věta (Integrováńı člen po členu)

Necht’ řada
∑∞

k=0 ak(x− x0)k má poloměr konvergence R > 0 a součet
f(x) na (x0 −R, x0 +R).

1
∑∞

k=0
ak
k+1(x− x0)

k+1 má poloměr konvergence R.

2 Funkce
F (x) =

∞∑
k=0

ak
k + 1

(x− x0)k+1

je primitivńı funkce k funkci f(x) (tj. F ′(x) = f(x)) na intervalu
(x0 −R, x0 +R).

Důkaz: Vynecháváme. �

Př́ıklad

1 Řada
∑∞

k=0(k + 1)xk má součet 1
(1−x)2 pro |x| < 1.

2 Řada
∑∞

k=1
xk

k má součet − ln(1− x) pro |x| < 1.
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Rozvoj funkce do mocninné řady

At’ x0 ∈ R, R > 0 a f je reálná funkce ťŕıdy C∞ na (x0 −R, x0 +R).∑∞
k=0

f (k)(x0)
k! (x− x0)k ... Taylorova řada (p̌ŕıpadně Taylor̊uv rozvoj)

funkce f v bodě x0.

Plat́ı f(x) =
∑∞

k=0
f (k)(x0)

k! (x− x0)k pro každé x ∈ (x0 −R, x0 +R)?

Př́ıklad

At’

f(x) =

{
e−

1
x2 , je-li x 6= 0;

0, je-li x = 0.

Lze ukázat, že f je ťŕıdy C∞ a f (k)(0) = 0 pro každé k ∈ N0. Tedy

f(x) 6=
∑∞

k=0
f (k)(0)

k! xk pro každé x 6= 0.
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Rozvoj funkce do mocninné řady

Věta (Existence Taylorova rozvoje)

Necht’ k0 ∈ N0, x0 ∈ R, r > 0 a f je ťŕıdy C∞ na (x0 − r, x0 + r). Jestliže
existuje L > 0 tak, že ∣∣∣f (k)(x)∣∣∣ ≤ Lk!

rk

pro všechna x ∈ (x0 − r, x0 + r) a pro všechna p̌rirozená č́ısla k ≥ k0,
potom

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k

pro všechna x ∈ (x0 − r, x0 + r).

Důkaz: Vynecháváme. �
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Rozvoj funkce do mocninné řady

Terminologie:

Taylorova řada z právě uvedené věty se také někdy nazývá rozvoj
funkce f do mocninné řady na okoĺı bodu x0.

Př́ıklad

1 ex =
∑∞

k=0
xk

k! , x ∈ R.

2 e−x
2
=
∑∞

k=0
(−1)kx2k

k! , x ∈ R.

3 sinx =
∑∞

k=0(−1)k
x2k+1

(2k+1)! , x ∈ R.

4 cosx =
∑∞

k=0(−1)k
x2k

(2k)! , x ∈ R.

5 lnx =
∑∞

k=1
(−1)k−1

k (x− 1)k pro |x− 1| < 1.

6 1
1+x2 =

∑∞
k=0(−1)kx2k pro |x| < 1.
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