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Vektorova funkce

Zobrazeni f : D C R™ — R™ se nazyva vektorova funkce (n redlnych
prom&nnych).

@ D ... definiéni obor funkce f.
ran(f) := f(D) = {f(x) e R™|x € D} ... obor hodnot funkce f.
gr(f) :={(z, f(x)) €e R""™™ |x € D} ... graf funkce f.

Je-li m = n, pak se f ob&as nazyva vektorové pole.

Je-lim =1, pak se f nazyva redlna funkce (p¥ipadng skaldrni funkce).

Umluva

Pokud je funkce zadana pfredpisem bez explicitniho uvedeni defini¢niho
oboru, budeme pod jejim defini¢nim oborem rozumét nejvétsi podmnoZinu
R"™, pro kterou ma predpis smysl.
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Vektorova funkce

o Je-li f: D CR"™— R redlna funkce a ¢ € R, pak hladina funkce f
vygky ¢ (pFipadné& vrstevnice funkce f vysky ¢) je mnoZina

lev(fic) == f'({c}) = {z € D| f(x) = c}.

e Je-li f: D CR"™ —= R™, potom f(x) = (fi(x),..., fm(x)), kde
fi,---, fm jsou redlné funkce nazyvané slozky (nebo také
komponenty) vektorové funkce f.

o At fi: D; CR" - R, kde i € {1,...,m}, jsou redlné funkce a
D =", D;. Potom ptedpis f(x) = (fi(x),..., fm(x)) definuje
vektorovou funkci f: D — R™.
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NE&kolik p¥ikladi redlnych funkci

P¥iklad (charakteristicka funkce)
Charakteristickd funkce mnoziny M C R™ je funkce

() 1, x € M;
€Xr) =
X 0, xzeR"\M.

P¥iklad
Q f(t,x) = sin(27x)sin(6t).
Q@ p(T,V)=nRE, (T,V) € [0,00) x (0, 00).
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Polynom a racionalni funkce

Definice (polynom a raciondini funkce)
Polynom (vice prom&nnych) je funkce f : R™ — R, kterd je souttem
kone¢né& mnoha funkci tvaru

i1 in
oz ...z,

kde a € R, i1,...,i, € Ny a klademe x?zl.

Jsou-li p: R® - R a q:R"™ — R polynomy a mnoZina
Q ={x e R"|q(x) # 0} je neprazdna. Potom se funkce f: Q2 — R
definovand predpisem

_ p(x)
f((l:) - ’
q(z)
nazyva racionalni funkce.
y
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Ptiklady polynomii

P¥iklad (afinni funkce)

Afinni funkce je funkce tvaru

flx)=a-x+b,

kdea e R" abeR.
Pro ilustraci uvazme napfiklad f(z,y) =x —y + 1.
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Ptiklady polynomii
P¥iklad (kvadratickad forma)

At Q je redlna symetrickd n x n matice se slozkami ¢;; € R. Kvadratickd
forma je funkce

f(m) = Z qijTiTj.

i,j=1
S vyuZitim sloupcového zapisu vektorii Ize psat f(x) = 27 Qz
P¥ikladem kvadratické formy je funkce f(z,y) = 22 + y>.

Martin Bohata
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Pt¥iklady vektorovych funkci

Ptiklad

Obor hodnot vektorové funkce

p(t) = (cost,sint,t).

je (nekonena) spirdla.
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Pt¥iklady vektorovych funkci

P¥iklad
Obor hodnot vektorové funkce
@(u,v) = (cosusinv,sinusinv,cosv), u € [0,27],v € [0,7].

je sféra se stfedem v polatku a polomérem 1
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Pt¥iklady vektorovych funkci

P¥iklad
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Pt¥iklady vektorovych funkci

P¥iklad (polarni soufadnice)

At p = (z,y) € R*\ {0}.

Potom miiZeme psat

T =1COoS,

Yy = rsing,

kde r € (0,00) a ¢ € [0,27) jsou jednozna&n& uréeny. Mame tak
definovdno prosté zobrazeni W : (0, +00) x [0,27) — R? predpisem

W(r, p) = (rcosp,rsiny).
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