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Motivace

At’ f : D ⊆ R2 → R p̌rǐrazuje bodům na mapě D nadmǒrskou výšku.

V mapě se vydáme z bodu a rovnoměrně p̌ŕımočǎre rychlost́ı v. Jaká
bude okamžitá změna nadmǒrské výšky v bodě a?
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Motivace

Zkonstruujeme
”
pr̊ǔrezovou funkci“ ϕ(t) = f(a + tv).
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Okamžitá změna nadmǒrské výšky v bodě a p̌ri rovnoměrně
p̌ŕımočarém pohybu rychlost́ı v je

ϕ′(0) = lim
t→0

ϕ(t)− ϕ(0)

t
= lim

t→0

f(a + tv)− f(a)

t
.
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Směrová derivace

Definice (směrová derivace)

At’ f : D ⊆ Rn → Rm, a je vniťrńı bod množiny D a v ∈ Rn. Vektor
∇vf(a) ∈ Rm se nazývá směrová derivace (̌rádu 1) funkce f v bodě a
podle v, jestliže

∇vf(a) = lim
t→0

f(a + tv)− f(a)

t
.

Má-li f v nějakém bodě směrovou derivaci (̌rádu 1) podle v, potom se
funkce

∇vf : x 7→ ∇vf(x)

nazývá směrová derivace (̌rádu 1) funkce f podle v.
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Směrová derivace

Položme ϕ(t) = f (a + tv). Potom

∇vf(a) = lim
t→0

ϕ(t)−ϕ(0)

t
= ϕ′(0),

kde ϕ′(0) = (ϕ′1(0), . . . , ϕ′m(0)).

Existuje-li směrová derivace ∇vf(a), pak je určena jednoznačně.

∇vf(a) = (∇vf1(a), . . . ,∇vfm(a)), má-li jedna ze stran rovnosti
smysl.

∇0f (a) = 0.

Funkce f(x) = ‖x‖ je spojitá, ale nemá směrovou derivaci v bodě 0
podle žádného vektoru v 6= 0.
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Směrová derivace

Př́ıklad

1 At’ c ∈ Rm a f(x) = c. Potom pro každé v,x ∈ Rn je

∇vf(x) = 0.

2 Mějme funkci f(x, y) = −x2− 4y2 a vektor v = (v1, v2) ∈ R2. Potom

∇vf(x, y) = −2xv1 − 8yv2.

Speciálně

∇(0,1)f(2, 1) = −8,

∇(−1,0)f(2, 1) = 4.
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Směrová derivace

Tvrzeńı (směrová derivace a aritmetické operace)

Necht’ reálné funkce f a g maj́ı směrovou derivaci v bodě a podle v.
Potom

1 ∇v (f + g) (a) = ∇vf(a) +∇vg(a);

2 ∇v (fg) (a) = [∇vf(a)] g(a) + f(a) [∇vg(a)];

3 je-li g(a) 6= 0, pak

∇v
f

g
(a) =

[∇vf(a)] g(a)− f(a) [∇vg(a)]

[g(a)]2
.

Důkaz: Viz p̌rednáška. �
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Směrová derivace vyš̌śıch řádů

Definice (směrová derivace vyš̌śıch řádů)

At’ f : D ⊆ Rn → Rm.

1 Je-li k ≥ 2 p̌rirozené č́ıslo, v1, . . . ,vk ∈ Rn a a je vniťrńı bod
definičńıho oboru funkce ∇vk−1

. . .∇v1f , potom se vektor

∇vk
. . .∇v1f(a) := ∇vk

(
∇vk−1

. . .∇v1f
)

(a)

nazývá směrová derivace funkce f řádu k v bodě a podle v1, . . . ,vk.

2 Existuje-li v nějakém bodě směrová derivace funkce f řádu k podle
v1, . . . ,vk ∈ Rn, potom funkci

∇vk
. . .∇v1f : x 7→ ∇vk

. . .∇v1f(x)

nazýváme směrovou derivaćı funkce f řádu k podle v1, . . . ,vk.
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Směrová derivace vyš̌śıch řádů

Značeńı:

∇0
hf(a) := f(a) pro každé h ∈ Rn.

∇khf(a) ... směrová derivaci řádu k ∈ N v bodě a podle
v1 = h, . . . ,vk = h.

Později si ukážeme, že obecně neplat́ı rovnost mezi ∇w∇vf(a) a
∇v∇wf(a).

Př́ıklad

Uvažme funkci f(x, y) = −x2 − 4y2. Již v́ıme, že pro v = (v1, v2) ∈ R2 je
∇vf(x, y) = −2xv1 − 8yv2. Pro w = (w1, w2) ∈ R2 proto je

∇w∇vf(x, y) = −2v1w1 − 8v2w2.

Speciálně
∇2

vf(x, y) = −2v21 − 8v22.
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Je směrová derivace ∇vf(a) lineárńı vzhledem k v?

Pro funkci f(x, y) = −x2 − 4y2 je pro každé (x, y) ∈ R2 zobrazeńı

v = (v1, v2) 7→ ∇vf(x, y) = −2xv1 − 8yv2

lineárńı. Je to obecný jev?

Tvrzeńı (homogenita směrové derivace vzhledem k v)

At’ α ∈ R a vektorová funkce f má směrovou derivaci v bodě a podle v.
Potom

∇αvf(a) = α∇vf(a).

Důkaz: Viz p̌rednáška. �
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Je směrová derivace ∇vf(a) lineárńı vzhledem k v?

Př́ıklad

Necht’ v = (v1, v2) ∈ R2 a

f(x, y) =

{
x2y
x4+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

Potom

∇vf(0, 0) =

{
v21
v2
, je-li v1 ∈ R a v2 6= 0;

0, je-li v1 ∈ R a v2 = 0.

Tedy v ∈ R2 7→ ∇vf(0, 0) neńı lineárńı zobrazeńı.
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Parciálńı derivace – motivace

Úmluva

Pokud něrekneme jinak, budeme pod symbolem ei rozumět i-tý vektor
standardńı báze v Rn. Tedy

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

Ukázali jsme si, že v 7→ ∇vf(a) neńı obecně lineárńı zobrazeńı.

Později však uvid́ıme, že pro
”
hezké“ funkce je v 7→ ∇vf(a) lineárńı.

Pokud v 7→ ∇vf(a) je lineárńı, pak pro v = (v1, . . . , vn) je

∇vf(a) =
n∑
i=1

vi∇eif(a).
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Parciálńı derivace

Definice (parciálńı derivace)

Necht’ f : D ⊆ Rn → Rm a a je vniťrńı bod množiny D. Směrová derivace

∇eif(a) = lim
t→0

f(a1, . . . , ai−1, ai + t, ai+1, . . . , an)− f(a)

t

se nazývá parciálńı derivace (̌rádu 1) funkce f v bodě a podle i-té
proměnné. Mı́sto ∇eif(a) ṕı̌seme ∂f

∂xi
(a), kde xi označuje i-tou

proměnnou funkce f , a v takovém p̌ŕıpadě často mluv́ıme o parciálńı
derivaci (̌rádu 1) funkce f v bodě a podle xi.
Má-li f parciálńı derivaci v nějakém bodě, pak se

∂f

∂xi
: x 7→ ∂f

∂xi
(x)

nazývá parciálńı derivace (̌rádu 1) funkce f podle i-té proměnné (p̌ŕıpadně
parciálńı derivace (̌rádu 1) funkce f podle xi).
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Parciálńı derivace

Alternativńı značeńı ∂f
∂xi

(a): ∂xif(a), ∂if(a), fxi(a) apod.

Existuje-li parciálńı derivace, pak je určena jednoznačně.

Je-li f : D ⊆ R→ R reálná funkce jedné reálné proměnné x, pak

∂f

∂x
(a) = f ′(a).

At’ f1, . . . , fm jsou složky vektorové funkce f : D ⊆ Rn → Rm.
Potom

∂f

∂xi
(a) =

(
∂f1
∂xi

(a), . . . ,
∂fm
∂xi

(a)

)
.

má-li jedna ze stran rovnosti smysl.

Je-li f : D ⊆ R→ Rm vektorová funkce jedné reálné proměnné x,
pak ḿısto ∂f

∂x (a) ṕı̌seme f ′(a) (p̌ŕıpadně df
dx (a)). Zřejmě

f ′(a) =
(
f ′1(a), . . . , f ′m(a)

)
.
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Parciálńı derivace

Př́ıklad

Pro f(t) = (t, t2) máme
f ′(t) = (1, 2t).

Př́ıklad

Je dána funkce
f(x, y) = x2 − 3y3 + x4y3.

Potom

∂f

∂x
(x, y) = 2x+ 4x3y3,

∂f

∂y
(x, y) = −9y2 + 3x4y2.
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Parciálńı derivace

Př́ıklad

Je-li

f(x, y) =
e2x+y

y
,

pak

∂f

∂x
(x, y) =

2

y
e2x+y,

∂f

∂y
(x, y) =

y − 1

y2
e2x+y.
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Parciálńı derivace vyš̌śıch řádů

Definice (parciálńı derivace vyš̌śıch řádů)

At’ f : D ⊆ Rn → Rm, k ∈ N a i1, . . . , ik ∈ {1, . . . , n}. Potom parciálńı
derivace funkce f řádu k v bodě a podle xi1 , . . . , xik je vektor

∂kf

∂xik . . . ∂xi1
(a) := ∇eik

. . .∇ei1
f(a).

Existuje-li v nějakém bodě parciálńı derivace funkce f řádu k podle
xi1 , . . . , xik , potom funkci

∂kf

∂xik . . . ∂xi1
: x 7→ ∂kf

∂xik . . . ∂xi1
(x)

nazýváme parciálńı derivaćı funkce f řádu k podle xi1 , . . . , xik .
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Parciálńı derivace vyš̌śıch řádů

Terminologie a značeńı:

Mı́sto
”
parciálńı derivace řádu k“ ř́ıkáme také k-tá parciálńı derivace.

Sḿı̌senou parciálńı derivaćı rozuḿıme parciálńı derivaci, ve které
derivujeme alespoň podle dvou r̊uzných proměnných.

Mı́sto
∂kf

∂xik . . . ∂xi1
(a).

můžeme také psát ∂xik . . . ∂xi1f(a), fxi1 ...xik
(a) apod.

Pokud se bezprosťredně za sebou opakuje derivováńı podle jedné a
téže proměnné, zápis často ještě zkracujeme. Nap̌ŕıklad

∂5f

∂z∂x∂x∂y∂x
(x, y, z) =

∂5f

∂z∂x2∂y∂x
(x, y, z) = ∂z∂

2
x∂y∂xf(x, y, z).
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Parciálńı derivace vyš̌śıch řádů

Př́ıklad

Je dána funkce
f(x, y) = ex sin y

Potom

∂2f

∂x2
(x, y) = ex sin y,

∂2f

∂y2
(x, y) = −ex sin y,

∂2f

∂y∂x
(x, y) = ex cos y,

∂2f

∂x∂y
(x, y) = ex cos y.
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Záměnnost parciálńıch derivaćı

Př́ıklad

At’

f(x, y) =

{
xy3−x3y
x2+y2

, pro (x, y) 6= 0;

0, pro (x, y) = 0.

Potom
∂2f

∂y∂x
(0, 0) = 1 6= −1 =

∂2f

∂x∂y
(0, 0).

Věta (Schwarzova věta)

At’ f : D ⊆ Rn → R a i, j ∈ {1, . . . , n}. Jestliže existuj́ı ∂2f
∂xj∂xi

a ∂2f
∂xi∂xj

na nějakém okoĺı bodu a a jsou spojité v bodě a, potom

∂2f

∂xj∂xi
(a) =

∂2f

∂xi∂xj
(a).

Důkaz: Vynecháváme. �
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Důležité rovnice (nejen) ve fyzice

1 Laplaceova rovnice:

∆u = 0,

kde ∆ := ∂2

∂x21
+ · · ·+ ∂2

∂x2n
se nazývá Laplace̊uv operátor.

2 Rovnice vedeńı tepla (nazývaná také rovnice difúze):

∂u

∂t
− k∆u = 0,

kde k > 0.

3 Vlnová rovnice:
∂2u

∂t2
− c2∆u = 0,

kde c > 0.
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