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Funkce ťŕıdy Ck

Definice (Funkce ťŕıdy Ck)

At’ Ω ⊆ Rn je otev̌rená množina.

1 Řekneme, že f : Ω→ Rm je ťŕıdy C0, jestliže f je spojitá.

2 Necht’ k ∈ N. Řekneme, že vektorová funkce f : Ω→ Rm je ťŕıdy Ck,
jestliže všechny jej́ı parciálńı derivace řádu k jsou spojité.

3 Řekneme, že f : Ω→ Rm je ťŕıdy C∞, jestliže f je ťŕıdy Ck pro
každé k ∈ N0.

4 At’ Ω ⊆M ⊆ Rn a k ∈ N0 ∪ {∞}. Řekneme, že funkce f : M → Rm

je ťŕıdy Ck na Ω, jestliže funkce f�Ω je ťŕıdy Ck.

Množina všech funkćı f : Ω→ Rm ťŕıdy Ck, kde k ∈ N ∪ {∞}, se znač́ı
symbolem Ck(Ω;Rm). Je-li m = 1, pak ḿısto Ck(Ω;R) ṕı̌seme jen Ck(Ω).
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Funkce ťŕıdy Ck

Alternativńı názvoslov́ı:
Funkce ťŕıdy C1 (na Ω) ... spojitě diferencovatelná funkce (na Ω).
Funkce ťŕıdy Ck (na Ω) ... k-krát spojitě diferencovatelná funkce (na Ω).

Př́ıklad

1 Polynomy jsou funkce ťŕıdy C∞.

2 Racionálńı funkce jsou funkce ťŕıdy C∞.

3 At’ f0(x) = |x| a pro každé k ∈ N polož́ıme

fk(x) =

∫ x

0
fk−1(t) dt.

Pro každé k ∈ N0 je fk : R→ R funkce ťŕıdy Ck, ale neńı ťŕıdy Ck+1.
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Funkce ťŕıdy Ck

Plat́ı:

Vektorová funkce je ťŕıdy Ck na Ω právě tehdy, když všechny jej́ı
složky jsou ťŕıdy Ck na Ω.

C∞(Ω) ⊂ · · · ⊂ Ck(Ω) ⊂ Ck−1(Ω) ⊂ · · · ⊂ C1(Ω) ⊂ C(Ω)

At’ f, g ∈ Ck(Ω). Potom f + g ∈ Ck(Ω) a fg ∈ Ck(Ω). Jestliže nav́ıc
g nenabývá nuly v žádném bodě množiny Ω, pak f

g ∈ C
k(Ω).

Jestliže Ω ⊆ Rn a G ⊆ Rm jsou otev̌rené množiny, g ∈ Ck(Ω;Rm),
f ∈ Ck(G) a g(Ω) ⊆ G, potom f ◦ g ∈ Ck(Ω).

Jestliže k, l ∈ N splňuj́ı 2 ≤ l ≤ k, potom parciálńı derivace řádu l
funkce f ∈ Ck(Ω) nezáviśı na pǒrad́ı proměnných, podle kterých
derivujeme.
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Taylor̊uv polynom

Definice (Taylor̊uv polynom)

At’ k ∈ N0 a f je reálná funkce ťŕıdy Ck na nějakém okoĺı bodu a ∈ Rn.
Polynom

Tk(x) =

k∑
i=0

1

i!
∇i

x−af(a),

se nazývá Taylor̊uv polynom řádu k funkce f v bodě a.

At’ f je reálná funkce ťŕıdy Ck na nějakém okoĺı bodu a ∈ Rn.

Pro každé h ∈ Rn je

∇k
hf(a) =

n∑
i1,...,ik=1

hi1 . . . hik
∂kf

∂xi1 . . . ∂xik
(a).

Různých parciálńıch derivaćı řádu k funkce f v bodě a je
(
n+k−1
n−1

)
.
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Taylor̊uv polynom

Definice (Hessova matice)

At’ reálná funkce f je ťŕıdy C2 na nějakém okoĺı bodu a ∈ Rn. Čtvercová
matice

Hf (a) =


∂2f
∂x2

1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂x2
n

(a)


se nazývá Hessova matice funkce f v bodě a.

Hessova matice je symetrická.

Je-li f reálná funkce ťŕıdy C2 na nějakém okoĺı bodu a ∈ Rn, potom
s využit́ım sloupcového zápisu vektor̊u můžeme pro každé h ∈ Rn psát

∇2
hf(a) = h · (Hf (a)h) .
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Taylor̊uv polynom

Taylor̊uv polynom Tk řádu k ∈ N0 funkce f v bodě a je

Tk(x) =f (a) +

n∑
i=1

(xi − ai)
∂f

∂xi
(a) +

1

2

n∑
i,j=1

(xi − ai) (xj − aj)
∂2f

∂xi∂xj
(a)

+ · · ·+ 1

k!

n∑
i1,...,ik=1

(xi1 − ai1) . . . (xik − aik)
∂kf

∂xi1 . . . ∂xik
(a) .

Speciálńı p̌ŕıpady:

T0(x) = f(a).

T1(x) = f(a) + (x− a) ·∇f(a).

Ṕı̌seme-li vektory do sloupce, pak

T2(x) = f(a) + (x− a) ·∇f(a) +
1

2
(x− a) · (Hf (a) (x− a)) .
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Taylor̊uv polynom

Př́ıklad

Je dána funkce f(x, y) = ln(1 + x+ 2y). Prvńı ťri Taylorovy polynomy
funkce f v bodě a = (0, 0) jsou

T0(x, y) = 0,

T1(x, y) = x+ 2y,

T2(x, y) = x+ 2y − 1

2

(
x2 + 4xy + 4y2

)
.
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Taylor̊uv polynom

Připomeňme, že pokud f je reálná funkce jedné proměnné ťŕıdy Ck+1, kde
k ∈ N0, na nějakém okoĺı bodu a, potom

f(x) =

k∑
i=0

f (i)(a)

i!
(x− a)i +

f (k+1)(ξ)

(k + 1)!
(x− a)k+1,

kde ξ je bod lež́ıćı v otev̌reném intervalu s krajńımi body a, x a klademe
(x− a)0 = 1.
Bod ξ lze vyjáďrit ve tvaru ξ = a+ λ(x− a) pro nějaké λ ∈ (0, 1).
Polož́ıme-li nav́ıc h = x− a, pak

f(a+ h) =

k∑
i=0

f (i)(a)

i!
hi +

f (k+1)(a+ λh)

(k + 1)!
hk+1

pro nějaké λ ∈ (0, 1).
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Taylor̊uv polynom

Necht’ x,y ∈ Rn. Úsečka s krajńımi body x a y je množina

seg (x;y) := {λx + (1− λ)y |λ ∈ [0, 1]} .

Věta (Taylor̊uv vzorec s Lagrangeovým zbytkem)

At’ k ∈ N0, Ω ⊆ Rn je otev̌rená, a ∈ Ω, h ∈ Rn a seg (a;a + h) ⊆ Ω.
Jestliže f je reálná funkce ťŕıdy Ck+1 na Ω a Tk je Taylor̊uv polynom řádu
k funkce f v bodě a, potom

f(a + h) = Tk(a + h) +
1

(k + 1)!
∇k+1

h f (a + λh)

pro nějaké λ ∈ (0, 1).

Důkaz: Viz p̌rednáška. �
Speciálně pro k = 1 můžeme závěr p̌redchoźı věty psát ve tvaru:

f(a + h) = f(a) + h ·∇f(a) +
1

2
h · (Hf (a + λh)h) .

pro nějaké λ ∈ (0, 1).
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Taylor̊uv polynom

Př́ıklad

Je dána funkce
f(x, y) = ln(1 + x+ 2y).

Potom pro každé h =

(
x
y

)
∈ R2 splňuj́ıćı 1 + x+ 2y > 0 existuje

λ ∈ (0, 1) tak, že

f(0 + h) = f(x, y) = x+ 2y +Rf (x, y),

kde
Rf (x, y) =

1

2
(x, y)Hf (λx, λy)

(
x
y

)
.

Protože pro x+ 2y ≥ 0 je

|Rf (h)| ≤ 2 ‖h‖21 ,

obdrž́ıme nap̌ŕıklad f
(

1
10 ,

1
20

)
≈ 1

5 a
∣∣Rf

(
1
10 ,

1
20

)∣∣ ≤ 9
200 ≤

1
20 .
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Taylor̊uv polynom

Věta (Taylor̊uv vzorec s Peanovým zbytkem)

At’ k ∈ N, Ω ⊆ Rn je otev̌rená a a ∈ Ω. Jestliže f je reálná funkce ťŕıdy
Ck na Ω a Tk je jej́ı Taylor̊uv polynom řádu k v bodě a, potom existuje
funkce ω : Rn → R tak, že lim

h→0
ω(h) = 0 = ω(0) a pro každé

h ∈ {x− a |x ∈ Ω} plat́ı

f(a + h) = Tk(a + h) + ‖h‖k ω(h).

Důkaz: Vynecháváme. �
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Věta o implicitńı funkci – motivace

Mějme dánu rovnici
x2 + y2 = 1.

At’ M je množina všech jej́ıch řešeńı.

Množina M neńı grafem žádné reálné funkce jedné proměnné x.

Je množina M alespoň lokálně grafem nějaké reálné funkce jedné
proměnné x?

Na okoĺı bodů (−1, 0) a (1, 0) nelze M popsat grafem žádné funkce
proměnné x.

Na okoĺı bodu (0, 1) můžeme psát y =
√

1− x2.
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Věta o implicitńı funkci

Věta (o implicitńı funkci)

At’ Ω ⊆ Rn+1 je otev̌rená, k ∈ N ∪ {∞} a f(x1, . . . , xn, y) = f(x, y) je
funkce ťŕıdy Ck na Ω. Předpokládejme, že bod (a, b) ∈ Ω splňuje

1 f(a, b) = 0

2
∂f
∂y (a, b) 6= 0.

Pak existuj́ı U(a) ⊆ Rn, U(b) ⊆ R a g ∈ Ck(U(a)) tak, že

1 U(a)× U(b) ⊆ Ω,

2 {(x, y) ∈ U(a)× U(b) | f(x, y) = 0} = {(x, g(x)) |x ∈ U(a)},
3

∂g

∂xi
(x) = −

∂f
∂xi

(x, g(x))
∂f
∂y (x, g(x))

pro každé x ∈ U(a) a každé i = 1, . . . , n.

Důkaz: Vynecháváme. �
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Věta o implicitńı funkci

Lze dokázat i
”
vektorovou verzi“ věty o imlicitńı funkci.

Vzorec
∂g

∂xi
(x) = −

∂f
∂xi

(x, g(x))
∂f
∂y (x, g(x))

je jednoduchý důsledek řet́ızkového pravidla.

Př́ıklad

Je dána funkce f(x, y) = (x2 − 1)2 + y2. Zřejmě

M =
{

(x, y) ∈ R2
∣∣ f(x, y) = 0

}
= {(−1, 0), (1, 0)}.

neńı lokálně grafem žádné funkce ťŕıdy C∞. To neńı spor s Větou o
implicitńı funkci, nebot’ ∂f

∂y (−1, 0) = ∂f
∂y (1, 0) = 0.
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Věta o implicitńı funkci

Necht’ f ∈ C1(Ω), a ∈ Ω, ∇f(a) 6= 0 a M = lev(f ; f(a)).

Vektor ∇f(a) je vektor kolmý k M v bodě a.

Tečná nadrovina k M v bodě a je nadrovina popsaná rovnićı

∇f(a) · (x− a) = 0.

Př́ıklad

At’ f(x, y) = x2 − y2 a a = (2, 1, 3). Tečná rovina ke grafu funkce f v
bodě a je tečná rovina k hladině funkce g(x, y, z) = f(x, y)− z výšky 0.
Jej́ı normálový vektor je

∇g(a) =

(
∂f

∂x
(2, 1),

∂f

∂y
(2, 1),−1

)
= (4,−2,−1),

což souhlaśı s naš́ı definićı tečné roviny ke grafu funkce.
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Věta o implicitńı funkci

Př́ıklad

Tečná rovina k elipsoidu

M =

{
(x, y, z) ∈ R3

∣∣∣∣ x2

36
+
y2

4
+
z2

8
= 1

}
v bodě (3,−1,−2) je rovina o rovnici

1

6
x− 1

2
y − 1

2
z − 2 = 0.
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Věta o inverzńı funkci

Kdy lze funkci ťŕıdy Ck alespoň lokálně invertovat tak, aby inverze byla
opět ťŕıdy Ck?

Věta (o inverzńı funkci)

At’ Ω ⊆ Rn je otev̌rená, f ∈ Ck(Ω;Rn) pro nějaké k ∈ N ∪ {+∞}, pro
nějaké a ∈ Ω je Jf (a) invertibilńı (tj. detJf (a) 6= 0) a b = f(a). Pak
existuj́ı otev̌rené množiny U a V v Rn tak, že

1 a ∈ U , b ∈ V , f je prosté na U a f(U) = V ;

2 je-li g : V → Rn inverzńı zobrazeńı k f�U , pak g ∈ Ck(V ;Rn) a nav́ıc

Jg(b) = [Jf (g(b))]−1 .

Důkaz: Vynecháváme. �
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Věta o inverzńı funkci – záměna proměnných

Necht’ c > 0, f ∈ C2(R2) a Φ : (t, x) ∈ R2 7→ (x+ ct, x− ct).

Φ : R2 → R2 a jeho inverze Φ−1 : R2 → R2 jsou ťŕıdy C∞.

Položme g = f ◦Φ−1 : R2 → R2. Pak g je ťŕıdy C2, f = g ◦Φ a

∂2f

∂t2
= c2

[
∂2g

∂u2 − 2
∂2g

∂v∂u
+
∂2g

∂v2

]
∂2f

∂x2 =
∂2g

∂u2 + 2
∂2g

∂v∂u
+
∂2g

∂v2

Tedy ∂2f
∂t2

= c2 ∂2f
∂x2 na R2 právě tehdy, když ∂2g

∂v∂u = 0 na R2. Obecné řešeńı
vlnové rovnice

∂2f

∂t2
= c2∂

2f

∂x2

na R2 proto je
f(t, x) = ϕ(x+ ct) + ψ(x− ct),

kde ϕ,ψ ∈ C2(R) jsou libovolné.
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