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FEL ČVUT v Praze

martin.bohata@fel.cvut.cz
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Minimum a maximum funkce

Definice (Minimum a maximum funkce)

At’ f : D ⊆ Rn → R a M ⊆ D. Řekneme, že a ∈M je bod minima (resp.
bod maxima) funkce f na M , jestliže pro každé x ∈M je f(a) ≤ f(x)
(resp. f(a) ≥ f(x)). Je-li a ∈M bod minima (resp. maxima) f na M ,
pak hodnotu f(a) nazýváme minimem (resp. maximem) funkce f na M .

Poznámka:

a je bod maxima f na M právě tehdy, když a je bod minima −f na
M .

Terminologie a značeńı:

bod extrému funkce f na M ... bod minima nebo bod maxima.

extrém funkce f na M ... minimum nebo maximum funkce f na M .

minx∈M f(x) ... minimum funkce f na M .

maxx∈M f(x) ... maximum funkce f na M .

Ve všech výše uvedených pojmech často vynecháváme
”
na M“,

jestliže M = D.
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Minimum a maximum funkce

Př́ıklad

At’ f(x) = ‖x‖.
1 existuje právě jeden bod minima f (na Rn) a neexistuje žádný bod

maxima f (na Rn).

2 f má v každém bodě M = {x ∈ Rn | ‖x‖ = 1} minimum a také
maximum na M .

3 f nemá v žádném bodě M = {x ∈ Rn | 0 < ‖x‖} minimum ani
maximum na M .

Př́ıklad

f(x) =

{
x, x ∈ (0, 1],

1, x = 0.

Funkce f nemá bod minima.
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Minimum a maximum funkce

Definice (kompaktńı množina)

Množina M ⊆ Rn se nazve kompaktńı, jestliže je omezená a uzav̌rená.

Věta (spojitý obraz kompaktu)

Jestliže funkce f : D ⊆ Rn → Rm je spojitá na kompaktńı množině
M ⊆ D, potom f(M) = {f(x) |x ∈M} je kompaktńı množina.

Důkaz: Viz p̌rednáška. �

Věta (Weierstrassova věta)

Jestliže funkce f : D ⊆ Rn → R je spojitá na neprázdné kompaktńı
množině M ⊆ D, potom existuje bod minima a také bod maxima f na M .

Důkaz: Viz p̌rednáška. �
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Lokálńı extrémy

Definice (body lokálńıho extrému)

At’ f : D ⊆ Rn → R a M ⊆ D. Řekneme, že a ∈M je bod lokálńıho
minima (resp. maxima) funkce f na M , jestliže existuje okoĺı U(a) tak, že
a je bod minima (resp. maxima) f na M ∩ U(a);

Terminologie:

bod lokálńıho extrému funkce f na M ... bod lokálńıho minima nebo
bod lokálńıho maxima.

Definice (stacionárńı bod)

At’ funkce f je ťŕıdy C1 na nějakém okoĺı bodu a. Řekneme, že a je
stacionárńı bod funkce f , jestliže ∇f(a) = 0.
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Lokálńı extrémy

Věta (Fermatova věta)

At’ Ω ⊆ Rn, f ∈ C1(Ω) a M ⊆ Ω. Jestliže a ∈ int (M) je bod lokálńıho
extrému f na M , pak a je stacionárńı bod funkce f .

Důkaz: Viz p̌rednáška. �

Fermatova věta dává podḿınku nutnou nikoli postačuj́ıćı.

Jestliže stacionárńı bod funkce f neńı bodem lokálńıho extrému, pak
ho nazýváme sedlovým bodem funkce f .

Př́ıklad

Bod (0, 0) je sedlový bod funkce f(x, y) = x2 − y2.
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Sťŕıpky z lineárńı algebry

Značeńı:

Mm,n(R) ... množina všech m× n reálných matic.

Mn(R) ... množina všech n× n reálných matic.

At’ Q ∈Mn(R).

Nenulový vektor v ∈ Rn nazýváme vlastńı vektor matice Q, existuje-li
λ ∈ R tak, že Qv = λv. Č́ıslo λ se nazývá vlastńı č́ıslo matice Q.

Řekneme, že Q je symetrická, jestliže QT = Q.

Je-li Q symetrická, pak všechna jej́ı vlastńı č́ısla jsou reálná a existuje
ortonormálńı báze v Rn tvǒrená vlastńımi vektory matice Q.
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Sťŕıpky z lineárńı algebry

Definice (definitnost matice)

At’ Q ∈Mn(R) je symetrická. Řekneme, že Q je

1 pozitivně (resp. negativně) definitńı, jestliže pro každé x ∈ Rn \ {0}
je (Qx) · x > 0 (resp. (Qx) · x < 0);

2 pozitivně (resp. negativně) semidefinitńı, jestliže pro každé x ∈ Rn je
(Qx) · x ≥ 0 (resp. (Qx) · x ≤ 0);

3 indefinitńı, jestliže Q neńı pozitivně semidefinitńı ani negativně
semidefinitńı.

Q je negativně definitńı (resp. semidefinitńı) právě tehdy, když −Q je
pozitivně definitńı (resp. semidefinitńı).
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Sťŕıpky z lineárńı algebry

Q je pozitivně (resp. negativně) definitńı právě tehdy, když má
všechna vlastńı č́ısla kladná (resp. záporná).

Q je pozitivně (resp. negativně) semidefinitńı právě tehdy, když má
všechna vlastńı č́ısla nezáporná (resp. nekladná).

Př́ıklad

1 Q =

(
1 0
0 1

)
je pozitivně definitńı.

2 Q =

(
1 0
0 0

)
je pozitivně semidefinitńı.

3 Q =

(
1 0
0 −1

)
je indefinitńı.
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Lokálńı extrémy a Hessova matice

Věta (podḿınky optimality druhého řádu)

At’ Ω ⊆ Rn je otev̌rená, f ∈ C2(Ω) a a ∈ Ω je stacionárńı bod funkce f .

1 Je-li a bod lokálńıho minima funkce f , potom Hf (a) je pozitivně
semidefinitńı.

2 Je-li Hf (a) je pozitivně definitńı, potom a je bod lokálńıho minima.

3 Je-li Hf (a) indefinitńı, potom a je sedlový bod funkce f .

Důkaz: Vynecháváme. �

Je-li Hf (a) pozitivně semidefinitńı, pak a nemuśı být bod lokáńıho
minima (viz f(x) = x3).
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Lokálńı extrémy a Hessova matice

Př́ıklad

Je dána funkce f(x, y) = x3 − xy + y2. Stacionárńı body jsou

(0, 0) ... sedlový bod;
1
12 (2, 1) ... bod lokálńıho minima.

Předpokládejme, že I ⊆ {1, . . . , n} a Q ∈Mn(R). Symbolem QI

označ́ıme matici, která vznikne z Q vynecháńım všech řádk̊u a všech
sloupc̊u indexovaných prvky z množiny {1, . . . , n} \ I.

Př́ıklad

At’ Q =

 1 0 −3
0 −1 2
−3 2 0

. Potom Q{1,2,3} = Q, Q{1,3} =

(
1 −3
−3 0

)
a

Q{2} =
(
−1
)
.
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Lokálńı extrémy a Hessova matice

Věta (Sylvesterovo kritérium)

At’ Q ∈Mn(R) je symetrická.

1 Q je pozitivně definitńı právě tehdy, když pro každé k ∈ {1, . . . , n} je
detQIk

> 0, kde Ik = {1, . . . , k}.
2 Q je pozitivně semidefinitńı právě tehdy, když detQI ≥ 0 pro každou

neprázdnou množinu I ⊆ {1, . . . , n}.

Důkaz: Vynecháváme. �

Př́ıklad

Je dána funkce

f(x, y, z) =
1

x
+ y2 +

1

z
+ xz.

Jej́ı jediný stacionárńı bod je (1, 0, 1). Jedná se o bod lokálńıho minima.
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Lokálńı extrémy a Hessova matice

Př́ıklad

Hledejme body extrémů funkce

f(x, y) = x2y − x− y

na
M =

{
(x, y) ∈ R2

∣∣x ≥ 0, y ≥ 0, x+ y ≤ 3
}
.

Body minima f na M jsou (3, 0) a (0, 3).

Bod maxima f na M je jediný, a to bod (2, 1).
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Konvexńı množina

Definice (konvexńı množina)

Množina C ⊆ Rn se nazve konvexńı, jestliže pro každé x,y ∈ C je
seg (x;y) ⊆ C.

Př́ıklad

1 Rn a ∅ jsou konvexńı množiny.

2 Intervaly v R jsou konvexńı množiny.

3 Je-li A ∈Mm,n(R) a b ∈ Rm, pak

M = {x ∈ Rn |Ax = b}
je konvexńı množina.

4 At’ r > 0 a a ∈ Rn. Pak U(a; r) a B(a; r) = {x ∈ Rn | ‖x‖ ≤ r} jsou
konvexńı množiny.
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Konvexńı funkce

Definice (konvexńı funkce)

At’ f : D ⊆ Rn → R a C ⊆ D je neprázdná konvexńı množina. Řekneme,
že f je konvexńı na C, jestliže pro všechny λ ∈ [0, 1] a x,y ∈ C je

f (λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) .

Je-li f konvexńı na svém definičńım oboru, pak krátce ř́ıkáme, že f je
konvexńı.

Funkce f se nazývá konkávńı na C, jestliže −f je konvexńı na C.

Př́ıklad

At’ c ∈ Rn. Funkce f(x) = x · c je konvexńı.
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Konvexńı funkce

Věta (body minima konvexńı funkce)

Jestliže reálná funkce f je konvexńı funkce na C, potom každý bod
lokálńıho minima f na C je bodem minima f na C.

Důkaz: Vynecháváme. �

Věta (konvexnost a Hessova matice)

Necht’ f je reálná funkce ťŕıdy C2 na otev̌rené konvexńı množině Ω ⊆ Rn.
Potom f je konvexńı na Ω právě tehdy, když Hf (x) je pozitivně
semidefinitńı pro každé x ∈ Ω.

Důkaz: Vynecháváme. �

Př́ıklad

1 Funkce f(x, y) = x2 − 2xy + 4y2 je konvexńı.

2 At’ Q ∈Mn(R) je symetrická a f(x) = (Qx) · x. Potom f je
konvexńı funkce právě tehdy, když Q je pozitivně semidefinitńı.
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Konvexńı funkce

Př́ıklad

At’ A ∈Mm,n(R), b ∈ Rm. Potom

f(x) = ‖Ax− b‖2

je konvexńı funkce.

Věta (stacionárńı body konvexńı funkce na otev̌rené množině)

At’ f ∈ C2(Ω) je konvexńı funkce na otev̌rené konvexńı množině Ω ⊆ Rn.
Pak a ∈ Ω je bod minima funkce f (na Ω) právě tehdy, když ∇f(a) = 0.

Důkaz: Viz p̌rednáška. �

Př́ıklad

Funkce
f(x, y) = x4 + y2

je konvexńı ťŕıdy C∞. Má jediný bod minima, a to bod (0, 0).
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Metoda nejmenš́ıch čtverc̊u

At’ A ∈Mm,n(R) a b ∈ Rm. Hledejme body minima funkce

f(x) = ‖Ax− b‖2 .

Hledáme x ∈ Rn tak, aby vzdálenost mezi Ax a b byla co nejmenš́ı.

Má-li soustava Ax = b řešeńı, pak množina jej́ıch řešeńı se rovná
množině všech bodů minima funkce f .

O bodech minima funkce f se často mluv́ı jako o řešeńıch soustavy
Ax = b ve smyslu nejmenš́ıch čtverc̊u.

Tvrzeńı

At’ a ∈ Rn, b ∈ Rm a A ∈Mm,n(R). Potom a je bod minima funkce
f(x) = ‖Ax− b‖2 právě tehdy, když a je řešeńım soustavy rovnic

ATAx = ATb.

Důkaz: Viz p̌rednáška. �
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Metoda nejmenš́ıch čtverc̊u

Př́ıklad

At’ A =


0 −1 1
1 0 −1
1 1 1
1 −1 0

 a b =


3
0
6
−3

. Řešeńı soustavy Ax = b ve

smyslu nejmenš́ıch čtverc̊u je

1
2
3

.

Př́ıklad

Metodou nejmenš́ıch čtverc̊u proložte body (−2, 0), (−1, 0), (0, 1), (1, 2),
(2, 5) graf afinńı funkce αx+ β. Hledané parametry jsou α = 6

5 a β = 8
5 .
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Vázané extrémy

Je dána funkce
f(x, y) = y − 2x

a množina
M =

{
(x, y) ∈ R2

∣∣x2 + y2 − 1 = 0
}
.

Jak nalézt body extrému funkce f na M?

Označme g(x, y) = x2 + y2 − 1.

V bodech extrému muśı být ∇f a ∇g rovnoběžné.
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Vázané extrémy

Věta (Lagrangeova věta o multiplikátorech)

Necht’ Ω ⊆ Rn je otev̌rená, f, g1, . . . , gk ∈ C1(Ω), kde k < n, a

M = {x ∈ Ω | g1(x) = 0, . . . , gk(x) = 0} .

Předpokládejme, že a ∈M je bod lokálńıho extrému f na M a vektory
∇g1(a), . . . ,∇gk(a) tvǒŕı lineárně nezávislou množinu. Potom existuj́ı
λ1, . . . , λk ∈ R tak, že

∇f(a) +

k∑
i=1

λi∇gi(a) = 0.

Důkaz: Vynecháváme. �

Č́ısla λ1, . . . , λk z p̌redchoźı věty se nazývaj́ı Lagrangeovy
multiplikátory.
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Vázané extrémy

L (x,λ) = f(x) +
∑k

i=1 λigi(x) ... Lagrangeova funkce.

Bod x ∈ Ω je kandidát na bod lokálńıho extrému f na M , existuje-li
λ ∈ Rm tak, že

∂L

∂x1
(x,λ) = · · · = ∂L

∂xn
(x,λ) = 0,

∂L

∂λ1
(x,λ) = · · · = ∂L

∂λk
(x,λ) = 0.

Př́ıklad

At’ f(x, y) = x2 + y2 a M =
{

(x, y) ∈ R2
∣∣ (x− 1)2 = 0

}
. Bod minima je

žrejmě (1, 0), ale neexistuje λ ∈ R tak, že

∇f(1, 0) + λ∇g(1, 0) = (0, 0),

kde g(x, y) = (x− 1)2. To však neńı spor s Lagrangeovou větou o
multiplikátorech, nebot’ ∇g(1, 0) netvǒŕı lineárně nezávislou množinu.
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Vázané extrémy

Př́ıklad

At’

f(x, y, z) = 3x+ 3y + 8z

a
M =

{
(x, y, z) ∈ R3

∣∣x2 + z2 = 1, y2 + z2 = 1
}
.

Bod 1
5(3, 3, 4) je bod maxima a −1

5(3, 3, 4) je bod minima f na M .

Př́ıklad

Najděte délky x, y, z hran krabice tvaru kvádru tak, aby krabice měla co
nejvěťśı objem za podḿınky, že obsah jej́ıho povrchu bez v́ıka bude
12 dm2. Hledané délky stran jsou x = y = 2 dm a z = 1 dm.
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