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Kvádr v Rn a jeho objem

At’ pro každé k ∈ {1, . . . , n} jsou ak, bk reálná č́ısla splňuj́ıćı ak ≤ bk.
Množina

Q = [a1, b1]× · · · × [an, bn]

= {(x1, . . . , xn) ∈ Rn |x1 ∈ [a1, b1], . . . , xn ∈ [an, bn]}

se nazve kvádr v Rn. Objem kvádru Q je reálné č́ıslo

vol(Q) := (b1 − a1) · . . . · (bn − an).

Množinu všech kvádr̊u v Rn označ́ıme symbolem Kn.

Př́ıklad

1 Q = [0, 0]× [0, 0] = [0, 0]2 = {(0, 0)} ∈ K2 a vol(Q) = 0.

2 Q = [0, 1]× [0, 2]× [0, 3] ∈ K3 a vol(Q) = 6.
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Lebesgueova vněǰśı ḿıra

P(Rn) ... množina všech podmnožin množiny Rn.

Definice (Lebesgueova vněǰśı ḿıra)

Zobrazeńı λ∗n : P(Rn)→ [0,+∞] dané p̌redpisem

λ∗n(M) = inf

{
+∞∑
k=1

vol(Qk)

∣∣∣∣∣Qk ∈ Kn pro každé k ∈ N a M ⊆
+∞⋃
k=1

Qk

}

se nazývá (n-rozměrná) Lebesgueova vněǰśı ḿıra.

Martin Bohata Matematická analýza 2 Lebesgue̊uv integrál 3 / 25



Lebesgueova vněǰśı ḿıra

Tvrzeńı (vlastnosti Lebesgueovy vněǰśı ḿıry)

Necht’ M ⊆ Rn.

1 Je-li a ∈ Rn, pak λ∗n(M + a) = λ∗n(M).

2 Je-li N ⊆M , pak λ∗n(N) ≤ λ∗n(M).

3 λ∗n(∅) = 0.

4 Jestliže M je omezená, pak λ∗n(M) < +∞.

5 Je-li Q ∈ Kn, pak λ∗n(Q) = vol(Q).

Důkaz: Jen body 1 až 4 . �

Př́ıklad

1 Jestliže M ⊆ Rn je spočetná množina, pak λ∗n(M) = 0.

2 λ∗n(Rn) = +∞.
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Lze
”
objem“ p̌rǐradit rozumně každé množině?

Lze ukázat, že existuj́ı disjunktńı množiny M,N ⊆ Rn tak, že
λ∗n(M ∪N) 6= λ∗n(M) + λ∗n(N).

Existuje µ : P(Rn)→ [0,+∞] tak, aby množinám p̌rǐrazovalo jejich

”
objem“ a p̌ritom mělo rozumné vlastnosti?

Tvrzeńı

Neexistuje funkce µ : P(Rn)→ [0,+∞] splňuj́ıćı

1 µ ([0, 1]n) = 1;

2 µ(M + a) = µ(M) pro každé a ∈ Rn a každé M ⊆ Rn.

3 µ
(⋃+∞

k=1Mk

)
=
∑+∞

k=1 µ(Mk), kdykoli (Mk)+∞
k=1 je posloupnost po

dvou disjunktńıch podmnožin množiny Rn.

Důkaz: Vynecháváme. �

Banachův-Tarského paradox.

Řešeńı problému s aditivitou: jen některým množinám p̌rǐrad́ıme

”
objem“.
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Mě̌ritelné množiny

Definice (lebesgueovsky mě̌ritelné množiny)

Řekneme, že množina M ⊆ Rn je lebesgueovsky mě̌ritelná, jestliže pro
každé ε > 0 existuje otev̌rená množina V ⊆ Rn tak, že M ⊆ V a
λ∗n(V \M) < ε. Množinu všech lebesgueovsky mě̌ritelných množin v Rn

označ́ıme symbolem An.

Tvrzeńı (vlastnosti An)

1 Je-li M ⊆ Rn otev̌rená, pak M ∈ An. Speciálně ∅ ∈ An.

2 Je-li M ∈ An, pak Rn \M ∈ An.

3 Je-li (Mk)+∞
k=1 posloupnost prvk̊u z An, pak

⋃+∞
k=1Mk ∈ An a také⋂+∞

k=1Mk ∈ An.

4 Jestliže M,N ∈ An, pak M \N ∈ An.

5 Jestliže M ∈ Rn a λ∗n(M) = 0, pak M ∈ An.

Důkaz: Vynecháváme. �
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Lebesgueova ḿıra

Definice

Zobrazeńı λn : An → [0,+∞] definované p̌redpisem λn(M) = λ∗n(M) se
nazve (n-rozměrná) Lebesgueova ḿıra.

Tvrzeńı (vlastnosti Lebesgueovy ḿıry)

1 λn(∅) = 0.

2 Jestliže M,N ∈ An a N ⊆M , pak λn(N) ≤ λn(M).

3 Jestliže (Mk)+∞
k=1 je posloupnost po dvou disjunktńıch množin lež́ıćıch

v An, pak λn (
⋃∞

k=1Mk) =
∑∞

k=1 λn (Mk).

4 Jestliže a ∈ Rn a M ∈ An, pak λn(M + a) = λn(M).

5 Jestliže M ∈ An je omezená, pak λn(M) < +∞.

Důkaz: Vynecháváme. �
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Množiny ḿıry nula

Definice (množina ḿıry nula)

Řekneme, že M ⊆ Rn je množina (Lebesgueovy) ḿıry nula, jestliže
λn(M) = 0.

M ⊆ Rn je množina ḿıry nula právě tehdy, když λ∗n(M) = 0.

Každá podmnožina množiny ḿıry nula je opět množina ḿıry nula.

Definice (pojem skoro všude)

At’ M ∈ An. Řekneme, že výroková forma V (x) plat́ı skoro všude na M
(p̌ŕıpadně pro skoro všechna x ∈M), jestliže existuje množina N ⊆M
tak, že λn(N) = 0 a V (x) plat́ı pro všechna x ∈M \N .

Př́ıklad

At’ f(x) = χQ(x) a g(x) = 0. Pak f(x) = g(x) skoro všude na R.
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Mě̌ritelné funkce

Definice (mě̌ritelné funkce)

At’ D ⊆ Rn a množina M ⊆ D je mě̌ritelná. Řekneme, že f : D → R je
mě̌ritelná na M , jestliže pro každé a ∈ R je

f−1((a,+∞)) ∩M = {x ∈M | f(x) ∈ (a,+∞)} ∈ An.

Př́ıklad

Funkce f = χM je mě̌ritelná na Rn právě tehdy, když M ∈ An.

Tvrzeńı (vlastnosti mě̌ritelných funkćı)

At’ funkce f a g jsou mě̌ritelné na M ⊆ Rn.

1 Funkce f + g a fg jsou mě̌ritelné na M .

2 Je-li g(x) 6= 0 pro všechna x ∈M , pak funkce f
g je mě̌ritelná na M .

3 Funkce h = max{f, g} je mě̌ritelná na M .

Důkaz: Vynecháváme. �
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Mě̌ritelné funkce

Př́ıklad

Jestliže f je mě̌ritelná na M , potom |f | je mě̌ritelná na M .

Tvrzeńı (spojitost implikuje mě̌ritelnost)

Jestliže f je spojitá na M ∈ An, potom f je mě̌ritelná na M .

Důkaz: Vynecháváme. �

Tvrzeńı

Necht’ M ⊆ D ⊆ Rn a M ∈ An. Jestliže f : D → R je mě̌ritelná skoro
všude na M , pak f je mě̌ritelná na M .

Důkaz: Vynecháváme. �

Definice (jednoduchá funkce)

Funkce f : D ⊆ Rn → R se nazve jednoduchá, jestliže je mě̌ritelná na D a
nav́ıc f(D) = {f(x) |x ∈ D} je konečná množina.
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Lebesgue̊uv integrál

Konvence v této kapitole: 0 · (+∞) = 0.

Definice (Lebesgue̊uv integrál jednoduché nezáporné funkce)

At’ f : D ⊆ Rn → R je jednoduchá nezáporná funkce a M ⊆ D je
mě̌ritelná množina. Potom Lebesgue̊uv integrál funkce f p̌res M
definujeme p̌redpisem∫

M
f :=

∑
c∈f(D)

cλn
(
f−1({c}) ∩M

)
Př́ıklad

1 Jestliže M ∈ An, pak
∫
Rn χM =

∫
M 1 = λn(M). Odtud nap̌ŕıklad∫

R χ[0,+∞) = +∞ a
∫
R2 χ[0,1]×[0,2] = 2.

2 Jestliže f = χ[−2,2] + 2χ[1,3]∪[4,6], potom
∫
R f = 12.

3
∫

[0,1] χ[0,1]∩Q = 0.
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Lebesgue̊uv integrál

Definice (Lebesgue̊uv integrál nezáporné mě̌ritelné funkce)

At’ f je nezáporná mě̌ritelná funkce na M ∈ An. Potom Lebesgue̊uv
integrál funkce f p̌res M definujeme p̌redpisem∫

M
f := sup

{∫
M
g

∣∣∣∣ 0 ≤ g ≤ f na M a g : M → R je jednoduchá

}
.

Je-li f : D ⊆ Rn → R nezáporná mě̌ritelná funkce na D a M ⊆ D je
mě̌ritelná množina, potom

∫
M f =

∫
D fχM .

At’ f : D ⊆ Rn → R. Potom definujeme funkce

f+ := max{f, 0}
f− := max{−f, 0}

Zřejmě f = f+ − f− a |f | = f+ + f−.

Je-li f mě̌ritelná, pak f+ a f− jsou mě̌ritelné.

Martin Bohata Matematická analýza 2 Lebesgue̊uv integrál 12 / 25



Lebesgue̊uv integrál

Definice (Lebesgue̊uv integrál)

At’ f je mě̌ritelná funkce na M ∈ An. Potom Lebesgue̊uv integrál funkce f
p̌res M definujeme p̌redpisem∫

M
f :=

∫
M
f+ −

∫
M
f−,

má-li pravá strana smysl (tj. alespoň jeden z integrál̊u vpravo je konečný).
Řekneme, že f je (lebesgueovsky) integrovatelná na M , jestliže

∫
M f je

reálné č́ıslo.

Mı́sto
∫
M f se někdy použ́ıvá některý z následuj́ıćıch symbol̊u:∫

M
f dλn ,

∫
M
f(x) dλn(x),

∫
M
f(x) dx.
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Vlastnosti Lebesgueova integrálu

Tvrzeńı (základńı vlastnosti Lebesgueova integrálu)

1 Jestliže f, g jsou integrovatelné funkce na M a α ∈ R, potom∫
M f + αg =

∫
M f + α

∫
M g

2 Funkce f je integrovatelná na M právě tehdy, když
∫
M |f | < +∞.

3 Jestliže f je integrovatelná na M , potom
∣∣∫

M f
∣∣ ≤ ∫M |f |.

4 At’ Lebesgueovy integrály
∫
M f a

∫
M g existuj́ı. Jestliže f ≤ g skoro

všude na M , pak
∫
M f ≤

∫
M g.

5 Je-li f definována na M ∈ An a f = 0 skoro všude na M ∈ An, pak∫
M f = 0.

6 Jestliže M,N ∈ An jsou disjunktńı a f je integrovatelná funkce na
M ∪N , potom

∫
M∪N f =

∫
M f +

∫
N f .

Důkaz: Vynecháváme. �

Jestliže f je spojitá na kompaktńı množině M , pak existuje
∫
M f a je

konečný.
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Lebesgue̊uv integrál funkćı jedné proměnné

Tvrzeńı (souvislost Riemannova a Lebesgueova integrálu)

Jestliže funkce f je riemannovsky integrovatelná na [a, b], pak je i
lebesgueovsky integrovatelná na [a, b] a oba integrály se rovnaj́ı.

Důkaz: Vynecháváme. �

Lebesgue̊uv integrál funkce f p̌res interval s krajńımi body a, b, kde
a ≤ b, budeme také značit symbolem

∫ b
a f nebo

∫ b
a f(x) dx.

Tvrzeńı (Lebesgue̊uv integrál a primitivńı funkce)

Jestliže f je spojitá na (a, b), F je primitivńı funkce k f na (a, b) a existuje
Lebesgue̊uv integrál f p̌res (a, b), potom∫ b

a
f = lim

x→b−
F (x)− lim

x→a+
F (x).

Důkaz: Vynecháváme. �
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Fubiniho věta

At’ M ⊆ Rm+n.

Pro každé x ∈ Rm definujeme M [x] := {y ∈ Rn | (x,y) ∈M}.
Pro každé y ∈ Rn definujeme M [y] := {x ∈ Rm | (x,y) ∈M}

Věta (Fubiniho věta)

Necht’ f : Rm+n → R je integrovatelná funkce na M ⊆ Rm+n. Potom
existuj́ı funkce F : Rm → R a G : Rn → R tak, že

1 F (x) =
∫
M [x] f(x,y) dλn(y) pro skoro všechna x ∈ Rm;

2 G(y) =
∫
M [y] f(x,y) dλm(x) pro skoro všechna y ∈ Rn;

3 ∫
M
f(x,y) dλm+n(x,y) =

∫
Rm

F (x) dλm(x) =

∫
Rn
G(y) dλn(y).

Důkaz: Vynecháváme. �
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Fubiniho věta

Př́ıklad

Z rovnost́ı
∂

∂x

−x
x2 + y2

=
x2 − y2

(x2 + y2)2
=

∂

∂y

y

x2 + y2

plyne, že∫ ∞
1

∫ ∞
1

x2 − y2

(x2 + y2)2
dx dy 6=

∫ ∞
1

∫ ∞
1

x2 − y2

(x2 + y2)2
dy dx.

Př́ıklad

Necht’

M =
{

(x, y) ∈ R2
∣∣x ≥ 0, 0 ≤ y ≤ 1− 2x

}
.

Potom ∫
M
x+ y =

1

8
.
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Fubiniho věta

Př́ıklad

∫ 1

0

∫ 2−x

x2

f(x, y) dy dx =

∫ 1

0

∫ √y
0

f(x, y) dx dy +

∫ 2

1

∫ 2−y

0
f(x, y) dx dy.

Př́ıklad

At’ M je omezená množina ohraničená rovinami x = 0, y = 0, z = 0 a
x+ y + z = 1. Potom ∫

M
z2 =

1

60
.
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Věta o substituci

Věta (věta o substituci)

Necht’ Ω ⊆ Rn je otev̌rená množina, Φ : Ω→ Rn je prosté zobrazeńı ťŕıdy
C1 a detJΦ(x) 6= 0 pro všechna x ∈ Ω. Jestliže M ⊆ Ω a f : Φ(Ω)→ R,
potom ∫

Φ(M)
f(y) dλn(y) =

∫
M
f(Φ(x)) |detJΦ(x)| dλn(x),

má-li jedna strana smysl.

Důkaz: Vynecháváme. �

Př́ıklad

At’ f(x, y) = x− y a M je rovnoběžńık s vrcholy (0, 0), (3, 1), (2, 2) a
(5, 3). Potom ∫

M
f = 4.
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Polárńı soǔradnice

x

y

p

r
ϕ

At’ Ψ : (0,+∞)× R→ R2 je dáno p̌redpisem

Ψ(r, ϕ) = (r cosϕ, r sinϕ).

detJΨ(r, ϕ) = r > 0.

Ψ je ťŕıdy C∞, avšak neńı prosté. Proto zmenš́ıme definičńı obor.

Jestliže Ω = (0,+∞)× (0, 2π), pak Φ = Ψ�Ω je prosté zobrazeńı a
Φ(Ω) = R2 \ {(x, 0) |x ≥ 0}.
Jestliže Ω = (0,+∞)× (−π, π), pak Φ = Ψ�Ω je prosté zobrazeńı a
Φ(Ω) = R2 \ {(x, 0) |x ≤ 0}.
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Polárńı soǔradnice

Př́ıklad

1 Jestliže g(r, ϕ) = f(r cosϕ, r sinϕ), pak∫ 1

0

∫ 2−x

x2

f(x, y) dy dx

=

∫ π
4

0

∫ sinϕ

cos2 ϕ

0
g(r, ϕ)r dr dϕ+

∫ π
2

π
4

∫ 2
cosϕ+sinϕ

0
g(r, ϕ)r dr dϕ.

2 At’ f(x, y) = y2

x2+y2
a M =

{
(x, y) ∈ R2

∣∣ 1 ≤ x2 + y2 ≤ 3
}

. Potom∫
M
f = π.

3
∫∞
−∞ e

−x2
dx =

√
π.
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Válcové soǔradnice

x

y

z

p

r
ϕ

At’ Ψ : (0,+∞)× R2 → R3 je dáno p̌redpisem

Ψ(r, ϕ, z) = (r cosϕ, r sinϕ, z).

detJΨ(r, ϕ) = r > 0.

Ψ je ťŕıdy C∞, ale neńı prosté.

Jestliže Ω = (0,+∞)× (0, 2π)×R, pak Φ = Ψ�Ω je prosté zobrazeńı
a Φ(Ω) = R3 \ {(x, 0, z) | z ∈ R, x ≥ 0}.
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Válcové soǔradnice

Př́ıklad

Necht’ M ⊆ R3 je homogenńı těleso s hustotou %(x, y, z) = 1 ohraničené
válcovou plochou x2 + y2 = 1, rovinou z = 0 a paraboloidem
z = 4 + x2 + y2. Moment setrvačnosti tělesa M vzhledem k ose z je

Iz =

∫
M

(x2 + y2)%(x, y, z) =
7

3
π.
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Sférické soǔradnice

x

y

z

p

r

ϕ

θ

At’ Ψ : (0,+∞)× R2 → R3 je dáno p̌redpisem

Ψ(r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

detJΨ(r, θ, ϕ) = r2 sin θ.
Ψ je ťŕıdy C∞, ale neńı prosté.
Je-li Ω = (0,+∞)× (0, π)× (0, 2π), pak Φ = Ψ�Ω je prosté
zobrazeńı, detJΦ(r, θ, ϕ) > 0 a

Φ(Ω) = R3 \ {(x, 0, z) | z ∈ R, x ≥ 0} .
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Sférické soǔradnice

Př́ıklad

Objem množiny M ⊆ R3 ohraničené sférou x2 + y2 + (z − 1)2 = 1 a
kuželovou plochou z =

√
x2 + y2 je

λ3(M) =

∫
M

1 = π.
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