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Oblouk

Definice (oblouk)

Necht’ −∞ < a < b < +∞. Řekneme, že C ⊆ Rn je oblouk, jestliže
existuje vektorová funkce ϕ : [a, b]→ Rn tak, že

1 ϕ([a, b]) = C;

2 kdykoli ϕ(s) = ϕ(t) a s < t, potom s = a a t = b;

3 ϕ′ je spojitá na [a, b] (v krajńıch bodech intervalu uvažujeme
jednostranné derivace);

4 ϕ′(t) 6= 0 pro každé t ∈ (a, b).

Zobrazeńı ϕ se nazývá parametrizace oblouku C.
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Oblouk

Př́ıklad

1 At’ p, q ∈ Rn jsou dva r̊uzné body. Potom seg (p; q) ∈ Rn je oblouk,
jehož jedna z parametrizaćı je

ϕ(t) = p+ t(q − p), t ∈ [0, 1].

2 Kružnice v rovině se sťredem (S1, S2) a poloměrem R > 0 je oblouk.
Parametrizace je nap̌ŕıklad

ϕ(t) = (S1 +R cos t, S2 +R sin t) , t ∈ [0, 2π].

3 At’ f : [a, b]→ R má spojitou derivaci na nedegenerovaném intervalu
[a, b]. Potom graf funkce f je oblouk v R2. Jeho parametrizace je
nap̌ŕıklad

ϕ(t) = (t, f(t)), t ∈ [a, b].
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Vztah mezi parametrizacemi oblouku

At’ [c, d] ⊆ R je nedegenerovaný interval a funkce g : [c, d]→ R je taková,
že

1 g′ je spojitá na [c, d];

2 g′(t) 6= 0 pro každé t ∈ (c, d);

3 g([c, d]) = [a, b].

Jestliže ϕ : [a, b]→ Rn je parametrizace oblouku C, potom ψ = ϕ ◦ g je
také parametrizace oblouku C.

Tvrzeńı

Necht’ ϕ : [a, b]→ Rn a ψ : [c, d]→ Rn jsou dvě parametrizace oblouku
C, potom existuje funkce g : [c, d]→ R zobrazuj́ıćı [c, d] na [a, b] tak, že
ψ = ϕ ◦ g, g′ je spojitá na [c, d] a g′(t) 6= 0 pro každé t ∈ (c, d).

Důkaz: Vynecháváme. �
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Vztah mezi parametrizacemi oblouku

Parametrizace ϕ a ψ oblouku C jsou souhlasné, jestliže zobrazeńı g z
p̌redchoźıho tvrzeńı je rostoućı.

Parametrizace ϕ a ψ oblouku C jsou nesouhlasné, jestliže zobrazeńı g
z p̌redchoźıho tvrzeńı je klesaj́ıćı.

Je-li ϕ[a, b]→ Rn parametrizace oblouku C, pak se body ϕ(a) a
ϕ(b) nazývaj́ı krajńı body oblouku C.

Pojem krajńıho bodu nezáviśı na parametrizaci.

Př́ıklad

Uvažme

1 ϕ(t) = (t, t), t ∈ [0, 4];

2 ψ(t) = (t2, t2), t ∈ [0, 2];

3 ω(t) = (−t,−t), t ∈ [−4, 0].

Zobrazeńı ϕ a ψ jsou souhlasné parametrizace oblouku seg ((0, 0); (4, 4)),
zat́ımco ϕ a ω jsou nesouhlasné parametrizace oblouku seg ((0, 0); (4, 4)).
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Křivkový integrál reálné funkce podél oblouku

Definice (ǩrivkový integrál podél oblouku)

Necht’ C je oblouk s parametrizaćı ϕ : [a, b]→ Rn a f je reálná funkce
spojitá na C. Potom ǩrivkový integrál funkce f podél oblouku C
definujeme p̌redpisem∫

C
f(x) ds :=

∫ b

a
f(ϕ(t))

∥∥ϕ′(t)∥∥ dt.

Věta (nezávislost ǩrivkového integrálu podél oblouku na parametrizaci)

Jsou-li ϕ : [a, b]→ Rn a ψ : [c, d]→ Rn dvě parametrizace oblouku C a f
je reálná funkce spojitá na C, potom∫ b

a
f(ϕ(t))

∥∥ϕ′(t)∥∥ dt =

∫ d

c
f(ψ(u))

∥∥ψ′(u)
∥∥ du.

Důkaz: Vynecháváme. �
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Křivkový integrál reálné funkce podél oblouku

Definice (délka oblouku)

Délka oblouku C ⊆ Rn je reálné č́ıslo L(C) :=
∫
C 1 ds.

Př́ıklad

1 Jestliže C = seg (p; q) ⊆ Rn, kde p a q, jsou dva r̊uzné body, pak
L(C) = ‖q − p‖.

2 Jestliže C ⊆ R2 je kružnice se sťredem (S1, S2) a poloměrem R > 0,
pak L(C) = 2πR.

3 Jestliže f(x, y, z) = x2y a oblouk C má parametrizaci
ϕ(t) = (cos t, sin t, t), t ∈ [0, π2 ], potom∫

C
f(x, y, z) ds =

√
2

3
.
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Křivka

Definice (ǩrivka)

At’ −∞ < a < b < +∞. Řekneme, že C ⊆ Rn je ǩrivka, jestliže existuj́ı
body p0, . . . , pk ∈ [a, b] a spojitá vektorová funkce ϕ : [a, b]→ Rn tak, že

1 C = ϕ([a, b]);

2 a = p0 < p1 < · · · < pk = b;

3 pro každé i ∈ {1, . . . , k} je Ci = ϕ([pi−1, pi]) oblouk s parametrizaćı
ϕ �[pi−1,pi];

4 Je-li i 6= j, pak Ci ∩ Cj je nejvýše dvouprvkovou podmnožinou
množiny všech krajńıch bodů oblouk̊u Ci a Cj .

Zobrazeńı ϕ se nazývá parametrizace ǩrivky C. Konečná posloupnost
(Ci)

k
i=1 se nazývá rozklad ǩrivky C na oblouky.

Definice ǩrivky C lze zobecnit tak, že C nemuśı být nutně kompaktńı
(tj. C pak může být nap̌ŕıklad i p̌ŕımka). My si však vystač́ıme
s definićı výše uvedenou.
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Křivka

Terminologie:

Je-li ϕ : [a, b]→ Rn parametrizace ǩrivky C, pak body ϕ(a), ϕ(b)
nazýváme krajńı body ǩrivky C.

Křivka C se nazve uzav̌rená, jestliže existuje jej́ı parametrizace
ϕ : [a, b]→ Rn taková, že ϕ(a) = ϕ(b).

Křivka C se nazve jednoduchá, jestliže existuje jej́ı parametrizace
ϕ : [a, b]→ Rn taková, že ϕ(s) = ϕ(t) a s < t implikuje s = a a
t = b.

Př́ıklad

1 Každý oblouk je jednoduchá ǩrivka.

2 At’ C ⊆ R2 je hranice trojúhelńıku s vrcholy (0, 0), (1, 0) a (0, 1).
Potom C neńı oblouk, ale je to jednoduchá uzav̌rená ǩrivka.
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Křivkový integrál reálné funkce

Definice (ǩrivkový integrál)

Necht’ C ⊆ Rn je ǩrivka, (Ci)
k
i=1 je jej́ı rozklad na oblouky a f je reálná

funkce spojitá na C. Potom ǩrivkový integrál funkce f podél ǩrivky C
definujeme p̌redpisem∫

C
f(x) ds :=

k∑
i=1

∫
Ci

f(x) ds.

Délka ǩrivky C je č́ıslo L(C) :=
∫
C 1 ds.

Mı́sto
∫
C f(x) ds se občas také ṕı̌se

∫
C f .

Definice ǩrivkového integrálu nezáviśı na rozkladu ǩrivky na oblouky.

Př́ıklad

At’ C je hranice čtverce [0, 1]2. Potom∫
C
x2 + y ds =

11

3
.
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Tečné vektorové pole

Definice (tečné vektorové pole)

At’ C ⊆ Rn je ǩrivka s parametrizaćı ϕ : [a, b]→ Rn a

D =
{
ϕ(t)

∣∣ t ∈ (a, b) a ϕ′(t) existuje oboustranná a nenulová
}
.

Vektorové pole τ : D → Rn definované p̌redpisem

τ (ϕ(t)) :=
ϕ′(t)

‖ϕ′(t)‖

nazýváme jednotkové tečné vektorové pole ǩrivky C (indukované
parametrizaćı ϕ).

τ (x) ... tečný vektor ǩrivky C v bodě x (indukovaný parametrizaćı
ϕ).
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Tečné vektorové pole

Př́ıklad

Jestliže ϕ(t) = (t, t2), t ∈ [0, 1], potom

τ (ϕ(t)) =

(
1√

1 + 4t2
,

2t√
1 + 4t2

)
, t ∈ (0, 1).
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Tečné vektorové pole

Př́ıklad

Jestliže ϕ(t) = (1− t, (1− t)2), t ∈ [0, 1], potom

τ (ϕ(t)) =

(
− 1√

1 + 4(1− t)2
,− 2(1− t)√

1 + 4(1− t)2

)
, t ∈ (0, 1).
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Orientace ǩrivky

Definice (orientace ǩrivky)

Každé jednotkové tečné vektorové pole τ ǩrivky C ⊆ Rn nazýváme
orientaćı ǩrivky C. Dvojici (C, τ ) nazýváme orientovanou ǩrivkou.

Pokud nemůže doj́ıt k nedorozuměńı, ṕı̌seme ḿısto (C, τ ) jen C.

Jednoduchá ǩrivka (speciálně oblouk) má jen dvě r̊uzné orientace.

Obecná ǩrivka může ḿıt v́ıce než dvě orientace.

Orientace určuje způsob procházeńı ǩrivky.

At’ C je ǩrivka, jej́ıž orientace je indukovaná parametrizaćı
ϕ : [a, b]→ R. Potom ϕ(a) se nazve počátečńı bod orientované
ǩrivky C a ϕ(b) se nazve koncový bod orientované ǩrivky C.

Jednoduchá uzav̌rená ǩrivka C ⊆ R2 se nazývá Jordanova ǩrivka.

Řekneme, že Jordanova ǩrivka je kladně orientovaná (resp. záporně
orientovaná), jestliže ji procháźıme proti (resp. po) směru hodinových
ručiček.
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Křivkový integrál vektorového pole

Definice (ǩrivkový integrál vektorového pole)

At’ (C, τ ) je orientovaná ǩrivka, (Ci)
k
i=1 je rozklad ǩrivky C na oblouky a

F je spojité vektorové pole na C. Potom ǩrivkový integrál vektorového
pole F podél (C, τ ) definujeme p̌redpisem∫

(C,τ )
F (x) · ds :=

k∑
i=1

∫
Ci

F (x) · τ (x) ds.

Jestliže C je oblouk a orientace τ je indukovaná parametrizaćı
ϕ : [a, b]→ Rn, potom∫

(C,τ )
F (x) · ds =

∫ b

a
F (ϕ(t)) ·ϕ′(t) dt.
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Křivkový integrál vektorového pole

Alternativńı značeńı integrálu
∫
(C,τ ) F (x) · ds:∫

(C,τ ) F ;

Nemůže-li doj́ıt k nedorozuměńı, pak ṕı̌seme
∫
C F nebo

∫
C F (x) · ds.

Ve fyzice se občas ḿısto
∫
C F (x) · ds ṕı̌se∫

C
F1(x) dx1 + · · ·+ Fn(x) dxn.

Tvrzeńı

Necht’ C je jednoduchá ǩrivka a F je vektorové pole spojité na C. Jestliže
τ a σ jsou dvě r̊uzné orientace ǩrivky C, potom∫

(C,τ )
F (x) · ds = −

∫
(C,σ)

F (x) · ds.

Důkaz: Viz p̌rednáška. �
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Křivkový integrál vektorového pole

Př́ıklad

1 At’ C ⊆ R3 je úsečka orientovaná tak, že (0, 0, 0) je jej́ı počátečńı bod
a (1, 2, 3) je jej́ı koncový bod. Jestliže F (x, y, z) = (y,−z, x)∫

C
F (x, y, z) · ds = −1

2
.

2 At’ C ⊆ R3 je úsečka orientovaná tak, že (1, 2, 3) je jej́ı počátečńı bod
a (0, 0, 0) je jej́ı koncový bod. Jestliže F (x, y, z) = (y,−z, x)∫

C
F (x, y, z) · ds =

1

2
.

3 At’ C ⊆ R2 je kladně orientovaná jednotková kružnice se sťredem v
bodě 0. Jestliže F (x, y) = (−y, x), potom∫

C
F (x, y) · ds = 2π.
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Oblast

Definice (Oblast)

Otev̌rená množina Ω ⊆ Rn se nazve oblast, jestliže každé dva body z M je
možné spojit lomenou čarou lež́ıćı v M (tj. pro každé x,y ∈M existuj́ı
x1, . . . ,xk ∈M tak, že x1 = x, xk = y a

⋃k−1
j=1 seg (xj ;xj+1) ⊆M).

Př́ıklad

Každá otev̌rená konvexńı množina je oblast. Speciálně každé okoĺı U(x)
bodu x ∈ Rn je oblast.

Věta (Jordanova věta)

Je-li C Jordanova ǩrivka v R2, pak R2 \ C je sjednoceńı omezené oblasti
IntC a neomezené oblasti ExtC, které nemaj́ı žádný společný prvek.

Důkaz: Vynecháváme. �
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Greenova věta

Terminologie:

IntC. . . vniťrek Jordanovy ǩrivky C.

ExtC. . . vněǰsek Jordanovy ǩrivky C.

Věta (Greenova věta)

At’ Ω ⊆ R2 je oblast, C ⊆ Ω je kladně orientovaná Jordanova ǩrivka
taková, že IntC ⊆ Ω. Jestliže F = (F1, F2) je vektorové pole ťŕıdy C1 na
Ω, potom ∫

IntC

∂F2

∂x
− ∂F1

∂y
dλ2 =

∫
C
F (x) · ds.

Důkaz: Vynecháváme. �
Lze ukázat, že každá Jordanova ǩrivka má nulovou dvourozměrnou
Lebesgueovu ḿıru. Odtud∫

IntC

∂F2

∂x
− ∂F1

∂y
dλ2 =

∫
IntC

∂F2

∂x
− ∂F1

∂y
dλ2.
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Greenova věta

Př́ıklad

1 At’ M = [0, 1]× [0, 2] a F (x, y) = (xy, x+ earctg y). Jestliže C je
kladně orientovaná hranice M , potom∫

C
F (x, y) · ds = 1.

2 Necht’ a, b > 0 a M je ohraničená elipsou s parametrizaćı
ϕ(t) = (a cos t, b sin t), t ∈ [0, 2π]. Potom obsah M je∫

M
1 = πab.
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Potenciál vektorového pole

Definice (potenciál vektorového pole)

At’ F je spojité vektorové pole definované na otev̌rené množině Ω ⊆ Rn.
Reálná funkce f ∈ C1(Ω) se nazve potenciál vektorového pole F na Ω,
jestliže

F (x) = ∇f(x)

na Ω. Řekneme, že F je potenciálńı na Ω, jestliže má na Ω potenciál.

Potenciál vektorového pole je zobecněńı primitivńı funkce známé z
teorie funkćı jedné proměnné.

Jaké jsou nutné a postačuj́ıćı podḿınky pro existenci potenciálu?

Je potenciál určen jednoznačně (až na aditivńı konstantu)?

Jak potenciál konstruovat, pokud existuje?

Jaká je souvislost potenciálu s ǩrivkovým integrálem?
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Potenciál vektorového pole

Př́ıklad (centrálńı vektorové pole)

At’ g : (0,+∞)→ R je spojitá funkce. Vektorové pole

F (x) = g(‖x‖)x, x ∈ Rn \ {0}

se nazývá centrálńı. Centrálńı vektorové pole F má na Rn \ {0} potenciál
f(x) = G(‖x‖), kde G(t) je primitivńı funkce k tg(t) na (0,+∞).

Speciálně

F (x, y, z) =

(
Kx

(x2 + y2 + z2)
3
2

,
Ky

(x2 + y2 + z2)
3
2

,
Kz

(x2 + y2 + z2)
3
2

)
,

kde K ∈ R, má potenciál

f(x, y, z) = − K√
x2 + y2 + z2

.
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Potenciál vektorového pole

Tvrzeńı (nutná podḿınka existence potenciálu)

Jestliže F = (F1, . . . , Fn) je potenciálńı vektorové pole ťŕıdy C1 na
otev̌rené množině Ω ⊆ Rn, potom pro každé i, j ∈ {1, . . . , n} a pro každé
x ∈ Ω je

∂Fi
∂xj

(x) =
∂Fj
∂xi

(x).

Důkaz: Viz p̌rednáška. �

Nutná podḿınka existence potenciálu na otev̌rené množině Ω ⊆ R3

lze formulovat ve tvaru ∇× F = 0 na Ω, kde

∇× F :=

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
se nazývá rotace vektorového pole F = (F1, F2, F3).
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Potenciál vektorového pole

Př́ıklad

Vektorové pole
F (x, y, z) = (−y, x, z)

neńı na R3 potenciálńı.

Tvrzeńı (o nulovosti gradientu)

At’ Ω ⊆ Rn je oblast a f je funkce ťŕıdy C1 na Ω. Jestliže ∇f = 0 na Ω,
potom f je konstantńı na Ω.

Důkaz: Viz p̌rednáška. �

Důsledek (o jednoznačnosti potenciálu)

Jestliže F je spojité vektorové pole na oblasti Ω ⊆ Rn a funkce f, g jsou
jeho potenciály na Ω, potom f − g je konstantńı funkce na Ω.

Důkaz: Viz p̌rednáška. �
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Potenciál vektorového pole

Věta (Newtonova-Liebnitzova formule)

Má-li spojité vektorové pole F na oblasti Ω ⊆ Rn potenciál f , potom∫
C
F (x) · ds = f(b)− f(a)

pro každou orientovanou ǩrivku C s počátečńım bodem a a koncovým
bodem b.

Důkaz: Viz p̌rednáška. �

Př́ıklad

Je dáno centrálńı vektorové pole F (x, y, z) = − 1

(x2+y2+z2)
3
2

(x, y, z) a

orientovaná ǩrivka C ⊆ R3 s parametrizaćı ϕ(t) = (cos t, sin t, t),
t ∈ [0, 4π]. Potom ∫

C
F (x) · ds =

1√
1 + 16π2

− 1.
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Potenciál vektorového pole

Definice (nezávislost ǩrivkového integrálu na cestě)

At’ F je spojité vektorové pole definované na oblasti Ω ⊆ Rn. Řekneme, že
ǩrivkový integrál vektorového pole F nezáviśı v Ω na cestě, jestliže∫

C1

F (x) · ds =

∫
C2

F (x) · ds

pro každé dvě orientované ǩrivky C1, C2 ⊆ Ω, jejichž počátečńı body jsou
stejné a také koncové body jsou stejné.
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Potenciál vektorového pole

Věta (charakterizace potenciálńıho pole)

At’ F je spojité vektorové pole definované na oblasti Ω ⊆ Rn. Potom
následuj́ıćı tvrzeńı jsou ekvivalentńı:

1 F je potenciálńı na Ω.

2 Křivkový integrál vektorového pole F nezáviśı v Ω na cestě.

3 Pro každou jednoduchou uzav̌renou orientovanou ǩrivku C lež́ıćı v Ω
plat́ı ∫

C
F (x) · ds = 0.

Důkaz: Viz p̌rednáška. �
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Potenciál vektorového pole

Př́ıklad

Necht’

F (x, y) = (F1(x, y), F2(x, y)) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

Potom je splněna nutná podḿınka existence potenciálu na R2 \ {0} (tj.
∂F1
∂y (x, y) = ∂F2

∂x (x, y) pro každé (x, y) ∈ R2 \ {0}), ale F nemá potenciál
na žádné prstencovém okoĺı počátku.

Věta (o existenci potenciálu)

Necht’ F = (F1, . . . , Fn) je vektorové pole ťŕıdy C1 na otev̌rené konvexńı
množině Ω ⊆ Rn. Jestliže pro každé i, j ∈ {1, . . . , n} a pro každé x ∈ Ω je

∂Fi
∂xj

(x) =
∂Fj
∂xi

(x),

potom F je potenciálńı.

Důkaz: Vynecháváme. �
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Potenciál vektorového pole

Př́ıklad

Je dáno vektorové pole

F (x, y) =
(
(1 + xy)exy, x2exy

)
.

1 ∂F1
∂y = ∂F2

∂x na R2.

2 Potenciál f vektorového pole F splňuj́ıćı f(0, 0) = 0 je
f(x, y) = xexy.

3 Jestliže orientovaná ǩrivka C má parametrizaci ϕ(t) = (sin t, 2t),
t ∈

[
0, π2

]
, potom ∫

C
F (x, y) · ds = eπ.
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