
Mocninné řady

Zadáńı

1. Nalezněte poloměr konvergence uvedených mocninných řad.
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2. Vyšetřete konvergenci uvedených mocninných řad a nalezněte jejich součet.
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3. Nalezněte rozvoj funkce f(x) do mocninné řady na okoĺı bodu x0, jestliže

(a) f(x) = 3x, x0 = −3;

(b) f(x) =
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dt, x0 = 0;
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Výsledky

1. (a) R = 1.
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(c) −x− 2 ln(2− x) + ln 4, R = 2.
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