Základy elektrických obvodů

B162 - Letní 16/17

Základy elektrických obvodů - AD2B31ZEO

Kredity 5
Semestry letní
Zakončení zápočet a zkouška
Jazyk výuky čeština
Rozsah výuky 14KP+6KS
Anotace
Předmět popisuje základní metody analýzy elektrických obvodů. V úvodní části je vysvětlen rozdíl mezi elektrickým zařízením, resp. skutečným elektrickým obvodem a jeho modelem. Dále jsou definovány základní aktivní a pasivní obvodové prvky a základní obvodové veličiny. V následujících přednáškách se studenti seznámí s důležitými obvodovými teorémy a metodami analýzy obvodů ve stacionárním a v harmonickém ustáleném stavu i během přechodných dějů vyvolaných změnami v obvodu. Poslední přednášky jsou pak věnovány využitím Laplaceovy transformace při analýze elektrických obvodů. Semináře jsou zaměřeny na procvičení nabytých vědomostí při analýze základních elektrických obvodů, doplněné simulacemi a jednoduchým měřením. \\Výsledek studentské ankety předmětu je zde: http://www.fel.cvut.cz/anketa/aktualni/courses/AD2B31ZEO
Cíle studia
The aim is to unify different level of knowledge of students coming from schools of different categories and form the basis of knowledge necessary for next subjects. After finishing this subject each student should understand to fundamental principles of electric circuits, their behavior and fundamental methods of analysis.
Osnovy přednášek
1. Elektrické zařízení a jeho obvodový model. Obvodové veličiny (elektrický náboj, napětí, proud, výkon), charakteristické hodnoty. Znaménkové konvence, základní topologické pojmy (uzel a smyčka). Základní pasivní a aktivní ideální obvodové prvky, Ohmův zákon.
2. Základní zákony a teorémy (Kirchhoffovy zákony, Théveninův a Nortonův teorém, princip superpozice), příklady použití (ekvivalence obvodových prvků, dělič napětí a dělič proudu, reálné zdroje).
3. Postupy a metody analýzy elektrických obvodů. Elementární metody analýzy lineárních odporových obvodů. Obvody s jedním a s více nezávislými zdroji. Využití ekvivalence zdrojů pro analýzu obvodů, zatěžovací přímka.
4. Výkon a výkonové přizpůsobení v odporových obvodech. Provozní stavy elektrických obvodů (přechodný děj, ustálený stav). Stacionární ustálený stav (SUS), model obvodu pro SUS. Obecné metody analýzy odporových obvodů (obvodové rovnice) - metoda uzlových napětí.
5. Obecné metody analýzy odporových obvodů - obvodové rovnice (metoda smyčkových proudů, topologie obvodu). Porovnání základních metod analýzy - příklady.
6. Harmonický ustálený stav (HUS), vyjádření harmonických průběhů pomocí fázorů, popis pasivních prvků (impedance, admitance). Fázorové diagramy.
7. Elementární a obecné metody analýzy obvodů v HUS. Výkon, výkonové přizpůsobení v HUS.
8. Kmitočtová závislost obvodových funkcí (impedance, admitance, přenos). Frekvenční charakteristiky obvodů, grafické znázornění a aproximace.
9. Rezonance, rezonanční obvody a jejich frekvenční charakteristiky. Obvodové rovnice v časové oblasti pro lineární obvody s akumulačními prvky.
10. Přechodné děje v elektrických obvodech. Přechodné děje 1. řádu v obvodech se stejnosměrným buzením.
11. Přechodné děje 2. řádu se stejnosměrným buzením (aperiodická odezva, tlumené kmity), základní kmitavé RLC obvody.
12. Přechodné děje s harmonickým buzením. Použití Laplaceovy transformace pro řešení obvodů (analýza přech. dějů v operátorové oblasti).
13. Buzení jednorázovými impulzy. Souvislost popisu a chování obvodů v časové a frekvenční oblasti. Ustálený stav v lin. obvodech při periodickém neharmonickém buzení.
Osnovy cvičení
1. Úvod. Elektrický obvod, elektrické napětí a proud, zdroje a spotřebiče elektrické energie, fyzikální analogie elektrického obvodu.
2. Obvodové veličiny a jejich charakteristické hodnoty. Pasivní a aktivní obvodové prvky, Ohmův zákon, elektrický obvod. Kirchhoffovy zákony. Sériové a paralelní řazení rezistorů (společný proud resp. společné napětí), nezatížené děliče napětí a proudu. Řazení ideálních zdrojů napětí a proudu.
3. Théveninův a Nortonův teorém, využití ekvivalence zdrojů, zatížené děliče napětí a proudu. Princip superpozice. Řešení odporových obvodů pomocí elementárních metod.
4. Sériové a paralelní řazení reálných zdrojů napětí a proudu. Výkon spotřebovávaný rezistorem, výkon dodávaný zdrojem, výkonové přizpůsobení.
5. Metoda uzlových napětí, metoda smyčkových proudů. Vstupní a výstupní odpor obvodu (pro obvody bez i s řízenými zdroji).
6. Fázory harmonických veličin, impedance a admitance pasivních prvků v HUS. Elementární obvody v HUS, jednoduché RC a RL články (integrační, derivační).
7. Fázorové diagramy. Výkony v HUS (činný, jalový a zdánlivý výkon, účiník), výkonové přizpůsobení. Obvodové rovnice v HUS.
8. Frekvenční charakteristiky jednoduchých RC a RL článků (integrační, derivační). Oblast přibližné integrace resp. derivace harmonického signálu, PWM. Frekvenční charakteristiky složitějších obvodů.
9. Rezonance, rezonanční obvody. Vztah napětí a proudu na akumulačních prvcích (L a C). Kapacitor napájený konstantním proudem, induktor napájený konstantním napětím.
10. Přechodné děje 1. řádu v obvodech se stejnosměrnými zdroji, v obvodech s harmonickými zdroji.
11. Přechodné děje 2. řádu v RLC obvodech se stejnosměrnými zdroji (aperiodická odezva, tlumené kmity).
12. Řešení obvodů pomocí Laplaceovy transformace, přechodné děje, impulzní buzení.
13. Rezerva, zápočet.
Literatura
[1] Havlíček V., Pokorný M., Zemánek I.: Elektrické obvody 1, 1. vyd., Praha: Česká technika - nakladatelství ČVUT, 2005, ISBN 80-01-03299-X
[2] Havlíček V., Zemánek I.: Elektrické obvody 2, 1 vyd., Praha: Česká technika - nakladatelství ČVUT, 2008, ISBN 978-80-01-03971-7.
[3] Irwin, J. D., Nelms R. M.: Basic engineering circuit analysis: / 9th ed., Wiley, 2008, ISBN 0470128690
[4] Floyd T. L.: Principles of Electric Circuits, Conventional Current Version, 8th ed., Pearsen Prentice Hall, ISBN 0-13-170179-7
[5] Alexander Ch. K., Sadiku M., N. O.: Fundamentals of Electric Circuits, 3rd ed., Mc Graw Hill, ISBN: 978-0-07-297718-9
[6] Blány k přednáškám a soubory příkladů dostupné na stránkách předmětu na výukovém portálu MOODLE (https://moodle.kme.fel.cvut.cz/moodle/login/index.php?lang=cs)
Požadavky
Z matematiky musí student znát komplexní čísla, základní integrály a derivace a základy Laplaceovy transformace. Student by měl být dále schopen řešit soustavy rovnic.
Podmínky absolvování a podrobnější informace k průběhu výuky (zejména organizace kontrolních testů a bodování prezentací v průběhu semestru) jsou dostupné na výukovém portálu MOODLE. (https://moodle.kme.fel.cvut.cz/moodle/login/index.php?lang=cs)