Electromagnetic Field, Waves and Lines

B232 - Summer 23/24
This course is not present in Moodle. You can visit its homepage by clicking the "Course page (outside Moodle)" button on the right (if available).

Electromagnetic Field, Waves and Lines - AE2B17EPV

Credits 5
Semesters Summer
Completion Assessment + Examination
Language of teaching English
Extent of teaching 2p+2s
Annotation
This course presents fundamentals of electromagnetic field theory and its applications. Analysis methods proper for static, stationary as well as dynamic fields and waves in free space and on basic transmission lines are presented as well. This course provides students with physics - based wiev on studied effects, which is applied then on engineering problems. At the end of the course, all effects should not only be described, but quantified as well. Basic knowledge and insight into communication devices, systems and techniques is provided, applicable not only to systems currently taught in other courses, but to future systems as well.
Course outlines
1. Basic principles, field sources, charge(s) and current(s).
2. Field caused by charges, Laplace and Poisson equation, polarisation, capacity.
3. Magnetic field caused by steady current. Self and mutual inductance.
4. Magnetic circuit analysis, ferromagnetics.
5. Induction law. Nonstationary fields. Maxwell equations, practical explanation.
6. Energy and force contained in/caused by electromagnetic field
7. Electromagnetic wave, wave equation and its solution in the case of planar harmonic wave
8. Planar waves in lossy media, waves at planar interfaces, Snell's law
9. Poynting theorem. Fields and waves in conductive media.
10.Analytic and numeric analysis and its applications
11. Guided waves, transmission lines and its parameters, transmission, reflection, impedance
12. Smith chart, parameters on display and its application in impedance matching
13.TEM transmission lines, coaxial, Lecher ad other line types
14. Waveguide with rectangular crossection, parameters, modes, resonators.
Exercises outlines
1. Scalar and vector fields, potential, electric field strength, fields at interfaces.
2. Calculation of point charge and charged line, capacitance calculation
3. Field in charged layer, capacitors with layered dielectric
4. Calculation of external self- and mutual- inductance
5. Analysis of magnetic circuits
6. Induced voltage, calculation using Maxwell equations
7. Forces, work and energy in field
8. Plane electromagnetic wave, reflection and refraction on a boundary
9. Skin effect, high frequency resistance
10. Laboratory
11. Guided waves
12. Design of impedance matching
13. Calculation of coaxial line, maxima power, attenuation
14. Dominant mode, dispersion, resonator design
Literature
[1] Collin, R.E.: Field Theory of Guided Waves. 2nd Edit., IEEE Press, New York 1991
[2] Sadiku, M.N.O.: Elements of Electromagnetics. Saunders College Publishing. London, 1994
Requirements
Condition for assessment: presence at seminars.
https://moodle.fel.cvut.cz/