CTU FEE Moodle
Digital Communications
B242 - Summer 2024/2025
This course is not present in Moodle. You can visit its homepage by clicking the "Course page (outside Moodle)" button on the right (if available).
Digital Communications - BE2M37DKM
Credits | 6 |
Semesters | Winter |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 3P+1C |
Annotation
The course provides fundamentals of digital communications theory: modulation, classical coding, channel models, and basic principles of decoding. The exposition is systematically built along the theoretical lines which allow to reveal all inner connections and principles. This allows students to develop the knowledge and use it in an active way in a design and construction of the communication systems. The course provides a necessary fundamental background for subsequent more advanced communications theory courses.
Study targets
None
Course outlines
1. Digital modulation and coding, basic properties, classification.
2. Digital memoryless modulation - linear/nonlinear (PSK, QAM, FSK, ...).
3. Digital modulation with memory - linear/nonlinear (TCM, CPFSK, CPM, ...).
4. Space-time, adaptive and multiplexing (ODFM) digital modulations.
5. Power spectrum density of digitally modulated signal.
6. Basic principles of channel coding.
7. Linear codes on GF. Block codes.
8. Convolutional codes, transfer function.
9. Codes in constellations space, coded modulation, TCM.
10. Basic channel models (AWGN, linear).
11. Demodulation and decoding, minimum error probability decoder.
12. Decoding of FSM codes, Viterbi algorithm.
13. Error performance of decoder, union bound, pairwise error probability.
14. Elements (preview) of advanced coding/decoding, multi-user communications.
2. Digital memoryless modulation - linear/nonlinear (PSK, QAM, FSK, ...).
3. Digital modulation with memory - linear/nonlinear (TCM, CPFSK, CPM, ...).
4. Space-time, adaptive and multiplexing (ODFM) digital modulations.
5. Power spectrum density of digitally modulated signal.
6. Basic principles of channel coding.
7. Linear codes on GF. Block codes.
8. Convolutional codes, transfer function.
9. Codes in constellations space, coded modulation, TCM.
10. Basic channel models (AWGN, linear).
11. Demodulation and decoding, minimum error probability decoder.
12. Decoding of FSM codes, Viterbi algorithm.
13. Error performance of decoder, union bound, pairwise error probability.
14. Elements (preview) of advanced coding/decoding, multi-user communications.
Exercises outlines
1. Simulation and CAD tools for digital communications
2. Digital modulator: general definition & basic properties
3. Implementation of linear and nonlinear modulators
4. Power spectrum density of digital modulation
5. Basic block, convolutional and TCM codes
6. Communication channel with AWGN
7. Detection and decoding
2. Digital modulator: general definition & basic properties
3. Implementation of linear and nonlinear modulators
4. Power spectrum density of digital modulation
5. Basic block, convolutional and TCM codes
6. Communication channel with AWGN
7. Detection and decoding
Literature
1. J. G. Proakis: Digital Communications. McGraw-Hill. 2001
2. D. Tse, P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2005
3. E. Biglieri: Coding for Wireless Channels, Springer, 2005
2. D. Tse, P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2005
3. E. Biglieri: Coding for Wireless Channels, Springer, 2005
Requirements
none