Linear Algebra

B232 - Letní 23/24
Tento předmět se nenachází v Moodle. Na jeho domovskou stránku se můžete dostat pomocí tlačítka "Stránka kurzu (mimo Moodle)" vpravo (pokud existuje).

Linear Algebra - BE5B01LAL

Kredity 8
Semestry zimní
Zakončení zápočet a zkouška
Jazyk výuky angličtina
Rozsah výuky 4P+2S
Anotace
The course covers standard basics of matrix calculus (determinants, inverse matrix) and linear algebra (basis, dimension, inner product spaces, linear transformations) including eigenvalues and eigenvectors. Matrix similarity, orthogonal bases, and bilinear and quadratic forms are also covered.
Cíle studia
Žádná data.
Osnovy přednášek
1. Polynomials. Introduction to systems of linear equations and Gauss elimination method.
2. Linear spaces, linear dependence and independence.
3. Basis, dimension, coordinates of vectors.
4. Matrices: operations, rank, transpose.
5. Determinant and inverse of a matrix.
6. Structure of solutions of systems of linear equations. Frobenius Theorem.
7. Linear mappings. Matrix of a linear mapping.
8. Free vectors. Dot product and cross product.
9. Lines and planes in 3-dimensional real space.
10. Eigenvalues and eigenvectors of matrices and linear mappings.
11. Similarity of matrices, matrices similar to diagonal matrices.
12. Euclidean space, orthogonalization, orthonormal basis. Fourier basis.
13. Introduction to bilinear and quadratic forms.
Osnovy cvičení
1. Polynomials. Introduction to systems of linear equations and Gauss elimination method.
2. Linear spaces, linear dependence and independence.
3. Basis, dimension, coordinates of vectors.
4. Matrices: operations, rank, transpose.
5. Determinant and inverse of a matrix.
6. Structure of solutions of systems of linear equations. Frobenius Theorem.
7. Linear mappings. Matrix of a linear mapping.
8. Free vectors. Dot product and cross product.
9. Lines and planes in 3-dimensional real space.
10. Eigenvalues and eigenvectors of matrices and linear mappings.
11. Similarity of matrices, matrices similar to diagonal matrices.
12. Euclidean space, orthogonalization, orthonormal basis. Fourier basis.
13. Introduction to bilinear and quadratic forms.
Literatura
1. P. Pták: Introduction to Linear Algebra. ČVUT, Praha, 2005.
2. P. Pták: Introduction to Linear Algebra. ČVUT, Praha, 1997.

https://math.fel.cvut.cz/en/people/vivipaol/BE5B01LAL.html
Požadavky
https://math.fel.cvut.cz/en/people/vivipaol/LAL2015.pdf