CTU FEE Moodle
Integrated Modular Avionics
B232 - Summer 23/24
This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.
Integrated Modular Avionics - BE9M38INA
Main course
Credits | 6 |
Semesters | Undefined |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 2P+2L |
Annotation
The course Integrated Modular Avionics (IMA) focuses on a modern concept of the approach to the development and design of aircraft electronics (avionics), where the transition from distributed HW systems to SW blocks. They use high-speed connections to exchange data in applications related to paid air transport. The existing regulatory basis and airspace sharing define the requirements for the accuracy, reliability, and functionality of electronic systems even in the event of a failure. In the course, students will learn details about the requirements for so-called safety-critical multi-sensor systems, methods of data processing from predetermined systems, fault detection methods, selection of primary computer and control system in parallel architectures, bus technology, and methods of testing/certification of aircraft instruments.
Study targets
The goal of the study is to gain a practical view of data processing in aviation and its use for flight control.
Course outlines
1) Integrated modular avionics - its development, standardization, architecture, and use (A380, B787).
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
Exercises outlines
Exercises are focused on the transmission of data from sensors using digital buses used in aviation, then they are focused on the field of electromagnetic compatibility. These are online exercises, which are presented in the form of a video presentation and then individual processing of the data provided.
The next part is focused on data processing from aircraft sensors and systems - error detection algorithms (FDIR) and algorithms for data fusion from various sources.
The next part is focused on data processing from aircraft sensors and systems - error detection algorithms (FDIR) and algorithms for data fusion from various sources.
Literature
1) Cary R. Spitzer: Digital Avionics Handbook, Second Edition, Avionics: Development and Implementation, CRC Press, 2007, ISBN: 978-0-8493-8441-7.
2) Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
3) Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
4) Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
5) Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
6) Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
2) Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
3) Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
4) Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
5) Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
6) Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
Requirements
Processing of laboratory tasks and submission of required reports. Processing of individual work.
Integrated avionics - BE3M38INA1
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 2P+2L |
Annotation
The course Integrated Modular Avionics (IMA) focuses on a modern concept of the approach to the development and design of aircraft electronics (avionics), where the transition from distributed HW systems to SW blocks. They use high-speed connections to exchange data in applications related to paid air transport. The existing regulatory basis and airspace sharing define the requirements for the accuracy, reliability, and functionality of electronic systems even in the event of a failure. In the course, students will learn details about the requirements for so-called safety-critical multi-sensor systems, methods of data processing from predetermined systems, fault detection methods, selection of primary computer and control system in parallel architectures, bus technology, and methods of testing/certification of aircraft instruments.
Study targets
The goal of the study is to gain a practical view of data processing in aviation and its use for flight control.
Course outlines
1) Integrated modular avionics - its development, standardization, architecture, and use (A380, B787).
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
Exercises outlines
No data.
Literature
- Cary R. Spitzer: Digital Avionics Handbook, Second Edition, Avionics: Development and Implementation, CRC Press, 2007, ISBN: 978-0-8493-8441-7.
- Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
- Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
- Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
- Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
- Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
- Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
- Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
- Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
- Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
- Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
Requirements
Processing of laboratory tasks and submission of required reports. Processing of individual work.
Integrated Modular Avionics - BE3M38INA
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 2P+2L |
Annotation
The course Integrated Modular Avionics (IMA) focuses on a modern concept of the approach to the development and design of aircraft electronics (avionics), where the transition from distributed HW systems to SW blocks. They use high-speed connections to exchange data in applications related to paid air transport. The existing regulatory basis and airspace sharing define the requirements for the accuracy, reliability, and functionality of electronic systems even in the event of a failure. In the course, students will learn details about the requirements for so-called safety-critical multi-sensor systems, methods of data processing from predetermined systems, fault detection methods, selection of primary computer and control system in parallel architectures, bus technology, and methods of testing/certification of aircraft instruments.
Study targets
The goal of the study is to gain a practical view of data processing in aviation and its use for flight control.
Course outlines
1) Integrated modular avionics - its development, standardization, architecture, and use (A380, B787).
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
2) Aircraft architecture. Aircraft buses ARINC 429, 629, 659. CSDB, ASCB.
3) AFDX aircraft buses, MIL-1553, STANAG 3910.
4) Industrial buses in aviation - CAN, CANaerospace. High speed and secure buses - SpaceWire, TTP, FlexRay, IEEE-1394.
5) Methods of analysis and testing of EMI and EMS aircraft systems. Design rules for aircraft systems from the EMC point of view.
6) The concept of Performance-Based Navigation (PBN), related requirements for sensor equipment, and accuracy of measured quantities.
7) Statistical data processing from redundant systems. Use of parallel / serial architectures and their limits. Use in data captured in aeronautical applications.
8) The concept of Failure Detection Isolation and Recovery (FDIR) in parallel redundant systems. Example of use in electronics of the control and monitoring system of aircraft engines FADEC.
9) Integrated sensor systems, methods of integration, and data sharing. Modeling of sensor systems. Use of models for condition monitoring and error detection (FDIR).
10) Software and its architecture, design of avionic systems - requirements, analysis of performance, reliability, and security. Demonstration of competency and life cycle.
11) Certification process in the design of avionics systems - requirements, analysis of performance, reliability, and safety. ICAO, EASA, aviation law, non-transferred products.
12) TSO standard, requirements, and expected outputs for SW certification according to DO-178 and HW according to DO-160. Examples.
13) Simulation systems and their categories. GPWS Dangerous Approach Warning System.
14) Cybersecurity, data access and security in on-board systems, and data sharing with air traffic control.
Exercises outlines
Exercises are focused on the transmission of data from sensors using digital buses used in aviation, then they are focused on the field of electromagnetic compatibility. These are online exercises, which are presented in the form of a video presentation and then individual processing of the data provided.
The next part is focused on data processing from aircraft sensors and systems - error detection algorithms (FDIR) and algorithms for data fusion from various sources.
The next part is focused on data processing from aircraft sensors and systems - error detection algorithms (FDIR) and algorithms for data fusion from various sources.
Literature
1) Cary R. Spitzer: Digital Avionics Handbook, Second Edition, Avionics: Development and Implementation, CRC Press, 2007, ISBN: 978-0-8493-8441-7.
2) Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
3) Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
4) Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
5) Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
6) Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
2) Advanced Avionics Handbook, U.S. Department Transportation, Federal Aviation Administration, 2009.
3) Moir, Seabridge: Military Avionics Systems, John Wiley & Sons, 2006, ISBN: 2006.
4) Cary R. Spitzer: Digital Avionics Systems: Principles and Practice, Second Edition, 1993, 978-1-930665-12-5.
5) Moir, Seabridge, Jukes: Civil Avionics Systems, Second Edition, John Wiley & Sons, 2003.
6) Moir, Seabridge: Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Third Edition, John Wiley & Sons Ltd, 2008.
Recommended literature is available at the lecturer.
Requirements
Processing of laboratory tasks and submission of required reports. Processing of individual work.