Physics 1

Login to access the course.
This is a grouped course. It consists of several seperate subjects that share learning materials, assignments, tests etc. Below you can see information about the individual subjects that make up this subject.
Physics 1 (Main course) B3B02FY1
Credits 6
Semesters Summer
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 4P+1L+2C
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics 1, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics 2.
Course outlines
Lectures
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.
6. Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke?s law.
10. Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
Osnovy početních seminářů:

1. Řešení úloh pomocí rozměrových rovnic. Výpočty využívající transformací souřadnic.
2. Řešení úloh spadajících do kinematiky hmotného bodu.
3. Sestavování pohybových rovnic a jejich řešení v inerciální a neinerciální vztažné soustavě.
4. Řešení úloh zaměřených na využití zákona zachování mechanické energie a výpočet dráhového účinku sil.
5. Řešení komplexních úloh pomocí Lagrangeových rovnic 2. druhu.
6. Řešení úloh vztahujících se k pohybu hmotného bodu v centrálním silovém poli.
7. Sestavování a řešení pohybových rovnic mechanických kmitavých soustav.
8. Vyšetřování pohybu tuhých těles.
9. Výpočty hmotných středů u vybraných těles. Řešení úloh souvisejících s elementárním Hookovým zákonem.
10. Řešení vybraných úloh z mechaniky tekutin.
11. Řešení základních úloh z relativistické kinematiky a dynamiky.
12. Řešení úloh z elektrostatiky a elektrodynamiky.
13. Kontrolní test z probrané látky.
14. Řešení základních úloh vztahujících se k elektromagnetickému poli.

Osnovy laboratorních cvičení:

1. Úvodní výklad (bezpečnost práce, seznámení s úlohami a laboratorním řádem). Nejistoty měření.
2. Nejistoty měření (pokračování). Měření objemu tuhých těles přímou metodou.
3. Měření ve fyzikálních laboratořích na vybraných úlohách.
4. Vyhodnocení elaborátů.

Seznam laboratorních úloh

1. II. Newtonův pohybový zákon a srážky.
2. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole.
3. Stanovení modulu pružnosti v tahu přímou metodou.
4. Studium nucených kmitů - Pohlovo torzní kyvadlo.
5. Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu.
6. Měření viskozity kapalin Stokesovou metodou.
7. Měření magnetických polí.
8. Určení modulu torze dynamickou metodou a stanovení momentu setrvačnosti.
9. Měření charakteristik palivového článku.
10. Měření permitivity dialektik.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
Studenti by měli zvládat základy diferenciálního a integrálního počtu funkcí jedné proměnné a základy lineární algebry.
Physics 1 for KyR A3B02FY1
Credits 6
Semesters Summer
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 4+2L
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics I, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics II.
Course outlines
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
1. Introduction, safety instructions, laboratory rules, list of experiments, theory of errors.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
Knowledge of physics and mathematics from the secondary school. Basic knowledge of the differential and integral calculus of the function of one variable and linear algebra.
Physics 1 for KyR AD3B02FY1
Credits 6
Semesters Summer
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 28+6L
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics I, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics II.
Course outlines
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
1. Introduction, safety instructions, laboratory rules, list of experiments, theory of errors.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
Knowledge of physics and mathematics from the secondary school. Basic knowledge of the differential and integral calculus of the function of one variable and linear algebra.