Autonomous Robotics - B3M33ARO

Credits 7
Semesters Summer
Completion Assessment + Examination
Language of teaching Czech
Extent of teaching 3P+2L
Annotation
The Autonomous robotics course will explain the principles needed to develop algorithms for intelligent mobile robots such as algorithms for:
(1) Mapping and localization (SLAM) sensors calibration (lidar or camera).
(2) Planning the path in the existing map or planning the exploration in a partially unknown map and performing the plan in the world.
IMPORTANT: It is assumed that students of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton method), mathematical analysis (gradient, Jacobian, Hessian), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likelihood and maximum aposteriori estimate), python programming and machine learning algorithms.
Course outlines
https://cw.fel.cvut.cz/wiki/courses/aro/lectures/start
Exercises outlines
https://cw.fel.cvut.cz/b212/courses/aro/tutorials/start
Literature
1. Siciliano, Bruno and Sciavicco, Lorenzo and Villani, Luigi and Oriolo, Giuseppe: Robotics, Modelling,
Planning and Control, Springer 2009
2. Fahimi, F.: Autonomous Robots: Modeling, Path Planning, and Control, Springer 2009
Requirements
It is assumed that students of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton method), mathematical analysis (gradient, Jacobian, Hessian, multidimensional Taylor polynomial), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likelihood and maximum aposteriori estimate), python programming and machine learning algorithms.