CTU FEE Moodle
Physics 1
B232 - Summer 23/24
This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.
Physics 1 - B3B02FY1
Main course
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 4P+1L+2C |
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics 1, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics 2.
Study targets
No data.
Course outlines
Lectures
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.
6. Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke?s law.
10. Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.
6. Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke?s law.
10. Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
No data.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
No data.
Physics 1 - B3B02FY1A
Credits | 7 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 4P+1L+2C |
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics 1, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics 2.
Study targets
No data.
Course outlines
Lectures
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.
6. Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke?s law.
10. Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.
6. Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke?s law.
10. Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
No data.
Literature
1. Halliday, D., Resnick, R., Walker, J.: Fyzika, VUTIUM-PROMETHEUS, 2000.
2. Kvasnica, J., Havránek, A., Lukáč, P., Sprášil, B.: Mechanika, ACADEMIA, 2004.
3. Sedlák, B., Štoll, I.: Elektřina a magnetismus, ACADEMIA, 2002.
4. Fyzika I a II - fyzikální praktikum, M. Bednařík, P. Koníček, O. Jiříček.
5. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
6. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
7. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
2. Kvasnica, J., Havránek, A., Lukáč, P., Sprášil, B.: Mechanika, ACADEMIA, 2004.
3. Sedlák, B., Štoll, I.: Elektřina a magnetismus, ACADEMIA, 2002.
4. Fyzika I a II - fyzikální praktikum, M. Bednařík, P. Koníček, O. Jiříček.
5. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
6. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
7. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
No data.
Physics 1 for KyR - AD3B02FY1
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 28+6L |
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics I, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics II.
Study targets
No data.
Course outlines
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
1. Introduction, safety instructions, laboratory rules, list of experiments, theory of errors.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
Knowledge of physics and mathematics from the secondary school. Basic knowledge of the differential and integral calculus of the function of one variable and linear algebra.
Physics 1 for KyR - A3B02FY1
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | Czech |
Extent of teaching | 4+2L |
Annotation
The basic course of physics at the Faculty of Electrical Engineering - Physics I, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics II.
Study targets
No data.
Course outlines
1. Units, system of units. Physical fields. Reference frames.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
2. Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).
3. Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.
4. Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.
5. Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange's equations of the 2nd order for conservative systems. Hamiltonian, Hamilton's canonical equations.
6. Central forces, motion in the field of central force. Kepler´s laws, Newton´s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.
7. Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.
8. System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point
9. Elasticity, stress, Hooke´s law.
10. Introduction to the mechanics of fluids - Eulerˇs equation, barometric formulae, Bernoulli´s equation, Pascal´s and Archimedes principle.
11. Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.
12. Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss´ law, Maxwell´s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell´s equations for real-world materials. Conductor in electric field, Faraday´s cage. Capacitance, capacitor. Energy of the electrostatic field.
13. Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm´s law, Joule´s law. Magnetostatic field. Lorentz force, Ampere´s and Biot-Savart´s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field
14. Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.
Exercises outlines
1. Introduction, safety instructions, laboratory rules, list of experiments, theory of errors.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
2. Uncertainties of measurements. Measurement of the volume of solids.
3. 2nd Newton´s law and collisions.
4. Measurement of the acceleration due to the gravity with a reversible pendulum and study of the gravitational field.
5. Young?s modulus of elasticity .
6. Forced oscillations - Pohl´s torsion pendulum.
7. Measurement of the characteristics of the PEM fuel element.
8. Test from Physics I.
9. Motion of an electron in a crossed electric and magnetic fields. Measurement of the ratio e/m of an electron.
10. Measurement of the permittivity of dielectrics.
11. Measurement of magnetic fields.
12. Measurement of the force acting on the current carrying conductor.
13. Measurement of the coefficient of thermal conductivity of metals
14. Grading of laboratory reports. Assessment.
Literature
1. Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
2. Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.
3. Physics II, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2003.
4. Physics II - Seminars, S. Pekárek, M. Murla, Vydavatelství ČVUT, 1996.
5. Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.
Requirements
Knowledge of physics and mathematics from the secondary school. Basic knowledge of the differential and integral calculus of the function of one variable and linear algebra.