CTU FEE Moodle
CAD in HF Technique
B241 - Winter 24/25
This is a grouped Moodle course. It consists of several separate courses that share learning materials, assignments, tests etc. Below you can see information about the individual courses that make up this Moodle course.
CAD in HF Technique - BE2M17CADA
Main course
Credits | 6 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 2P+2C |
Annotation
Introduction into principles and techniques used in modern microwave circuit design.
Study targets
This course provides its students with knowledge of principles and techniques used in modern microwave circuits as well as with basic design methods used in such systems.
Course outlines
1. Introduction into microwaves. Circuits seen as media with propagating waves.
2. Transmission lines used in Microwave Integrated Circuits, including discontinuities.
3. Optimization applied to circuits,error function, local and global methods.
4. Bioinspired optimization method, Pareto optimization.
5. Introduction into Numerical Electromagnetics.
6. Finite differences applied to static and quasi-static harmonic fields (FDFD).
7. Finite Element Method (FEM), and the Method of Moments (MoM).
8. Analysis methods suitable for microwave circuits and systems, frequency domain.
9. Finite Differences in Time Domain (FDTD).
10. Approximate boundary conditions in Time domain, absorbing boundary implementation.
11. Circuit parameter/model extraction.
12. Introduction into non-linear circuit analysis in frequency and time domains. Harmonic balance.
13. Large structure analysis.
14. Analysis of optoelectronic circuits.
2. Transmission lines used in Microwave Integrated Circuits, including discontinuities.
3. Optimization applied to circuits,error function, local and global methods.
4. Bioinspired optimization method, Pareto optimization.
5. Introduction into Numerical Electromagnetics.
6. Finite differences applied to static and quasi-static harmonic fields (FDFD).
7. Finite Element Method (FEM), and the Method of Moments (MoM).
8. Analysis methods suitable for microwave circuits and systems, frequency domain.
9. Finite Differences in Time Domain (FDTD).
10. Approximate boundary conditions in Time domain, absorbing boundary implementation.
11. Circuit parameter/model extraction.
12. Introduction into non-linear circuit analysis in frequency and time domains. Harmonic balance.
13. Large structure analysis.
14. Analysis of optoelectronic circuits.
Exercises outlines
1. Introduction. Problems resulting from finite circuit dimensions - and how to make use of it.
2. Finite Difference (FD) method in electrostatics
3. FD, dielectric interface
4. FD, shielded strip analysis, project task assignment
5. Finite Difference Time Domain (FDTD) method, discretion of Maxwell equations in 1D space, numerical dispersion, stability of the solution
6. FDTD, excitation, absorption boundary condition (ABC), reflection at the interface of two environments
7. FDTD, propagation constant, material absorption, perfectly matched layers (PML), transition to freq. area - coefficient of reflection
8. Work on a project task
9. CST Microwave Studio - work with a professional EM field simulator
10. CST Microwave Studio - work with EM field simulator, advanced functions
11. Moment method - distribution of the charge on the board
12. Method of moments - distribution of current density on a dipole, input impedance, dependence of parameters on segmentation density
13. Getting started with the 3D MoM simulator EM field AXIEM
14. Project task submission. Assesment.
2. Finite Difference (FD) method in electrostatics
3. FD, dielectric interface
4. FD, shielded strip analysis, project task assignment
5. Finite Difference Time Domain (FDTD) method, discretion of Maxwell equations in 1D space, numerical dispersion, stability of the solution
6. FDTD, excitation, absorption boundary condition (ABC), reflection at the interface of two environments
7. FDTD, propagation constant, material absorption, perfectly matched layers (PML), transition to freq. area - coefficient of reflection
8. Work on a project task
9. CST Microwave Studio - work with a professional EM field simulator
10. CST Microwave Studio - work with EM field simulator, advanced functions
11. Moment method - distribution of the charge on the board
12. Method of moments - distribution of current density on a dipole, input impedance, dependence of parameters on segmentation density
13. Getting started with the 3D MoM simulator EM field AXIEM
14. Project task submission. Assesment.
Literature
[1] Gupta, K.C., Garg, R., Chadha, R.: Computer-Aided Design of Microwave Circuits. Artech House, Dedham 1981
[2] David M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, 2012, ISBN: 978-0-470-63155-3.
[2] David M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, 2012, ISBN: 978-0-470-63155-3.
Requirements
No data.
CAD in HF Technique - BE2M17CAD
Credits | 5 |
Semesters | Summer |
Completion | Assessment + Examination |
Language of teaching | English |
Extent of teaching | 2P+2C |
Annotation
Introduction into principles and techniques used in modern microwave circuit design.
Study targets
This course provides its students with knowledge of principles and techniques used in modern microwave circuits as well as with basic design methods used in such systems.
Course outlines
1. Introduction into microwaves. Circuits seen as media with propagating waves.
2. Transmission lines used in Microwave Integrated Circuits, including discontinuities.
3. Optimization applied to circuits,error function, local and global methods.
4. Bioinspired optimization method, Pareto optimization.
5. Introduction into Numerical Electromagnetics.
6. Finite differences applied to static and quasi-static harmonic fields (FDFD).
7. Finite Element Method (FEM), and the Method of Moments (MoM).
8. Analysis methods suitable for microwave circuits and systems, frequency domain.
9. Finite Differences in Time Domain (FDTD).
10. Approximate boundary conditions in Time domain, absorbing boundary implementation.
11. Circuit parameter/model extraction.
12. Introduction into non-linear circuit analysis in frequency and time domains. Harmonic balance.
13. Large structure analysis.
14. Analysis of optoelectronic circuits.
2. Transmission lines used in Microwave Integrated Circuits, including discontinuities.
3. Optimization applied to circuits,error function, local and global methods.
4. Bioinspired optimization method, Pareto optimization.
5. Introduction into Numerical Electromagnetics.
6. Finite differences applied to static and quasi-static harmonic fields (FDFD).
7. Finite Element Method (FEM), and the Method of Moments (MoM).
8. Analysis methods suitable for microwave circuits and systems, frequency domain.
9. Finite Differences in Time Domain (FDTD).
10. Approximate boundary conditions in Time domain, absorbing boundary implementation.
11. Circuit parameter/model extraction.
12. Introduction into non-linear circuit analysis in frequency and time domains. Harmonic balance.
13. Large structure analysis.
14. Analysis of optoelectronic circuits.
Exercises outlines
1. Introduction. Problems resulting from finite circuit dimensions - and how to make use of it.
2. Finite Difference (FD) method in electrostatics
3. FD, dielectric interface
4. FD, shielded strip analysis, project task assignment
5. Finite Difference Time Domain (FDTD) method, discretion of Maxwell equations in 1D space, numerical dispersion, stability of the solution
6. FDTD, excitation, absorption boundary condition (ABC), reflection at the interface of two environments
7. FDTD, propagation constant, material absorption, perfectly matched layers (PML), transition to freq. area - coefficient of reflection
8. Work on a project task
9. CST Microwave Studio - work with a professional EM field simulator
10. CST Microwave Studio - work with EM field simulator, advanced functions
11. Moment method - distribution of the charge on the board
12. Method of moments - distribution of current density on a dipole, input impedance, dependence of parameters on segmentation density
13. Getting started with the 3D MoM simulator EM field AXIEM
14. Project task submission. Assesment.
2. Finite Difference (FD) method in electrostatics
3. FD, dielectric interface
4. FD, shielded strip analysis, project task assignment
5. Finite Difference Time Domain (FDTD) method, discretion of Maxwell equations in 1D space, numerical dispersion, stability of the solution
6. FDTD, excitation, absorption boundary condition (ABC), reflection at the interface of two environments
7. FDTD, propagation constant, material absorption, perfectly matched layers (PML), transition to freq. area - coefficient of reflection
8. Work on a project task
9. CST Microwave Studio - work with a professional EM field simulator
10. CST Microwave Studio - work with EM field simulator, advanced functions
11. Moment method - distribution of the charge on the board
12. Method of moments - distribution of current density on a dipole, input impedance, dependence of parameters on segmentation density
13. Getting started with the 3D MoM simulator EM field AXIEM
14. Project task submission. Assesment.
Literature
[1] Gupta, K.C., Garg, R., Chadha, R.: Computer-Aided Design of Microwave Circuits. Artech House, Dedham 1981
[2] David M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, 2012, ISBN: 978-0-470-63155-3.
[2] David M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, 2012, ISBN: 978-0-470-63155-3.
Requirements
No data.