Přejít k hlavnímu obsahu
Přihlásit se
Čeština ‎(cs)‎ English ‎(en)‎
Dokumentace
Čeština ‎(cs)‎ English ‎(en)‎

Optimal and Robust Control

B3M35ORR + BE3M35ORR + BE3M35ORC
  1. Titulní stránka
  2. Kurzy
  3. BE3M35ORR, B3M35ORR, BE3M35ORC - B212
  4. 18. dubna - 24. dubna
  5. Homework problem assignment #7 - Retest
Tento kurz je součástí již archivovaného semestru, a proto je dostupný pouze pro čtení.

Homework problem assignment #7 - Retest

Požadavky na absolvování
Otevřené: pátek, 22. dubna 2022, 00.00
Termín: úterý, 10. května 2022, 23.59

Get a boat as far as possible

Find the optimal control policy getting a boat in a river stream as far as possible. The equations of motion of the boat in the river stream are

\(
\begin{array}{rl}
\dot{x} &= \cos\theta + y^2, \\
\dot{y} &= \sin\theta.
\end{array}
\)

The boat is at time \(t=0\) located on a river bank (i.e. \([x(0),y(0)]=[0,0]\)). The only way how you can influence the motion of the boat is via commanding the angle \(\theta\).  

Your goal is to get the boat as far possible along the x-axis during a fixed time interval [0,5].

Implement your solution as a function with the header of the following form:

function [ t_star, x_star, u_star ] = hw7_cvutID()

where cvutID is your KOS username, t_star is the time vector of the trajectory, x_star is the state trajectory and u_star is the control trajectory. You are free to choose the sampling of the time interval [0, 5]; in other words, time samples in t_star can be arbitrarily spaced.

Note that the parameters of the flow field are not the same as you had in the first round of this homework assignment. This time, the flow field depends quadratically on the y coordinate as opposed to linear dependence you had before. This little change makes the problem way more challenging to solve analytically and thus we encourage you to use a numerical solver (like bvp4c) in Matlab instead. Numerical solvers are quite often very sensitive to initial conditions. Try more initial conditions and submit the solution with the initial condition resulting in the best performance (=largest final-time coordinate x).

You can submit only one m-file. If you need more functions, you can use nested functions (for details, see this).

◄ Homework problem assignment #6 - Retest
Homework problem assignment #8 - Retest ►
ORR
Optimal and Robust Control
B212 B212 - Letní 21/22
B162 - Letní 16/17 B172 - Letní 17/18 B182 - Letní 18/19 B192 - Letní 19/20 B202 - Letní 20/21 B222 - Letní 22/23 B232 - Letní 23/24 B242 - Letní 24/25

Známky Vyučující Účastníci
 Kontaktujte nás  Spustit znovu Průvodce uživatele
© 2025 Centrum znalostního managementu
Užitečné odkazy
Web fakulty Harmonogram Studijní oddělení FELSight Moodle API
Navigace
Přihlásit se
CTU logo