Skip to main content
Log in
Čeština ‎(cs)‎ English ‎(en)‎
Documentation
Čeština ‎(cs)‎ English ‎(en)‎

Optimal and Robust Control

BE3M35ORR + B3M35ORR + BE3M35ORC
  1. Home
  2. Courses
  3. BE3M35ORR, B3M35ORR, BE3M35ORC - B232
  4. 18 March - 24 March
  5. Homework problem assignment #5
This course is part of an already archived semester and is therefore read-only.

Homework problem assignment #5

Completion requirements
Due: Wednesday, 27 March 2024, 11:00 AM

Use Dynamic Programming to find an optimal control policy for the following discrete-time system

\(
x_{k+1} = x_k - 0.4 x^2_k + u_k, \qquad k=0,\dots,4
\)

The state and control variables are constrained by

\(
\begin{array}{c}
-1 \leq x_k \leq 1\\
-0.5 \leq u_k \leq 0.5.
\end{array}
\)


Quantize the state into the levels \(-1, -0.8, \dots, 0.8, 1\), and the control into the levels \(-0.5, -0.4, \dots 0.4, 0.5\).

Use linear interpolation in cases where you need to get a value of the value function \(J^\ast\) or optimal control policy \(u^\ast\) outside the quantized values of \(x\).

Your goal is to get the state to zero as quickly as possible. In other words, choose a performance index so that the number of time instants at which \(x_k\) is non-zero is minimized.

Download the attached file 'hw5_cvutID.m'  where a majority of the code solving this homework assignment has already been implemented. Fill in the gaps in the code and submit the modified version of the file. Do not forget to rename the file (and the name of the main function in it) according to your CVUT ID (KOS username). Please do not change the parameters of the simulation or vectors x, u, and t. Your solution will be evaluated based on these vectors.

  • hw5_cvutID.m hw5_cvutID.m
    12 January 2024, 11:53 PM
◄ Julia files for the lecture
M-files for the exercises ►
ORR
Optimal and Robust Control
B232 B232 - Summer 23/24
B162 - Summer 16/17 B172 - Summer 17/18 B182 - Summer 18/19 B192 - Summer 19/20 B202 - Summer 20/21 B212 - Summer 21/22 B222 - Summer 22/23 B242 - Summer 24/25

Grades Teachers Participants
 Contact us  Reset user tour on this page
© 2025 Center for Knowledge Management
Useful links
Faculty website Calendar Study department FELSight Moodle API
Navigation
Log in
CTU logo